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Abstract: This paper proposes a new quantum particle swarm optimization algo-
rithm with local attracting (LAQPSO), which is based on quantum-inspired evo-
lutionary algorithm (QEA) and particle swarm optimization algorithm (PSO). In
the proposed LAQPSO, a novel quantum bit expression mechanism called quantum
angle is employed to encode the solution onto particle, and a new local attractor is
proposed to determine the rotation angle of quantum rotation gate automatically.
During the process of seeking the global solution, the magnitude of rotation angle
is adjusted by an important parameter called contraction coefficient, which can
quantitatively determine the tradeoff between exploration ability and exploitation
ability. The simulation results for different contraction coefficients are helpful for
selecting the key parameter. A set of benchmark functions are used to evaluate the
performance of LAQPSO, QEA and QBPSO, and the results show that the pro-
posed algorithm has a fast convergence rate and can effectively avoid premature
convergence.
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1. Introduction

Quantum computing can be viewed as developing algorithms that are derived from
the combination of quantum mechanics, computer science and classical information
theory [4]. Ever since Benioff [1] presented his quantum Turing machine (QTM)
in 1980, the field of quantum computing has begun to be explored. After that,
Shor [15] presented a efficient quantum algorithm for factoring integers, and Grover
[5] developed a search quantum algorithm, which can provide quadratic speed-up
when applied to search problems. All the previous work has proved that many
difficult problems in classical computing could be solved efficiently with quantum
algorithms.

Quantum computing would be most efficient if run on a quantum computer, as
the same do not yet exist, and meantime the quantum simulation on a classical com-
puter has an exponential order overhead. Nevertheless, it is beneficial to introduce
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the concepts and principles of quantum computing into classical algorithms to offer
good performance. Li and Wang [11] proposed a quantum ant colony optimization
algorithm, in which the positions of ant were encoded by qubits described on Bloch
sphere and the mutation was performed with Hadamard gates. In 2002, Han and
Kim [6] proposed a quantum-inspired evolutionary algorithm (QEA), which was
inspired by the concepts and principles of quantum computing, such as a quantum
bit and superposition of states. Later on, several researches [7, 10, 13] were con-
ducted to improve the QEA to cover its shortages. Meanwhile, [2, 14] applied the
QEA directly to solve some practical engineering problems.

Particle swarm optimization algorithm (PSO) was first suggested by Kennedy
and Eberhart [9] in 1995, a swarm intelligence algorithm derived from the sim-
ulation model of bird flocking. Compared with other evolutionary algorithms, it
is easier to implement with relatively less adjusting parameters. In the original
version of PSO, a population of candidate solutions called particles are randomly
initialized and moved around in the search space to optimize a problem. The veloc-
ity and position of each particle at generation t are determined by its best previous
position as P tbest,i = [P tbest,i1, P

t
best,i2, . . . , P

t
best,iD] called personal best position and

the best previous position of all particles as Gtbest = [Gtbest,1, G
t
best,2, . . . , G

t
best,D]

called global best position. The evolution equations of each particle can be ex-
pressed as

vt+1
id = ω · vtid + c1 · randi1 · (P tbest,id − xtid) + c2 · randi2 · (Gtbest,d − xtid), (1)

xt+1
id = xtid + vtid, (2)

for i = 1, 2, . . . , n, where n is the size of the population, and d = 1, 2, . . . , D, where
D is the dimension of search space.

PSO has a fast convergence rate and works well for many complex problems.
However, global convergence is not guaranteed due to the fixed trajectory and
the limited velocity of each particle [20]. To addresses this shortcoming, quantum
computing has been introduced into PSO in recent years, and these researches
can be classified into two fields: (1) quantum-behaved particle swarm optimization
(QPSO), developed by Sun, Feng and Xu [16], originated from a quantum Delta
potential well model for PSO, and (2) quantum-inspired particle swarm optimiza-
tion (QIPSO), which was based on QEA and the evolution equations of PSO were
employed to update the particles [8, 12,21].

In this paper, a new quantum particle swarm optimization algorithm with local
attracting (LAQPSO) is proposed based on QEA and PSO. The proposed algorithm
employs a novel quantum bit expression mode called quantum angle, and a new
local attractor, generated by crossover operation, is proposed to define the rotation
angle of quantum rotation gate. The numerical results may provide a reference
for selecting parameters to balance the exploration and exploitation abilities. The
proposed algorithm is compared with the two well-known algorithms to evaluate
its performance.

