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Abstract: When solving problems of mathematical physics using numerical meth-
ods we always encounter three basic types of errors: modeling error, discretization
error, and round-off errors. In this survey, we present several pathological examples
which may appear during numerical calculations. We will mostly concentrate on
the influence of round-off errors.
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1. Introduction

The general computational scheme for solving problems of mathematical physics
is sketched in Fig. 1. In general, three basic types of errors e0, e1, and e2 are
introduced.

results0 e1 e2

NumericalDiscreteMathematicalPhysical
reality model modele

Fig. 1 General computational scheme: The modeling error e0 is the difference
between physical reality and its mathematical model. The difference between the
mathematical model and the discrete model is called the discretization error e1.
Finally, round-off errors are included in e2.
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We should never identify any mathematical model with reality, since no equation
describes physical phenomena in our world exactly. This leads to the so-called
modeling error e0.

Mathematical models are usually expressed as infinite dimensional problems.
They are given by ordinary or partial differential equations, integro-differential
or integral equations, systems of these equations, variational inequalities, systems
of differential-algebraic equations, and so on. To implement such models on the
computer we have to approximate them by finite dimensional problems, which
yields the error e1 (discretization error). This error includes for instance the error
of numerical integration, and the error of approximation of the boundary of the
examined region.

Finally, the error e2 arises during a computation in the discrete model. It
contains, of course, rounding errors, but may include other errors (like iteration
errors).

In this paper we draw attention to hidden dangers that may appear in mechani-
cal use of numerical calculations without any knowledge of theory. There is a large
amount of other works on similar topics — see e.g. [4,7–9,18,19]. Below we present
the most drastic examples. Consider, for instance, the integral

In =
1

e

∫ 1

0

xnex dx > 0.

Using integration by parts, we obtain the following recurrence relation [15, p. 505]

In = 1− nIn−1, n = 1, 2, . . . , (1)

where I0 = 1−e−1. Renata Babušková in her 1964 paper [2] examines its numerical
instability. After a few steps of the above recurrence we surprisingly get negative
values in single-precision arithmetic (4 bytes) even though In is positive for all n.
Running the iteration in double-precision arithmetic (indicated by ˜ throughout
this paper) on a standard PC, we observe a decreasing series until Ĩ16 = 0.0374,
and then Ĩ17 = 0.3259, Ĩ18 = −5.1930 is negative, Ĩ19 = 104.8628, . . . which leads
to an alternating divergent sequence. This numerical phenomenon happens due to
the fact that at each step we subtract two numbers of almost the same size. Then
the difference contains only a few nonzero significant digits in computer arithmetic
that necessarily leads to loss of accuracy. Note that In may be calculated via a fast
convergent series

In =
1

n+ 1
− 1

(n+ 1)(n+ 2)
+

1

(n+ 1)(n+ 2)(n+ 3)
− . . .

Similar examples are collected in the classical 1966 monograph Numerical Pro-
cesses in Differential Equations [1] by Ivo Babuška, Milan Práger, and Emil Vitásek.
For instance, they investigate numerical instability of successive evaluation of the
expression

. . . (((((1 : 2) · 2) : 3) · 3) : 4) · 4 . . . (2)

Their colleague Karel Segeth obtained various results for this expression on differ-
ent computers involving thousands of divisions and multiplications [1, p. 6]. For
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examples of large accumulations of rounding errors in calculating infinite sums or
limits see also [6, pp. 14–17].

The aim of this paper is to reveal several cautionary examples, which one should
have in mind before performing numerical calculations. We also recalculated three
shocking examples from a recently published monograph Handbook of Floating-
Point Arithmetic [12].

2. Can a decreasing sequence be increasing in com-
puter arithmetic?

Set a0 = 1, a1 = 1
11 , and let

an+2 =
34

11
an+1 −

3

11
an for n = 0, 1, 2, . . . (3)

The exact solution

an =
1

11n

is clearly a decreasing sequence. However, calculating (3) with MATLAB (Matrix
Laboratory) on a standard PC computer, we observe that the associated series
decreases until ã12 = 0.2068 · 10−11, then increases and reaches ã40 = 40.44 and
grows quite rapidly.

This example demonstrates that subtraction of two numbers of almost the same
size is not a good practice in scientific computing. Below we list some data for (3)
with different precision arithmetic,

a50 ≈ 2 · 1011 in single-precision arithmetic (4 bytes),
ã50 ≈ 5 · 105 in double-precision arithmetic (8 bytes),
a50 ≈ 103 in extended-precision arithmetic (10 bytes).

