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Abstract: Feature reduction is an important issue in pattern recognition. Lower
feature dimensionality could reduce the complexity and enhance the generalization
ability of classifiers. In this paper we propose a new supervised dimensionality
reduction method based on Locally Linear Embedding and Distance Metric Learn-
ing. First, in order to increase the interclass separability, a linear discriminant
transformation learnt from distance metric learning is used to map the original
data points to a new space. Then Locally Linear Embedding is adopted to reduce
the dimensionality of data points. This process extends the traditional unsuper-
vised Locally Linear Embedding to supervised scenario in a clear and natural way.
In addition, it can also be seen as a general framework for developing new super-
vised dimensionality reduction algorithms by utilizing corresponding unsupervised
methods. Extensive classification experiments performed on some real-world and
artificial datasets show that the proposed method can achieve comparable to or
even better results over other state-of-the-art dimensionality reduction methods.
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1. Introduction

Dimensionality reduction plays an important role in fields of machine learning and
pattern recognition. High feature dimensionality not only increases the complexity
of classifier, but also increases the risk of overfitting in designing classifier. Many
methods have been proposed to reduce the feature dimensionality, which can be
roughly categorized to feature selection and feature extraction. Feature selection
abandons redundant features and only keeps the most useful ones, whereas feature
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extraction creates new features from the original. Principal Component Analysis
(PCA) [14] and Linear Discriminant Analysis (LDA) [16], due to their relative effec-
tiveness and simplicity, have been the two classical feature extraction methods. Re-
cently some manifold learning methods have attracted a lot of attention [24,25,28].
They assume that the real-world data observed in high dimensional space is usually
generated by a process with relatively few degrees of freedom [30], and the data
intended for embedding into a lower dimensional space should preserve the intrinsic
geometrical structures [13]. In the past few years, many manifold learning-based
algorithms have been proposed, e.g., Multi-Dimensional Scaling (MDS) [1], Lo-
cally Linear Embedding (LLE) [19], Isometric Maps (ISOMAP) [20], and Locality
Preserving Projection (LPP) [7,8]. These methods have yielded very impressive re-
sults. Among them, LLE is one of the most widely used methods, since it requires
only one free parameter to be determined and does not have the local extrema
problem.

LLE is an unsupervised method, since it does not consider any class label in-
formation of data. In order to use it in supervised scenario, several supervised
versions of LLE (SLLE) have been proposed, including α-SLLE [9, 15, 18], ES-
LLE [27], PLLE [29], LDE [4], and LLDE [11]. Most of these methods try to
modify the inter- and intraclass distances for achieving better classification re-
sults, basically following the idea of α-SLLE. In α-SLLE, the interclass distances
are increased by adding a constant value; in contrast, the intraclass distances are
kept unchanged. This idea is easily implemented in the training phase, since we
have known all training data and its class labels. However when facing a testing
data point, since its class label is unknown, the distances between this data point
and its neighbors are unable to determine whether to increase or to keep. It is
definitely a drawback of α-SLLE, although it has been used successfully in many
real world applications, such as handwritten digits classification [10], facial expres-
sion recognition [12], prediction of membrane protein types [21], gene expression
data analysis [17], etc.. ESLLE [27] essentially has the same drawback as α-SLLE.
PLLE [29] attempts to overcome it via estimating roughly the class labels of testing
points. LDE [4] and LLDE [11] do not have this drawback, since they use a linear
transformation to achieve dimensionality reduction, therefore their effectiveness is
also limited.

In this paper we propose a novel SLLE called Supervised Locally Linear Em-
bedding Based on Distance Metric Learning (SLLE-DML). First, the original data
points are mapped into a new space by a transformation learnt from DML, and
then LLE is applied on the transformed data points to achieve dimensionality re-
duction. The class label information is utilized in the first phase, thus the above
mentioned drawback of α-SLLE is avoided spontaneously. In fact, the final map-
ping is nonlinear, since it is a composition of two transformations learnt via DML
and LLE, respectively. Hence, the proposed method also overcomes the linear
mapping limitation of LDE and LLDE.