The remainder of this paper is organized as follows. Section 2 introduces two
basic concepts of quantum computing quantum bit and quantum gate, and then
explains the basic structure of QEA and an important QIPSO afterwards. The
definition of the quantum angle and local attractor as well as the procedure of
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LAQPSO is illustrated in Section 3. In order to select the key parameter contraction
coefficient and evaluate the performance of proposed algorithm, a set of benchmark
functions in the impartial environments are compared and analyzed in Section 4.
Some useful conclusions are summarized in Section 5.

2. Evolutionary algorithm with quantum
computing

2.1 Quantum bit

As the elementary unit of classical computation, a classical bit is a system that
can exist in two distinct states, which are used to represent binary digit 0 and
1. Similarly, the basic unit of quantum information and quantum computation is
a quantum bit, commonly referred to as a Q-bit, which is a two-level quantum
system, described by a two-dimensional complex Hilbert space. Just like the states
0 and 1 for a classical bit, a pair of normalized and mutually orthogonal quantum
states in the space can be chosen as the computational basis states for a Q-bit:

|0〉 =

[
1
0

]
, |1〉 =

[
0
1

]
,

where “| 〉” is Dirac notation, the standard notation for states in quantum mechan-
ics.

What differs Q-bit and classical bit is that a Q-bit can be in a state other than
|0〉 and |1〉, which is a linear combinations of the two basic states, often called
superposition:

|ϕ〉=α |0〉+ β |1〉 ,

where α and β are complex numbers, which are referred to as probability amplitudes
for quantum states and constrained by the normalization condition [18,19]:

|α|2 + |β|2=1. (3)

Therefore, unlike the classical bit, which can only be one of the basic states,
a Q-bit’s state is a unit vector in a two-dimensional complex vector space, which
is parameterized by the continuous variables α and β. According to our intuition,
a system with two states can only be in one state or the other. However, Q-bit
allows a continuum of states.

At this stage, a single Q-bit might be used to store an infinite amount of infor-
mation. Nevertheless, just like a classical bit, a Q-bit must be read to get its value
for computing. In order to get this value, we have to design a measuring operation
for Q-bit, and the result can only be either 0 or 1. Furthermore, measurement
changes the state of a Q-bit, collapsing it from its superposition of |0〉 and |1〉 to
the specific state consistent with the measurement result. In fact, the state |ϕ〉
respectively collapses to either |0〉 or |1〉 according to the probability of either |0〉
or |1〉 because of measurement. Thus, the outcome of a Q-bit is not deterministic
as in classical computing, but rather probabilistic.
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2.2 Quantum gates

In classical circuit model, the logic gates perform manipulations of the information,
including the identity gate, NOT, AND and OR, etc. Similarly, Some analogous
quantum gates have also been defined for Q-bits. Due to the reversibility of quan-
tum computing [18,19], a quantum gate has the same amount of input Q-bits and
output Q-bits. In general, a single-Q-bit gates can be described by a two by two
matrices. Affected by a quantum gate, a quantum state |ϕ〉=α |0〉+ β |1〉 changes
into another quantum state |ϕ′〉=α′ |0〉 + β′ |1〉. According to the normalization
condition, the two states should satisfy Eq. (3), and it turn out that the appropriate
condition on the matrix representing the gate is that the matrix U describing the
single-Q-bit gate should be unitary, that is U∗U = I, where U∗ is the conjugate
transpose of U. Three important single-Q-bit gates are detailed below:

Hadamard gate: H =
1√
2

[
1 1
1 −1

]
,

NOT gate: X =

[
0 1
1 0

]
,

Rotation gate: R =

[
cos θ − sin θ
sin θ cos θ

]
.

Hadamard gate can create an equal superposition of states, and when applied
to n-Q-bits, it creates a superposition of all 2n states. The quantum NOT gate
takes the state α |0〉 + β |1〉 to the corresponding state α |1〉 + β |0〉, in which the
role of |0〉 and |1〉 have been interchanged. The quantum rotation gate can realize
a θ phase rotation for a single-Q-bit.

2.3 Quantum-inspired evolutionary algorithm

The basic structure of QEA was proposed by Han and Kim [6], which was inspired
by the concepts and principles of quantum computing. Unlike the classical repre-
sentations which can be used to encode the solution onto individual in traditional
evolutionary algorithms, a Q-bit representation was used in QEA. One Q-bit was
defined as [α, β]T, where α and β are the probability amplitudes of the correspond-
ing states, and a Q-bit individual is a string of m Q-bits which is defined as[

α1

β1

∣∣∣∣ α2

β2

∣∣∣∣ . . .
. . .