Moreover, the corresponding sequences (an), (ãn), and (an) are increasing from
n = 8, 12, and 14, respectively. Rounding to two significant digits only yields an
increasing sequence from n = 2.

It is interesting to observe that if we implement (3) in a slightly different way

an+2 =
34an+1 − 3an

11
,

then the resulting sequence turns to be negative at ã12 and remains negative after-
wards with increasing magnitudes.

3. Babuška’s example

Consider the Lebesgue integrable function f on [0, 1] which is zero at all rational
numbers and f = 1 otherwise. Then obviously∫ 1

0

f(x)dx = 1,
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whereas any numerical quadrature formula∫ 1

0

f(x)dx ≈
n∑

i=1

wif(xi)

with real weights wi and nodes xi from [0, 1] yields a zero approximate value for
this integral, since the nodes are approximated by rational numbers (with a finite
number of decimal places).

This result, in which the numerical integration error always equals one, is due
to the fact that f is not a smooth function. Some regularity of f is usually required
in standard theorems on convergence of quadrature formulas.

4. Kahan’s example

Set a0 = 2, a1 = −4, and consider the recurrence (see [12])

an = 111− 1130

an−1
+

3000

an−1an−2
for n = 2, 3, . . . (4)

Its general solution has the form

an =
α100n+1 + β6n+1 + γ5n+1

α100n + β6n + γ5n
,

where α, β, and γ depend on the initial values a0 and a1.
Thus, if α 6= 0 then the limit of the sequence (an) is 100. Nevertheless, we

observe that if α = 0 and β 6= 0, then the limit is 6. For the initial values a0 = 2
and a1 = −4 we find that

a20
.
= 6.034, a30

.
= 6.006.

However, calculating (4) in double precision, we get

ã20
.
= 98.351, ã30

.
= 99.999

due to rounding errors (cf. also [6, p. 45]).

5. Muller’s example

Let a1 = e − 1 = 1.718281828 . . . and consider the thoroughly innocent-looking
sequence (see [12])

an = n(an−1 − 1) for n = 2, 3, . . . (5)

Notice that this recurrence is only a slight modification of (1). By induction we
can easily prove that

an = n!
( 1

n!
+

1

(n+ 1)!
+

1

(n+ 2)!
+ · · ·

)
. (6)
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Indeed, for n = 1 we have a1 = e−1 and assuming the validity of (6) for n−1 ≥ 0,
we get by (5)

an = n(an−1 − 1) = n
(

(n− 1)!
( 1

(n− 1)!
+

1

n!
+

1

(n+ 1)!
+ · · ·

)
− (n− 1)!

(n− 1)!

)
= n!

( 1

n!
+

1

(n+ 1)!
+

1

(n+ 2)!
+ · · ·

)
.

From (6) we immediately see that the sequence (an) is decreasing, all an have
a very reasonable size in the interval (1, 2), and

lim
n→∞

an = 1.

However, if we run the iteration on MATLAB, we observe that the sequence de-
creases until ã15 = 1.0668, and then a strange thing happens: ã16 = 1.0685,
ã17 = 1.1652, ã18 = 2.9731, ã19 = 37.4882, ã15 = 729.7637, . . . The sequence
grows out of control.

Performing only 24 subtractions and 24 multiplications in (5) with different
numbers of significant digits, we obtain the following table:

a25 ≈ −6.204484 · 1023 in single-precision arithmetic (4 bytes),
ã25 ≈ 1.201807248 · 109 in double-precision arithmetic (8 bytes),
a25 ≈ −7.3557319606 · 106 in extended-precision arithmetic (10 bytes).

However, by (6) we have

1.038 < 1 +
1

26
< a25 < 1 +

1

26
+

1

262
+ · · · = 26

25
= 1.04,

where the standard formula for the sum of a geometric sequence was applied. Now,
let us extend the number of significant digits. In arithmetic with D decimal digits,
the first twelve significant digits are:

D a25(D)

20 615990.413139,

21 − 4457.98859386,

22 − 4457.98859386,

23 195.374419140,

24 40.2623187072,

25 − 6.27131142281,

26 1.48429359885.