The remainder of this paper is organized as follows. In Section 2, related works
are briefly introduced. In Section 3, we present the Supervised Locally Linear
Embedding based on Distance Metric Learning. In Section 4, the experimental
results are presented. Finally, some concluding remarks are included in Section 5.
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2. Reviews of LLE and SLLE

2.1 Locally Linear Embedding

LLE maps the original high dimensional data points into a low dimensional space
with the local geometric structure preserved, via solving a certain constrained op-
timization problem. Let X = [x1,x2, ...,xN ] ∈ RD×N be a dataset of N points
with dimension D, which lies on an underlying manifold, and whose intrinsic di-
mensionality is d, d � D. The corresponding low dimensional data is denoted by
Y = [y1,y2, ...,yN ] ∈ Rd×N . The procedure of LLE is given as follows. First, for
each data point xi, find k nearest neighbors (k-NN) according to Euclidean dis-
tance in RD, and use its neighbors to reconstruct xi via linear combination. The
reconstruction weight wij can be solved by minimizing the following quantity:∥∥∥∥∥∥xi −

N∑
j=1

wijxj

∥∥∥∥∥∥
2

, (1)

with satisfying the following constraints:
N∑
j=1

wij = 1

wij = 0 for xj /∈ neig(xi),

(2)

where neig(xi) denotes the neighbors of point xi. Clearly, this is a constrained least
squares problem, which can be easily solved by traditional optimization method.
After computed the weights for each data point xi, we can obtain a N ×N recon-
struction weights matrix W. Then the low-dimensional representation Y can be
got by minimizing the following quantity:

N∑
i=1

∥∥∥∥∥∥yi −
k∑

j=1

wijyj

∥∥∥∥∥∥
2

, (3)

with two constraints: 
N∑
i=1

yi = 0

1
N

N∑
i=1

yiyi
T = I,

(4)

where I is a d× d identity matrix. In order to solve Eq.(4), we should rewrite the
objective function as follows:

min
Y

tr(YAYT), (5)

where A = (I−W)T(I−W). Then the solution Y can be achieved as the eigen-
vectors corresponding to the d smallest eigenvalues of A.
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2.2 Supervised Locally Linear Embedding

LLE is an unsupervised method, since it without using any class label information.
If the class label information were used, the recognition accuracy should be im-
proved. The basic idea of mainstream SLLE methods, e.g. α-SLLE, is to increase
the distance between data pair from different classes, while to keep the distance
unchanged for the pair from the same class. Let

∆′ = max dis(xi,xj), i, j = 1, ..., N, (6)

where dis(, ) is Euclidean distance in RD. Then the new distance ∆ij between xi

and xj is defined as

∆ij = dis(xi,xj) + α ∆′ Λij , α ∈ [0, 1], (7)

where Λij = 1 if xi and xj belong to different classes, and Λij = 0 otherwise.
Note that the new distance takes class information into account, and parameter α
controls the amount of the class information used. For α = 0 , SLLE degenerates
to the original unsupervised LLE, for α = 1, it is the fully supervised. Setting α
to a value between 0 and 1 gives a partially supervised LLE (called α-SLLE). In
practice, the optimal value of α should be determined via validation sets. The new
distance ∆ij can be used in LLE instead of the Euclidean distance, so as to achieve
supervised purpose.

3. Supervised Locally Linear Embedding based on
Distance Metric Learning

LLE gives no direct mapping from the input space to the low dimensional embed-
ding space. According to Eq.(3), the lower dimensional data points are obtained
via solving the optimization problem. Thus, when we want to get the output y0

corresponding to a new input x0, we should in principle rerun the entire LLE al-
gorithm on the original dataset augmented by x0. This property of LLE raises
certain difficulties for the current SLLE methods, for a new data point x0 needed
to be classified. Since the first step is to calculate the k nearest neighbors of x0.
However x0 has no label information, hence the distance ∆ij in Eq.(7) is not avail-
able. This is just the main drawback of the methods in [9,15,18]. To overcome this
shortcoming, we propose a new SLLE method based on distance metric learning,
called SLLE-DML.