∣∣∣∣ αmβm
]
,

where |αj |2+|βj |2 = 1, j = 1, 2, . . . ,m. In a system of m-Q-bits, all the information
of 2m states can be represented by only one Q-bit individual because the Q-bit
representation has the advantage of representing a linear superposition of states.
For this reason, evolutionary algorithms with the Q-bit representation has better
characteristic of generating diversity in population than other representations in
traditional computing. In addition, as |αj |2 or |βj |2 approaches to 0 or 1, the Q-bit
individual converges to a determinate state and the property of diversity disappears
gradually. This indicates that the Q-bit individual has both the exploration ability
and the exploitation ability.
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Based on the Q-bit representation, in QEA, a population of Q-bit individuals
at generation t was defined as

Q(t) =
[
qt1, q

t
2, . . . , q

t
n

]
,

where qti is a Q-bit individual defined as

qti =

[
αti1
βti1

∣∣∣∣ αti2
βti2

∣∣∣∣ . . .
. . .

∣∣∣∣ αtimβtim
]

=
[
qti1, q

t
i2, . . . , q

t
im

]
,

where m is the length of the Q-bit individual, and i = 1, 2 , . . . , n. In the itera-
tive process of QEA, the quantum rotation gate was employed to update a Q-bit
individual by

U(∆θtij) =

[
cos ∆θtij − sin ∆θtij
sin ∆θtij cos ∆θtij

]
,

where ∆θtij is the rotation angle of the j-th Q-bit of the i-th Q-bit individual,
its value directly affects the speed of convergence and the searching efficiency. As
presented in [6], a lookup table (Tab. I) was defined for determining the value of
∆θtij based on xtij , b

t
ij , and their fitness values F(xtij) and F(xtij).

xtij btij F(xti) ≥ F(Bt) ∆θtij

0 0 False 0
0 0 True 0
0 1 False 0.01π
0 1 True 0
1 0 False −0.01π
1 0 True 0
1 1 False 0
1 1 True 0

Tab. I Lookup table for ∆θtij, F(x) denotes the fitness value of x.

Jeong et al. [8] proposed a new binary particle swarm optimization inspired by
quantum computing (QBPSO), in which the rotation angle can be determined by
each particle’s own experience and its neighbor’s experience as

∆θtij = θt · {γt1i · P tbest,ij − xtij) + γt2i · (Gtbest,j − xtij)},

where θt is the magnitude of rotation angle, and γt1i and γt2i can be obtained by
comparing the fitness of current position of particle qti with those of P tbest,i and

Gtbest respectively, as follows:

γt1i =

{
0 if F(xti) ≥ F(P tbest,i)

1 otherwise
,

γt2i =

{
0 if F(xti) ≥ F(Gtbest)

1 otherwise
.
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In QBPSO, the magnitude of rotation angle decreases monotonously from the
maximum θmax to the minimum θmin along the iteration:

θt = θmax − (θmax − θmin) · t

imax
,

where imax is the number of maximum iterations.

3. The QPSO improvement based on local
attracting

3.1 Quantum angle

In order to introduce the concepts of quantum computing into PSO more conve-
niently, we employ a quantum angle representation to encode the potential solution
onto particle. According to the normalization condition (Eq. (3)), a quantum angle
can be defined as

qtij =

[
αtij
βtij

]
→ θtij :


∣∣qtij〉 = cos θtij |0〉+ sin θtij |1〉
θtij = arctan

αt
ij

βt
ij

.

Thus, a Q-bit can be represented by a quantum angle. Then the population of
Q-bit particles can be interpreted in the form of quantum angles:

qti = [qti1, q
t
i2, . . . , q

t
im]

↓ ↓ ↓ ↓
θti = [θti1, θ

t
i2, . . . , θ

t
im]

,

Q(t) = [qt1, q
t
2, . . . , q

t
n]

↓ ↓ ↓ ↓
θ (t) = [θt1, θ

t
2, . . . , θ

t
n]

.

The quantum rotation gate can also be replaced by a quantum angle operator:[
αt+1
ij

βt+1
ij

]
=

[
cos ∆θtij − sin ∆θtij
sin ∆θtij cos ∆θtij

] [
αtij
βtij

]
⇓

θt+1
ij = ∆θtij + θtij

.

In fact, a quantum angle means an angle vector in a two-dimensional complex
vector space, corresponding to a Q-bit’s unit vector, as shown in Fig. 1.