The values corresponding D = 21 and D = 22 are the same, since the 21st
decimal digit of the Euler number e= 2.71828182845904523536028745 . . . is equal
to zero. Only for D > 25 do the numerical results start to resemble the exact value
a25 = 1.03993872967 . . . For instance, if D = 30 we get a25(30) = 1.039897 . . .
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Now let us take a closer look at the main reason of this strange behavior. Denote
by εi the rounding error at the ith step. Then we have

ã1 = e− 1 + ε1 = a1 + ε1,

ã2 = 2(ã1 − 1) + ε2 = 2(a1 + ε1 − 1) + ε2 = a2 + 2!ε1 + ε2,

ã3 = 3(ã2 − 1) + ε3 = 3(a2 + 2ε1 + ε2 − 1) + ε3 = a3 + 3!ε1 + 3ε2 + ε3,

...

ã25 = 25(ã24 − 1) + ε25 = a25 + 25!ε1 +
25!

2!
ε2 +

25!

3!
ε3 + · · ·+ ε25.

Therefore, the total rounding error is

a25 − ã25 = −25!
(
ε1 +

1

2!
ε2 +

1

3!
ε3 + · · ·+ 1

25!
ε25

)
(7)

and its size depends particularly on the several initial rounding errors ε1, ε2, . . .
This sophisticated example shows why it is necessary to try to avoid the subtrac-

tion of two numbers that are almost equal, which happens for instance in long-term
numerical simulations of the N -body problem (see (15) below). We observe from
(7) why the above recurrence (5) is so sensitive to round-off errors. Computer arith-
metic with variable length does not improve this numerical effect for large n. An
interesting application of the sequence (5) in banking can be found in [12] and [13].

6. Rump’s example

The use of a much smaller number of subtractions than in the previous example
may also lead to absolutely catastrophic numerical results. Evaluate the rational
function

u(x, y) = 333.75y6 + x2(11x2y2 − y6 − 121y4 − 2) + 5.5y8 +
x

2y
(8)

at x = 77617.0 and y = 33096.0. Note that this is a polynomial of degree eight plus
a simple rational function x/(2y). We observe that no recurrence relation as in (5)
is evaluated and we perform only three subtractions and a few other arithmetic
operations. Contrary to the previous example, we get almost the same numbers:

u(x, y) = 1.172603 in single-precision arithmetic (4 bytes),
ũ(x, y) = 1.1726039400531 in double-precision arithmetic (8 bytes),
u(x, y) = 1.172603940053178 in extended-precision arithmetic (10 bytes)

on an outmoded IMB 370 computer (see Rump [16]). The programming package
MAPLE, with

D = 7, 8, 9, 10, 12, 18, 26, 27

decimal digits produces very similar results. However, we should not rejoice over
the above results, since the exact value is

u(x, y) = −0.827396 . . . NEGATIVE!
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As discussed in [3], for z = 333.75y6+x2(11x2y2−y6−121y4−2) and w = 5.5y8

we can evaluate exactly that

z = −7917111340668961361101134701524942850,

w = 7917111340668961361101134701524942848,

which have 35 out of 37 digits in common. Thus we are dealing with huge numbers
with insufficient floating points. The exact value is

u(x, y) = z + w +
x

2y
= −2 +

x

2y
= −54767

66192
= −0.827396 . . .

Numerical results by MAPLE only begin to be realistic starting at D = 37, 38, . . .
The following MATLAB code:

x = 77617.0; y = 33096.0;

y2 = y ∗ y; y4 = y2 ∗ y2; y6 = y4 ∗ y2; y8 = y4 ∗ y4; x2 = x ∗ x;

ff = 11 ∗ x2 ∗ y2− y6− 121 ∗ y4− 2;

u = 333.75 ∗ y6 + x2 ∗ ff + 5.5 ∗ y8 + x/y/2

produces ũ(x, y) = −1.1806E + 021, a completely false result!
If we use D decimal digits in the following MATLAB code:

digits(D);

y = vpa(33096,D);

x = vpa(77617,D);

u = vpa(333.75 ∗ y 6̂ + x̂ 2 ∗ (11 ∗ x̂ 2 ∗ y 2̂− y 6̂− 121 ∗ y 4̂− 2) + 5.5 ∗ y 8̂ + x/y/2,D)

we obtain

D = 20, uD(x, y) = 1073741825.1726039401,

D = 21, uD(x, y) = 1.17260394005317863186,

D = 28, uD(x, y) = 1.172603940053178631858834905,

D = 29, uD(x, y) = −0.82739695994682136814116509548,

D = 37, uD(x, y) = −0.827396959946821368141165095479816292,

where the subscript D stands for the use of computer arithmetic with D decimal
digits. We see that when D =21 to 28, the result is close to Rump’s 1988 data,
and the “correct” answer appears starting from D=29. This example shows that
the arithmetic of large numbers should be performed very cautiously in scientific
computing. A detailed numerical analysis of this catastrophic behavior of rounding
errors is presented in [3] and [10].

