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Abstract: Precise wind energy potential assessment is vital for wind energy gener-
ation and planning and development of new wind power plants. This work proposes
and evaluates a novel two-stage method for location-specific wind energy potential
assessment. It combines accurate statistical modelling of annual wind direction
distribution in a given location with supervised machine learning of efficient esti-
mators that can approximate energy efficiency coefficients from the parameters of
optimized statistical wind direction models. The statistical models are optimized
using differential evolution and energy efficiency is approximated by evolutionary
fuzzy rules.
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1. Introduction

The knowledge of wind speed and direction is very important for wind energy gen-
eration, integration, and management. Predicting the amount of generated wind
energy is essential for the safe and effective operation of stochastic renewable en-
ergy sources such as wind turbines and wind farms. The estimation of wind energy
potential [28] is essential for the growth of green, renewable energy applications.

In the recent years, the construction of large wind power plants has stagnated,
partly because of the exceeded transmission capacity of overhead power lines. How-
ever, small power plants with nominal power in the order of tens to hundreds of
kilowatts are getting into the forefront of interest. This interest is given by the
development of new technologies for off-grid systems. The Off-Grid systems are
understood as systems independent of the supply of electric or heat energy from an
external power grid and as systems using mainly renewable source [36]. Although
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photovoltaic systems are used as dominant renewable sources of electric energy in
most cases, they are not sufficient for energy production for the whole year due
to its stochastic character. Hence, power plants are used as additional sources of
electric or heat energy in these Off-Grids. The cooperation of wind power plants
and photovoltaic systems is very advantageous. The energy production from wind
power plants is dominant in autumn and winter seasons and energy from photo-
voltaic systems is dominant in spring and summer seasons [49]. The main problem
with the construction of small power plants in Off-Grids lies in finding an acceptable
plant location with good meteorological conditions including high wind velocity as
well as fixed wind directionality [11,33].

Current wind power plant energy production forecasting models are mostly
based on wind velocity predictions. These models have a relatively good accuracy
for large wind power plants that have wind turbine hub placed in an altitude of
about 100 meters where the wind direction is stable. However, off-grid systems with
nominal power of hundreds of kilowatts are usually composed of small wind power
plants that are installed on top of towers with a maximum height of tens of meters
and variable meteorological conditions. Another issue associated with small and
mid-size wind power plants is their frequent placement in urban environment. In
such locations, meteorological and in particular wind conditions are thanks to the
presence of high-rise buildings significantly different from conditions found in the
altitude of 100m. [1]. For example, wind velocity is smaller and wind directionality
has a high variance. For these cases, prediction models based solely on wind velocity
forecasts are less accurate [27,38]. Therefore, the development of tools and methods
to estimate the volume of electric and heat energy produced by wind power plants
with respect to both, wind velocity and wind direction forecasts, is very desirable.

This work introduces a novel two-stage method that can be used to estimate
location-specific wind energy efficiency coefficient. In the first phase, an accurate
statistical model of annual wind direction distribution [9,10] is created and carefully
optimized [23, 24]. The differential evolution algorithm is in this work used for
accurate optimization of model parameters. In the second stage, a recent multi-
paradigm machine learning method called evolutionary fuzzy rules [30, 31, 41] is
applied as an estimator of the annual wind energy efficiency coefficient. Machine-
learning-based estimation of the annual wind energy efficiency coefficient is the
major original contribution of this work.

The rest of this paper is organized in the following way: Section 2 summarizes
relevant recent methods for wind energy potential assessment and wind direction
modelling. It also provides a high–level outline of the proposed approach. Section 3
provides a brief introduction into the fundamentals of the employed methods, i.e.
statistical wind direction modelling, differential evolution, and evolutionary fuzzy
rules, and their application in the area of wind energy potential assessment. Com-
putational experiments illustrating and evaluating the proposed approach are pre-
sented in Section 4 and conclusions are drawn in Section 5.

2. Background and proposed approach

With regard to the results of the available research in the literature, it should be
noted that most of the research work deals with the issue of the wind potential
assessment of the wind power plant in different point of view.
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Study presented in [35] focuses on onshore wind power on the African continent
and strives to provide estimates of theoretical, geographical and technical potential
using a GIS analysis, while the analysis is based on currently available wind power
technology, wind power plant location or related socio-economic and geographic
constraints. Methodology described in [44] is based on GIS as well, but adapted to
the island/regional requirements and it has been even applied to a practical case
in the Canary Islands.

Different techniques such as mesoscale with GIS implementation are used for
wind energy potential assessment for Off-Shore systems [51]. Next, a good result
in Wind energy yield assessment has been achieved in portfolio theory application
in [34].

As an extremely useful can be considered the new suggested approach to as-
sess an index of the local wind energy potential presented in [42]. Of course, the
numerical methods for determining of wind energy potential are also present in
currently available literature [4,15,43]. Closely related with the wind potential as-
sessment is the forecasting of the wind power plant power output in short-term [32]
mid-term [14] and long-term [48] time series.