3.2 Local attractor

In PSO, the particles fly stochastically in the search space with a velocity constantly
updated by the experience of each particle and the experience of the particle’s
neighbors or the whole swarm. Eqs. (1) and (2) show that the state of the particle
can be depicted by its position vector and velocity vector, both determine the
trajectory of the particle.
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Fig. 1 Quantum angle.

Trajectory analyses in [3] determined the fact that the convergence of PSO
algorithm is achieved only if each particle in the PSO system converges to its local
attractor P ti = [P ti1, P

t
i2, . . . , P

t
im] as it moves around in the space, of which the

coordinates are
P tij = ϕtij · P tbest,ij + (1− ϕtij) ·Gtbest,j , (4)

where ϕtij is a random number distributed uniformly on [0, 1].
In the convergence procedure of PSO, the i-th particle moves around and ca-

reens toward point P ti with its velocity declining. That is, the ith particle is flying
in an attraction potential field centering around point P ti to guarantee conver-
gence. Nevertheless, the local attractor calculated by Eq. (4) is considered in the
real search space, and it does not exist in the discrete binary version of PSO. To
generate the local attractor represented by binary coding, Sun et al. [17] suggested
a crossover operation like that used in Genetic Algorithm (GA). The point P ti is
obtained by randomly selection from two offspring generated by exerting crossover
on the two parents, P tbest,i and Gtbest. The crossover operation can be classified
universally as one-point and multi-point crossover. In the proposed algorithm, the
local attractor with binary coding is generated according to the following equation:

P tij = ϕ̃tij · P tbest,ij + (1− ϕ̃tij) ·Gtbest,j , (5)

where ϕ̃tid is a random integer distributed uniformly on [0, 1]. Obviously, the po-
sition of the point P ti resulted from the above approach lies between P tbest,i and

Gtbest in binary space. Therefore, the particle’s converging to the point P ti reduces
the diversity of the population, correspondingly increasing to the local search of
particle.

3.3 Procedure of LAQPSO

Before describing the procedure of the proposed LAQPSO, some important defini-
tions and modifications are explained below.
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In the proposed algorithm, we use the quantum angle to encode Q-bit and
regard all Q-bit particles in the population as a quantum angle swarm. Just like
other evolutionary algorithms, the first step is initialization. Each quantum angle
θ0ij , j = 1, 2, . . . ,m, of all particles θ0i , i = 1, 2, . . . , n, in the population θ(t) are
initialized with π/4. In essence, it is equivalent to initializing each probability
amplitude with 1/

√
2 in QEA. It means that one particle represents the linear

superposition off all possible states with the same probability 1/
√

2m.
For a Q-bit, we can read to get its value by observing its state, which is either

0 or 1 according to the probability of either |α|2 or |β|2 respectively. Hence, a
quantum angle can be observed as following:

xtij =

{
0 rand <

∣∣cos θtij
∣∣2

1 otherwise
, (6)

where “rand” is the uniformly distributed random number between [0, 1].
Through this operation, the ith particle θti transforms into a binary solution in

xti = [xti1, x
t
i2, . . . , x

t
im], which is a binary string of length m. Then we can evaluate

the fitness value of each particle and find the personal best position and the global
best position.

In the evolution process of the proposed LAQPSO, we update quantum angle
by a quantum rotation gate, where the rotation angle is determined by the local
attractor.

1) To determine the direction of rotation angle, we define the direction through
comparing the local attractor and the particles of current swarm as follows:

Dir(θtij) = P tij − xtij . (7)

2) To determine the magnitude of rotation angle, we first give a definition on
the quantum angles corresponding to the local attractor P ti , that is, the local at-
tractor can be obtained with 100% probability by observing a pre-defined quantum
angle individual θ̃ti = [θ̃ti1, θ̃

t
i2, . . . , θ̃

t
im]. If the value range of θ̃tij is set as [0, π/2],

according to the observing operation (Eq. (6)) we can derive that when P tij is 1 or
0, the corresponding quantum angle should be π/2 or 0 respectively. In summary,
the quantum angle individual θ̃ti can be defined as

θ̃tij =
π

2
P tij . (8)

Then we use θ̃tij and the current quantum angle θtij to determine the magnitude
of rotation angle as ∣∣∆θtij∣∣ = a ·

∣∣∣θ̃tij − θtij∣∣∣ · rand, (9)

where a is an important parameter called contraction coefficient which can adjust
the magnitude of rotation angle. Therefore, we can obtain the rotation angle
formulated by Eqs. (7)–(9) of the quantum rotation gate, which makes the local
attractor P ti produce an attraction potential field to guarantee the bound state of
the particle. In general, the particle with bound state can be in any position of the
feasible solution space with a certain probability, thus, the swarm can search in the
whole space. Besides, the proposed approach has a better characteristic of search
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efficiency than other approaches, due to its capability of automatic adaption to the
figures and features of the search space.