Thus, we should keep in mind that a very small number of subtractions and
roundings (see (5) and (8)) may completely destroy the exact solution [17]. Exam-
ples showing deterministic chaos are sometimes wrongly understood, since rounding
errors were not taken into account. In many of these examples chaos appears just
due to rounding errors.
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7. Gram-Schmidt versus Modified Gram-Schmidt

Let a1,a2,a3 ∈ Rn be linearly independent. We orthonormalize them by the
Gram-Schmidt (GS) process [5] and the Modified Gram-Schmidt (MGS) process.
The first two vectors resulting from GS and MGS are the same, being

q1 =
a1
‖a1‖

and

q2 =
q̂2

‖q̂2‖
, where q̂2 = a2 − q1q

>
1 a2.

Now, the difference between GS and MGS is the computation of the third vector,
which in the respective cases is computed as follows,

qGS
3 =

q̂GS
3

‖q̂GS
3 ‖

, where q̂GS
3 = a3 − q1q

>
1 a3 − q2q

>
2 a3,

and

qMGS
3 =

q̂MGS
3

‖q̂MGS
3 ‖

, where q̂MGS
3 = (I− q2q

>
2 )(I− q1q

>
1 )a3.

Note that in exact arithmetic, both vectors are the same. The fundamental
difference between MGS and GS is, that in MGS, the vector a3 is orthogonalized
against q1, after which the orthogonalized result is orthogonalized against q2.

To make the difference better visible, both vectors q̂GS
3 and q̂MGS

3 can be com-
puted in two consecutive steps as follows,

ˆ̂qGS
3 = a3 − q1(q>1 a3), q̂GS

3 = ˆ̂qGS
3 − q2(q>2 a3), (9)

and
ˆ̂qMGS
3 = a3 − q1(q>1 a3), q̂MGS

3 = ˆ̂qMGS
3 − q2(q>2

ˆ̂qMGS
3 ). (10)

In further steps of GS and MGS, the difference between the two methods is similar.
In a practical implementation of MGS, as soon as q1 is computed, all fur-

ther vectors a2, a3, a4, . . . are orthogonalized against q1. Then, as soon as q2 is
computed, all the vectors that resulted from the orthogonalization against q1, are
orthogonalized against q2, and so on.

Example. We shall present the difference between GS and MGS in finite
precision arithmetic. Let ε be a small number with the property that 1 + ε2 is
rounded to 1 on the machine, whereas ε itself is a machine number. Let

a1 =

 1
ε
ε

 , a2 =

 1
ε
0

 , a3 =

 1
0
ε


be the vectors to be orthonormalized by GS and MGS. Then both GS and MGS
compute the same vectors q1 and q2 as follows,

‖a1‖ =
√

1 + 2ε2 ∼ 1,
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hence q1 = a1. Next, in order to compute q̂2, we evaluate the inner product

q>1 a2 = 1 + ε2 ∼ 1,

and thus,

q̂2 = a2 − 1 · q1 =

 0
0
−ε

 .
Normalization can be done exactly, and thus

q2 =

 0
0
−1

 .
We use the two-step formula (9) above to compute ˆ̂qGS

3 as follows:

ˆ̂qGS
3 =

 1
0
ε

−
 1
ε
ε

 [1 ε ε]

 1
0
ε

 ∼
 1

0
ε

−
 1
ε
ε

 =

 0
−ε

0

 ,
followed by

q̂GS
3 =

 0
−ε

0

−
 0

0
−1

 [0 0 − 1]

 1
0
ε

 ∼
 0
−ε

0

−
 0

0
ε

 =

 0
−ε
−ε

 ,
after which normalization gives the final result

qGS
3 =

 0

− 1
2

√
2

− 1
2

√
2

 .
Summarizing, the three vectors obtained by GS are

q1 =

 1
ε
ε

 , q2 =

 0
0
−1

 , and qGS
3 =

 0

− 1
2

√
2

− 1
2

√
2

 , (11)

and this is obviously far from an orthonormal basis. We observe that the third
vector qGS