Before going into the details of our proposed method, let’s introduce Distance
Metric Learning (DML). The basic idea of DML is to learn a new distance metric
from the given data [2,3,5,6,22,23,26]. Experimental results in the literatures have
shown that using DML can significantly improve the performance of classification
and clustering. The new distance metric can be learnt as follows. For any pair of
data points (xi,xj) of the same class, it is assigned to a similar set SI , and for
any pair of different classes, it is assigned to a dissimilar set DS. Then the new
distance is given by

disM(xi,xj) = ‖xi − xj‖M =

√
(xi − xj)

T
M(xi − xj), (8)
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where the matrix M is learnt from the dataset X, by solving the following con-
strained optimization problem [23]:

max
M

∑
(xi,xj)∈DS ‖xi − xj‖M

s.t.
∑

(xi,xj)∈SI ‖xi − xj‖2M ≤ 1

M � 0.

(9)

Note that the optimization problem Eq.(9) is convex, so we can solve M by semidef-
inite programming (SDP) or gradient ascent method. The computational complex-
ity for solving M is usually very high, so a simplified method is proposed in [22].
M can be written as M = LTL , so we can rewrite Eq.(8) as

disM(xi,xj) =

√
(xi − xj)

T
M(xi − xj)

=

√
(xi − xj)

T
LTL(xi − xj)

=

√
(Lxi − Lxj)

T
(Lxi − Lxj).

(10)

Let zi=L(xi) and Z = [z1, z2, ..., zN ] ∈ RD×N , then we have:

disM(xi,xj) = dis(zi,zj). (11)

The basic idea of SLLE-DML is via DML to realize the supervision and using
LLE to achieve dimensionality reduction. Hence we first obtain the matrix M by
solving the optimization problem Eq.(9), and consequently obtain the matrix L.
Then use matrix L to transform the original dataset X to Z. Finally we run the
LLE algorithm on Z using Euclidean distance to obtain the corresponding points
Y, and design a classifier using Y as the training set. According to Eq.(11), using
Euclidean distance on Z is equivalent to using disM on X. Let T denote the
transformation from Z to Y, hence the feature reduction transformation F from
X to Z is composed of L and T. Since T is nonlinear, F also is nonlinear, which
overcomes the shortcomings of LDE and LLDE as mentioned in Section 1. The class
label information is incorporated into the transformation L in DML stage, so the
drawback regarding testing new data points is also overcome. Specifically, for a new
data point x0 to be classified, we first transform x0 to z0 = Lx0, and run the LLE
algorithm on the augmented dataset Z′ = [z0, z1, ..., zN ] to get Y′ = [y0,y1, ...,yN ],
and then we can determine the class of x0 by classifying y0 using the designed
classifier.

4. Experiments and results

Several experiments are presented in this section to investigate the performance
of the proposed method for classification tasks. We compare SLLE-DML with
some other feature reduction methods, including LLE, α-SLLE, PCA, LDA and
LLDE on 4 UCI datasets and the Yale face dataset. These UCI datasets are
Wine, Vehicle, Multiple Feature, and Optical Digits, as described in Tab. I. In all
classification experiments, the k-NN classifier with Euclidean distance is used after
feature reduction to make the final classification decision.
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Abbr. Name Size Dimension Classes

Wine Wine 178 13 3
Vehicle Vehicle 946 18 4
Mul Multiple features 2000 647 10
Opt Optical digits 5620 64 10

Tab. I The UCI datasets description.

The parameters for most of the methods are determined empirically through
ten-fold cross validation. That is, for each parameter, several values are tested
through ten-fold cross validation and the best one is selected. For α-SLLE, the
values of α is tested from 0.1 to 1 at intervals of 0.1. When applying k-NN classifier,
several values of k from 5 to 50 are tested. On each data set, ten times ten-fold
cross validation is run. That is, in each time, the original data set is randomly
divided into ten equal-sized subsets while keeping the proportion of the instances
in different classes. Then, in each fold, one subset is used as testing set and the
union of the remaining ones is used as training set. After ten folds, each subset
has been used as testing set once.

The averaged misclassification rates of UCI datasets are reported in Figs. 1(a)-
1(d). In them, the X-axis represents the number of dimensions, and the Y-axis
represents the corresponding misclassification rates. From Fig. 1, we can see that
our proposed method is generally superior to other feature reduction methods,
and the advantage is more obvious when the datasets are reduced to very low
dimensionality.