With the above definitions and modifications, the Quantum Particle Swarm
Optimization with Local Attracting (LAQPSO) algorithm can be described as the
following procedure:

Algorithm 1 LAQPSO algorithm.

Initialize a quantum angle swarm: θ(0) =
[
θ01, θ

0
2, . . . , θ

0
n

]
.

repeat
Determine the binary swarm by observing the states of θ(t) using Eq. (6):
X(t) = [xt1, x

t
2, . . . , x

t
n].

Evaluate the fitness values of all particles: F(xti).
if F(xti) < F(P t−1best,i) then

Update the personal best position: P tbest,i = xti.
end if
if F(xti) < F(Gt−1best) then

Update the global best position: Gtbest = xti.
end if
Generate the local attractor according to Eq. (5): P (t) = [P t1 , P

t
2 , . . . , P

t
n].

Determine the direction and magnitude of rotation angle, then evaluate the
rotation angle ∆θ(t) = [∆θt1,∆θ

t
2, . . . ,∆θ

t
n] by the following equation:

∆θtij = Dir(∆θtij) ·
∣∣∆θtij∣∣ .

Update the quantum angle swarm: θ(t+ 1) = θ(t) + ∆θ(t).
until a stop criterion is satisfied or a pre-specified number of iterations are
completed.
Output the best individual and optimal solution.

4. Optimization experiments

4.1 Test functions

In order to evaluate the performance of LAQPSO, we select six unconstrained
minimization benchmark functions, which are considered in the real search spaces.
Mathematical models of the functions are given in Tabs. II and III. The functions
in Tab. II are unimodal functions with variable dimensions, for whose the conver-
gence rate of the search algorithm is more important than the final results. Three
functions of Tab. III are multimodal high-dimension functions, where finding an
optimal solution is important. These functions have many local optima and the
number of local optima increases exponentially as the dimension increases, so they
are difficult to optimize.

In Tabs. II and III, D is the dimension of the function, Range is the admissible
range of the variable and Optimal is the optimum value of the function. The
special properties of the benchmark functions taken in this paper are described as
following:
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Test function D Range Optimal

F1 =
D∑
i=1

x2i 30/50 [−100, 100] 0

F2 =
D−1∑
i=1

[100(xi+1 − x2i )
2

+ (1− xi)2] 30/50 [−30, 30] 0

F3 =
D∑
i=1

ix4i + rand 30/50 [−1.28, 1.28] 0

Tab. II Unimodal test functions.

Test function D Range Optimal

F4 =
D∑
i=1

[x2i − 10 cos(2πxi) + 10] 30/50 [−5.12, 5.12] 0

F5 =
D∑
i=1

418.9829− xi sin(
√
|xi|) 30/50 [−500, 500] 0

F6 = 1
4000

D∑
i=1

x2i −
D∏
i=1

cos( xi√
i
) + 1 30/50 [−600, 600] 0

Tab. III Multimodal test functions.

• F1 is the Sphere function. It is a continuous and strictly convex function,
which has D local minima except for the global one.

• F2 is the Rosenbrock function, also known as the Valley or Banana function.
It is a popular optimization problem, and the global minimum is hidden
inside a narrow, parabolic valley. However, although this valley is easy to
find, convergence to the minimum is difficult.

• F3 is the forth function of De Jong. It is a continuous, convex, unimodal
quartic function with noise.

• F4 is the Rastrigin function. It is highly multimodal, but locations of minima
are regularly distributed.

• F5 is the Schwefel function. It is a complex function with many local minima.

• F6 is the Griewank function. It has many widespread local minima, which
are regularly distributed.

In this paper, 15 bits are used to represent the continuous variable of the func-
tions, thus the length of the binary string onto each particle is m = 15D. Each
optimization experiment is run independently 50 times.