3 sweeps approximately the angle 45◦ with the plane given by q1 and q2.
On the other hand, if we use the two-step formula (10) to compute the third

vector using MGS, we find

ˆ̂qMGS
3 = ˆ̂qGS

3 =

 0
−ε

0

 ,
and now the fundamentally different next step,

q̂MGS
3 =

 0
−ε

0

−
 0

0
−1

 [0 0 − 1]

 0
−ε

0

 =

 0
−ε

0

 ,
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resulting after normalization in

qMGS
3 =

 0
−1

0

 .
Thus, as the final result the three vectors

q1 =

 1
ε
ε

 , q2 =

 0
0
−1

 , and qMGS
3 =

 0
−1

0

 .
In spite of the fact that these three vectors are also not orthonormal, they are
much closer to orthonormal than the three vectors (11) resulting from GS. Due to
different manners of projection of round-off errors, MGS is a very helpful remedy
against the instability of GS.

8. Eigenvalues

Consider the 3× 3 matrix

A =

 1 4 2
−1 1 1

1 2 1

 ,
whose entries are small integers. Its eigenvalues can be computed by solving the
characteristic equation det(A− λI) = 0, which reduces by Sarrus’ rule to

det(A− λI) = det

 1− λ 4 2
−1 1− λ 1

1 2 1− λ


= (1− λ)3 + 4− 4 + 4(1− λ)− 2(1− λ)− 2(1− λ) = (1− λ)3 = 0.

Thus, A has all three eigenvalues equal to one, just like the identity matrix. How-
ever, when Matlab is used to compute these eigenvalues using the command eig(A)

the resulting values are

0.9999934375759070 and 1.000003281212047± 5.683168987282289 · 10−6i.

We see that even though the computations were performed in IEEE double
precision, not sixteen but only six significant digits are correct. The cause for
this is not a bug in Matlab’s software, but the inherent ill-conditioning of the
eigenvalues of this particular matrix A. Indeed, suppose that a rounding error
causes that the roots of p̃(x) = (1 − λ)3 + ε to be computed instead of those of
p(x) = (1 − λ)3, with ε ≈ 10−16 (see also [7, p. 17]). Then those roots are quite
close to the numbers computed by Matlab. Thus, Matlab is doing as well as it can,
given the mathematical ill-conditioning of the problem.
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9. Numerical differentiation

Numerical differentiation represents another very instable operation. To illustrate
it, consider the rational function (see [9])

g(x) =
4970x− 4923

4970x2 − 9799x+ 4830
, x ≥ 0.99, (12)

and calculate its second derivative at the point 1 using the second central differ-
ences, i.e.

δ2hg(x) =
g(1 + h)− 2g(1) + g(1− h)

h2
(13)

which tends to g̈(1) as h→ 0. However, from the second row of Tab. I we can only
hardly deduce which value of h is the best approximation of g̈(1) without knowing
that the exact value is g̈(1) = 94. For “large” h the function g(1 − h) quickly
changes. On the other hand, for “small” h total loss of accuracy appears, since we
subtract almost the same numbers in the nominator of (13).

δ2hg(x) h = 10−2 h = 10−3 h = 10−4 h = 10−5 h = 10−6 h = 10−7

(13) −91769.95 −2250.2 70.94 93.71 116.42 −151345
(14) −91769.95 −2250.2 70.79 93.77 94.00 94.00

Tab. I Numerical values of g̈(1) calculated by (13) and (14), respectively.

The remedy is to rearrange formula (13) by means of (12) as follows:

δ2hg(x) =
94(1− 702712h2)

(1− 712h2)(1− 702h2)
(14)

which produces relatively good numerical results — see the last row of the above
Tab. I.

Finally, let us emphasize that calculation of the second derivatives from biased
data as done e.g. in [14] is a very ill-conditioned problem.