To further test the performance of SLLE-DML for higher dimensional data, Yale
face dataset is adopted. It contains 165 images of 15 individuals and each individual
has 11 images. A sample from the dataset is shown in Fig. 2. Before dimensionality
reduction, all the original face images are normalized, so that the two eyes are
aligned at the same position and cropped to the size of 100× 100. In the following
experiments, 6 randomly chosen image samples per person are used for training,
and the remaining 5 images for testing. The experiment is repeated 10 times, and
the misclassification rates are averaged. Fig. 3 describes the relationships between
the average error rate and the reduced dimensionality for different algorithms.
Form Fig. 3, it is clear that our method is much better than LLE, α-SLLE, PCA,
LDA and LLDE. Tab. II records the mean error rates and standard deviations of
the best performance of different methods on different datasets. Comparing these
results, we can clearly see that SLLE-DML is superior to other state-of-the-art
methods.

In order to investigate the possible reasons for the good performance of our
proposed method, we carry out an experiment using an artificial dataset with class
labels. The dataset is sampled from the Swiss roll in R3 as shown in Fig. 4(a), and
the data set is shown in Fig. 4(b). The Swiss roll is a manifold in R3 and its intrinsic
dimensionality is two, since it is homeomorphic to a two dimensionality rectangle
shown in Fig. 4(c). The different colors in these figures represent different classes,
and the dataset contains 100 points for each class. To compare the performance of
different methods for classification task, we reduce the dimensionality of the dataset
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Fig. 1 Comparison of different dimensionality reduction methods for UCI datasets.

Fig. 2 Sample images of one person in Yale dataset.

to two, using LLE, α-SLLE and SLLE-DML, respectively. The datasets with the
reduced dimensionality using different methods are shown in Figs. 4(d)- 4(f). As
shown in Fig. 4(f), the dataset obtained using SLLE-DML can be easily partitioned
into four regions corresponding to four different classes. However, in Fig. 4(d) and
4(e), the results obtained by LLE and α-SLLE, are severally overlapped. This
clearly suggests that the result obtained with SLLE-DML is much easier to be
classified than that obtained using LLE and α-SLLE.

5. Conclusions

A new dimensionality reduction method is proposed in this paper. It combines
DML and LLE to achieve efficient feature reduction for classification. In our
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Fig. 3 Comparison of different dimensionality reduction methods for the Yale face
dataset.

Dataset LLE α-SLLE PCA LDA LLDE SLLE-DML

Wine 0.2125 0.1938 0.2860 0.2684 0.2138 0.0467
±0.0884 ±0.0902 ±0.0836 ±0.0780 ±0.0709 ±0.0398

Vehicle 0.3272 0.3098 0.3743 0.3507 0.3018 0.2184
±0.0682 ±0.0728 ±0.0609 ±0.0454 ±0.0559 ±0.0370

Mul 0.0470 0.0379 0.0515 0.0503 0.0405 0.0152
±0.0052 ±0.0098 ±0.0035 ±0.0071 ±0.0043 ±0.0038

Opt 0.0390 0.0378 0.0378 0.0372 0.0428 0.0334
±0.0193 ±0.0238 ±0.0207 ±0.0186 ±0.0210 ±0.0159

Yale 0.2501 0.2124 0.1882 0.1698 0.0805 0.0518
±0.0592 ±0.0526 ±0.0424 ±0.0447 ±0.0316 ±0.0294

Tab. II Best performance results of different methods on all datasets ( in A±B, A
denotes the mean error rate, and B denotes the standard deviation).

method, a distance metric learning procedure is first applied to increase the in-
terclass separability, and then LLE is implemented to reduce the feature dimen-
sionality. The final mapping is nonlinear, which is in fact the composition of the
two transformations learnt via DML and LLE. This method not only overcomes
the shortcomings in the current SLLE learning methods, but also is more effective.
The experimental results show that the performance of the proposed SLLE-DML is
better than many state-of-the-art dimensionality reduction techniques. In addition,
experiments on an artificial dataset also clearly illustrate the effectiveness of the
proposed method. Indeed, the proposed method can also be seen as a framework,
which can be used in various tasks by adopting different algorithm combinations.
One avenue for future work is to combine different DML and dimensionality reduc-
tion methods to further improve the performance of classification.
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Fig. 4 Comparison of different dimensionality reduction methods for the artificial
dataset.
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