4.2 The comparison by different a

In general, the final results of the optimization algorithm are greatly dependent
on the dimension of search space (D), the number of all particles (n) and the
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complexity of the objective function, etc. In addition, in the proposed LAQPSO,
the magnitude of rotation angle could be affected by contraction coefficient a,
and rotation angle directly determines the exploration and exploitation abilities of
the algorithm. In order to study the influence of the contraction coefficient a, a
sensitivity analysis of LAQPSO algorithm is mainly conducted to investigate the
relationship between D, n and a.

510
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310

110

010

110

Fig. 2 The contraction coefficient a on
F1 (D = 10).

-510

510

010

Fig. 3 The performance of several con-
traction coefficients on F1 (D = 10).

-310

-110
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310
210
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-210
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Fig. 4 The contraction coefficient a on
F1 (D = 30).

-310

-210

-110

010

110

210

310

410

510

Fig. 5 The performance of several con-
traction coefficients on F1 (D = 30).

For function F1, the population size is set to 40, and the number of maximum
iterations is set at 500. When the dimension of search space increases from 10 to
50, we compare and analyze the contraction coefficient a. The average results of 50
independent trials are shown in Figs. 2, 4 and 6. The results show that the best
contraction coefficient a does not change as the dimension of search space increases
from 10 to 50, and the larger the contraction coefficient a is, the better results
will be got. The convergence progress of several contraction coefficients on F1 are
illustrated in Figs. 3, 5 and 7. The results in these figures show that large a increases
the speed of converging into the global optimum. For the unimodal function, the
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Fig. 6 The contraction coefficient a on
F1 (D = 50).
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Fig. 7 The performance of several con-
traction coefficients on F1 (D = 50).

fast convergence speed may yield good results since it has few local optimums except
for the global one. Therefore, it is better to select large contraction coefficient a to
get the good results.
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Fig. 8 The contraction coefficient a on
F4 (D = 10).
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310

Fig. 9 The performance of several con-
traction coefficients on F4 (D = 10).

For function F4, the population size and the number of maximum iterations are
set to 40 and 500. The contraction coefficients a are compared in Figs. 8, 10 and 12
as the dimension of search space increases from 10 to 50, and Figs. 9, 11 and 13
show the convergence progress of several contraction coefficients on F4.The results
in Figs. 8, 10 and 12 show that the best contraction coefficient a increases with the
dimension of search space increasing, when the contraction coefficient a increases
from 0.1 to 1, the solution decreases first and then increases. Due to large number of
local optimums in the landscape of multimodal high-dimension function, it requires
strong exploration ability of the particles to acquire a good solution. When the
dimension of search space is relatively small, there will be less local optimum, and
the large contraction coefficient a easily gives rise to premature convergence because
of the powerful exploitation ability of the particles, so the contraction coefficient a
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Fig. 10 The contraction coefficient a on
F4 (D = 30).
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Fig. 11 The performance of several con-
traction coefficients on F4 (D = 30).
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Fig. 12 The contraction coefficient a on
F4 (D = 50).
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Fig. 13 The performance of several con-
traction coefficients on F4 (D = 50).

should better be selected to be small value to avoid premature convergence to get
good solution. However, if the contraction coefficient is too small, a bad solution
will be obtained due to the weak convergence. With the dimension of search space
increasing, there will be more local optimum, and then the proposed algorithm
not only needs the powerful exploration ability of the particles to avoid premature
convergence, but also need many epochs to converge into the suboptimal or global
optimum, therefore it is better to select a large contraction coefficient a.

Figs. 14–16 show the average final results for different contraction coefficient a
on F2 and F5 with the number of all particles increasing from 20 to 80. In those
tests, the dimension of search space is set to 50, and the number of maximum
iterations is set to 500. From the results we can see that, when the number of
all particles increases, the contraction coefficient a does not greatly change, only
getting better solution.
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Fig. 14 The contraction coefficient a on F2 and F5 (n = 20).
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Fig. 15 The contraction coefficient a on F2 and F5 (n = 40).

4.3 The comparison by different algorithms

In this subsection, some comparisons of LAQPSO, the standard QEA and QBPSO
algorithms are performed on the unimodal and multimodal benchmark functions
shown in Tabs. II and III to evaluate the efficiency of the proposed algorithm. The
maximum iteration is 1000 for the functions, the number of all particles is set to
40. and the dimension of the functions is 30 and 50. For the unimodal functions in
Tab. II, the contraction coefficient a in LAQPSO is fixed to 1. For the multimodal
functions in Tab. III, the contraction coefficient a in LAQPSO is set to 0.5 and
0.65 while the dimension of those functions is 30 and 50 respectively. Besides, the
absolute value of ∆θtij used in QEA and QBPSO is set as 0.01π.