10. The N-body problem

For an integer N ≥ 2 consider an isolated system of N mass-point bodies that
mutually interact only gravitationally. Let ri = ri(t), i ∈ {1, . . . , N}, be the so-
called radius-vector in R3 describing the position of the ith body with mass mi in
time t ≥ 0. Denoting the gravitational constant by G, the classical N -body problem
is described by the following nonlinear system of ordinary differential equations for
the unknown trajectories ri (see [11])

r̈i = G
N∑
i6=j

mj(rj − ri)
|rj − ri|3

(15)

with some initial conditions at t0 = 0 and over a time interval [0, T ] in which
it is assumed that bodies do not collide. This system is autonomous, since the
right-hand side of (15) does not explicitly depend on time.
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Can we believe numerical simulations of the evolution of the Solar system based
on (15) for billions of years in the past or future? The answer is NO from several
reasons. Newtonian mechanics does not allow any delay given by the finite speed
of gravitational interaction. System (15) is only an ordinary differential equation
whose solution on the interval [0, T ] depends only on the value at point t0 = 0 and
not on the history. An extremely small modeling error ε > 0 during one year may
yield after 109 years an error of order at least ε109 which may be a quite large
number. Also various nongravitational forces are not included in (15).

The right-hand side of (15) does not satisfy the famous Caratheodory condi-
tions. Moreover, system (15) is not Lyapunov stable, i.e., extremely small changes
of initial conditions or other perturbations cause very large changes in the final
state provided the time interval is long enough. This also makes the numerical
solution unstable. Hence, the N -body problem should be treated very carefully.
The above examples should be a sufficient warning.

If an integration step h gives almost the same numerical results as h/2, the
integration of the system (15) is usually stopped. However, this heuristic criterion
need not work properly. Here we present another way how to check whether our
numerical results are good. It is based on backward integration of (15) as sketched
on Fig. 2. Let r = (r1, . . . , rN ) denote a vector with 3N entries and let f = f(r)
stand for the right-hand hand side of (15).

Theorem. Let r = r(t) be the unique solution of the system

r̈ = f(r) (16)

on the interval [0, T ] with given initial conditions

r(0) = r0 and ṙ(0) = v0. (17)

Then the function s = s(t) defined by

s(t) = r(T − t) (18)

solves the same system (16) with initial conditions s(0) = r(T ), ṡ(0) = −ṙ(T ) and
we have

s(T ) = r0 and ṡ(T ) = −v0. (19)

P r o o f. According to (18) and (16), we obtain

s̈(t) = (−ṙ(T − t))˙ = r̈(T − t) = f(r(T − t)) = f(s(t)).

We see that s satisfies the same system (16) like r. For the final conditions by (18)
and (17) we get relations (19),

s(T ) = r(0) = r0 and ṡ(T ) = −ṙ(T − T ) = −ṙ(0) = −v0. �

The above theorem can be applied to long-term intervals as follows. Denote by
r∗ and s∗ a numerical solution of the system (15) with initial conditions (18) and

s(0) = r∗(T ) and ṡ(0) = −ṙ∗(T ),
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Fig. 2 Application of the above theorem in numerical solution of the N -body prob-
lem. The symbol r stands for the true solution, r∗ is the numerical solution, and
s∗ is the control backward solution.

respectively. If δ > 0 is a given tolerance and

|s∗(T )− r0|+ |ṡ∗(T ) + v0| � δ,

then it cannot hold |r(T )−r∗(T )|+|ṙ(T )−ṙ∗(T )| < δ, where r is the exact solution,
i.e., the numerical error of the original problem (15) and (18) would be also large,
as it is schematically depicted on Fig. 2.

Finally, let us point out that the previous theorem and computational strategy
can be easily generalized to evolution partial differential equations.

From (15) we observe that when two bodies are close to each other (rj ≈ ri)
which is an important case e.g. in space aeronautics, then we subtract in the
denominator two numbers of almost the same size. This may lead to a catastrophic
loss of accuracy.

11. Conclusions

In computer arithmetic, only a finite number of significant digits is used. This fact
may lead to a catastrophic loss of accuracy, in particular, when numerical schemes
are not stable. The aim of this paper was to present several thoroughly innocent-
looking examples that produce completely nonsensical results. They are of several
types “in limit”:

1) the expression in (2) is of type 1∞,
2) the right-hand side of (8) is of type ∞−∞,
3) the fraction in (13) is of type 0/0,
4) the product in (5) is of type 0 · ∞.
In preforming any real-life calculations in noninteger computer arithmetic, we

should keep in mind that we always produce three basic kinds of errors: modeling
error, discretization error, and rounding errors. They usually grow exponentially
with time. Hence, we should very carefully and critically evaluate the numerical
output and should not blindly trust computer results as it is often done.
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