We record the best fitness value when the algorithm terminates at each run.
The average best fitness (Avg. BF), the standard deviation (St. D), the maximum
and minimum of the best fitness (Max. BF and Min. BF) in the last iteration
are used to evaluate the quality of the solutions produced by algorithms. These
statistical results are listed on Tabs. IV and V.

The results in Tab. IV show that LAQPSO performs the best and converges the
fastest for the unimodal functions in Tab. II. For those functions, the results of QEA
and QBPSO are far from those of LAQPSO, and especially for the function F1,
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Fig. 16 The contraction coefficient a on F2 and F5 (n = 80).

Function D Algorithm Avg. BF St. D Max. BF Min. BF

F1 30 LAQPSO 2.79E-04 1.10E-19 2.79E-04 2.79E-04
QEA 1.74E+01 9.33E+00 4.79E+01 3.14E+00

QBPSO 2.03E+01 6.30E+00 4.00E+01 7.33E+00
50 LAQPSO 5.58E-04 1.67E-04 1.51E-03 4.66E-04

QEA 6.07E+02 2.23E+02 1.37E+03 2.63E+02
QBPSO 4.35E+02 1.20E+02 6.66E+02 2.45E+02

F2 30 LAQPSO 5.93E+02 7.90E+02 3.51E+03 2.58E+01
QEA 1.79E+03 1.18E+03 4.87E+03 2.66E+02

QBPSO 1.08E+03 8.09E+02 3.85E+03 2.08E+02
50 LAQPSO 4.96E+03 1.71E+04 7.48E+04 4.86E+01

QEA 1.15E+05 7.00E+04 3.33E+05 2.04E+04
QBPSO 4.53E+04 2.65E+04 1.47E+05 1.54E+04

F3 30 LAQPSO 4.77E-02 1.86E-02 9.33E-02 1.65E-02
QEA 9.81E-02 4.96E-02 3.24E-01 3.55E-02

QBPSO 6.46E-02 2.27E-02 1.13E-01 2.15E-02
50 LAQPSO 1.16E-01 4.54E-02 2.42E-01 4.24E-02

QEA 5.53E-01 1.93E-01 1.12E+00 2.25E-01
QBPSO 3.85E-01 1.32E-01 7.70E-01 1.57E-01

Tab. IV Minimization results of the unimodal functions in Tab. II. Avg. BF de-
notes the average best fitness, St. D is the standard deviation, Max. BF and Min. BF
stand for the maximum and minimum of the best fitness, respectively.

the maximum best fitness of LAQPSO is smaller than the minimum best fitness of
QEA and QBPSO. This indicates that for this parameters configuration, QEA and
QBPSO with a small rotation angle cannot converge into the suboptimal or global
optimum because of the low speed of converging. In regard to LAQPSO, though
the optimized contraction coefficient a is selected for F1, the obtained results for
F2 and F3 are also better. This confirms LAQPSO has the potential to achieve
better results when solving unimodal functions.
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Function D Algorithm Avg. BF St. D Max. BF Min. BF

F4 30 LAQPSO 3.72E+01 8.27E+00 5.31E+01 2.09E+01
QEA 5.53E+01 9.92E+00 8.52E+01 3.23E+01

QBPSO 5.22E+01 1.17E+01 8.26E+01 2.76E+01
50 LAQPSO 8.22E+01 1.18E+01 1.10E+02 5.66E+01

QEA 1.17E+02 1.54E+01 1.49E+02 8.87E+01
QBPSO 1.32E+02 1.61E+01 1.71E+02 8.84E+01

F5 30 LAQPSO 1.05E+03 2.87E+02 1.79E+03 4.36E+02
QEA 1.59E+03 3.54E+02 2.48E+03 9.22E+02

QBPSO 1.31E+03 3.51E+02 2.19E+03 7.06E+02
50 LAQPSO 2.56E+03 4.86E+02 3.88E+03 1.74E+03

QEA 3.67E+03 5.58E+02 4.99E+03 2.54E+03
QBPSO 3.34E+03 5.37E+02 4.56E+03 2.40E+03

F6 30 LAQPSO 5.03E-02 8.82E-02 3.89E-01 6.72E-04
QEA 1.20E+00 8.92E-02 1.46E+00 1.08E+00

QBPSO 1.18E+00 5.84E-02 1.36E+00 1.07E+00
50 LAQPSO 9.71E-02 1.04E-01 3.85E-01 1.37E-02

QEA 6.46E+00 2.01E+00 1.33E+01 3.37E+00
QBPSO 4.91E+00 1.08E+00 7.00E+00 3.21E+00

Tab. V Minimization results of the multimodal functions in Tab. III. Avg. BF
denotes the average best fitness, St. D is the standard deviation, Max. BF and
Min. BF stand for the maximum and minimum of the best fitness, respectively.

Tab. V shows the results of multimodal functions in Tab. III. The results show
that LAQPSO offer the best results for the functions, while QEA and QBPSO
cannot tune themselves and are trapped in local minima. The results of QBPSO
is better than those of QEA except for F4. In addition, the LAQPSO results
show the small standard deviations in the results for F4 and F5. Once again, for
this parameters configuration, LAQPSO shows up greater adaptability and better
performance among the algorithms.

The progress of the average best fitness for function F1, F2 and F3 with D = 30
are illustrated in Figs. 17–19 respectively. The results in these figures show that
LAQPSO with a unified contraction coefficient a converges to the best solution of
the unimodal functions with a relatively fast speed, but QEA and QBPSO cannot
provide a good solution because of the decreasing search speed. Additionally, the
convergence rate of QBPSO is faster than that of QEA at the first stage, but later
on, QEA catches up QBPSO and even generates a better solution.

Figs. 20–22 show the progress of the average best fitness for the multimodal
functions F4, F5 and F6 with D = 30. The results show that QBPSO converges
rapidly than LAQPSO and QEA at the early stage of running, but falls into a local
minimum for the functions because of premature convergence. The convergence
rate of QEA is always slowest, and the premature convergence cannot avoided
either. In contrast, though LAPSO does not converges fastest at the early stage,
it tunes itself to jump out of local minima to provide the best solution. Fig. 22
obviously shows that LAQPSO has fallen into a local minimum for function at the

492



Shao D., Hu S., Fei Y.: A new quantum particle swarm optimization algorithm. . .

410

210

010

210

410

610

Fig. 17 Convergence performance of
LAQPSO, QEA and QBPSO on F1 with
D = 30.

210

310

410

510

610

710

810

910

Fig. 18 Convergence performance of
LAQPSO, QEA and QBPSO on F2 with
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Fig. 19 Convergence performance of
LAQPSO, QEA and QBPSO on F3 with
D = 30.
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Fig. 20 Convergence performance of
LAQPSO, QEA and QBPSO on F4 with
D = 30.
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Fig. 21 Convergence performance of
LAQPSO, QEA and QBPSO on F5 with
D = 30.

210

110

010

110

210

310

Fig. 22 Convergence performance of
LAQPSO, QEA and QBPSO on F6 with
D = 30.
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beginning of evolutionary process, but then jumps out of it and launches global
search. It shows that LAQPSO can avoid premature convergence more effectively.

5. Conclusions

This paper proposes a novel QPSO evolved on a new local attractor. The pro-
posed LAQPSO introduces a convenient quantum bit expression mechanism called
quantum angle to represent the particle, and employs the local attractor to de-
termine the direction and magnitude of rotation angle in quantum rotation gate.
In LAQPSO, the rotation angle can be adapted to the search progress automat-
ically, and thereby balances between exploration ability and exploitation ability.
It is shown by comparing the present results with these obtained by QEA and
QBPSO algorithms that, LAQPSO is an effective approach that has the poten-
tial to achieve better solutions in most cases. For exploiting more potential of
LAQPSO, a comprehensive parameter study regarding the relationship between
the contraction coefficient a and many other factors is performed. Through the
obtained results, it is concluded that

1. when the proposed LAQPSO is used to deal with the objectives having few
local optimum, assigning a larger value to the contraction coefficient a is
the effective way to enhance the exploitation ability. On the contrary, if
many local optimums appear in the objective, it is suggested to balance the
tradeoff between exploitation ability and exploration ability by reducing the
contraction coefficient properly;

2. in the case of the low dimension optimization problem, the smaller contrac-
tion coefficient a can produce good results. With the dimension increases,
the contraction coefficient should be increased to extend the diversity of the
LAQPSO algorithm;

3. owing to the adopting of the new local attractor, the proposed LAQPSO can
adapt itself to effectively avoid premature convergence and provides good
results.

This work can provide some novel ideas for improving both the particle swarm
optimization algorithm and quantum-inspired evolutionary algorithm. Based on
the new local attractor of a basic element, the other optimization algorithms can
also be improved, and their performance can be thus further investigated.
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