2.1 Wind direction modelling

Wind direction modelling is an important step in optimization of wind energy po-
tential assessment, wind farm layout [19], wind turbine operations and control [26],
and wind energy integration. It is well-understood that accurate location-specific
modelling of wind power output is essential for accurate management of such sys-
tems [21, 25, 26]. Statistical modelling can be used to create various types of ac-
curate descriptive models of wind activity [25], that can be further optimized by
advanced methods such as artificial neural networks [28, 45], support vector ma-
chines [32,45], genetic algorithms [24], particle swarm optimization [23], and hybrid
soft-computing approaches such as genetic fuzzy systems [16]. Simulations repre-
sent another possible way of quantifying different aspects of wind activity including
wind direction and wind speed [21].

2.2 Proposed approach

In this work, we propose and evaluate a novel two–stage approach for wind energy
efficiency estimation. It is based on statistical modelling of annual wind direc-
tion distribution, optimization of model parameters by differential evolution, and
nature-inspired learning of an energy efficiency estimator based on the soft com-
puting concept of evolutionary fuzzy rules.

The proposed approach works in the following way. First, a set of wind direction
measurements from certain location is used to establish a statistical model of annual
wind direction distribution in this place. Then, differential evolution (DE) is used
to optimize model parameters. In the second stage, the optimized model is used as
an input of an energy efficiency estimator in the form of artificially evolved fuzzy
rule which approximates annual wind energy efficiency from its parameters.

The development of accurate energy efficiency estimator is a crucial part of the
proposed method. In the proposed framework, a fuzzy rule evolved by genetic pro-
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Fig. 1 Supervised learning of energy efficiency estimator.

gramming is used as an energy efficiency estimator. The evolution of the estimator,
described in Fig. 1, is a supervised machine learning process that requires a training
set composed of pairs of optimized wind direction distribution models and known
annual wind energy production and known wind energy efficiency coefficients. The
basics of all employed methods, i.e. statistical wind direction distribution mod-
elling, differential evolution, wind direction distribution model optimization, and
fuzzy rule evolution, are described in the following section.

3. Wind energy potential assessment

The proposed framework for wind energy potential assessment is based on three
building blocks. It employs statistical modelling of annual wind direction distri-
bution by a finite mixture of simple von Mises distributions and an optimization
of distribution model parameters by differential evolution. Then, an estimation
of wind energy efficiency coefficient by an evolutionary fuzzy rule machine-learned
from a training data set is performed.

3.1 Statistical modelling of wind direction

Finite Mixture of simple von Mises distributions (MvM) can be used to represent
multimodal directional data [23,24]. Simple von Mises distribution (SvM), defined
for random circular variable θ, has two parameters: µ represents the prevailing
wind direction, and κ (concentration parameter) indicates the variance around the
mean. The probability density function of this distribution (SvM-pdf ) is given by
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f(θ;µ, κ) =
1

2πI0(κ)
eκ cos(θ−µ), (1)

where κ ≥ 0, 0 ≤ µ ≤ 2π , 0 ≤ θ ≤ 2π and I0(κ) is the modified Bessel function
of the first kind and order zero. The SvM-pdf is symmetrical and unimodal, and
therefore can only approximate directional data with a single prevailing direction.
For κ = 0, SvM distribution becomes uniform around the circle with all directions
equally probable. When the modelled data contains more than one prevailing
direction, it is necessary to use a mixture of such distributions. Finite mixture
model of simple von Mises distributions is defined by probability density function
(MvM-pdf )

φ(θ;ν) =

k∑
j=1

ωj · fj(θ;µj , κj), (2)

where j is the index of particular SvM-pdf with parameters µj and κj , θ is an
angular variable (0 ≤ θ ≤ 2π), and ν is a vector parameter

ν = (µ,κ,ω) =

= (µ1, . . . , µk, κ1, . . . , κk, ω1, . . . , ωk). (3)

The weight of each mixture member has to be nonnegative and satisfy the following
conditions

0 ≤ ωj ≤ 1 ∀j ∈ {1, . . . , k},
k∑
j=1

ωj = 1. (4)

Maximum likelihood estimates of MvM distribution vector parameter ν lead to a
system of nonlinear equations that must be solved numerically [20]. The parameter
estimates for the MvM distribution can be evaluated using an expectation maxi-
mization algorithm fully described in [6]. In this work, the differential evolution is
adopted in place of commonly used numerical methods. It is used to optimize an
initial analytical approximation of distribution parameters obtained from data.

3.2 Differential evolution

The DE is a versatile and easy to use stochastic evolutionary optimization algo-
rithm [40]. It is a population-based optimizer that evolves a population of real
encoded vectors representing the solutions to given problem. The DE was intro-
duced by Storn and Price in 1995 and it quickly became a popular alternative to
the more traditional types of evolutionary algorithms. It evolves a population of
candidate solutions by iterative modification of candidate solutions by the appli-
cation of the differential mutation and crossover [40]. In each iteration, so called
trial vectors are created from current population by the differential mutation and
further modified by various types of crossover operator. In the end, the trial vectors
compete with existing candidate solutions for survival in the population.

The DE starts with an initial population of N real-valued vectors. The vec-
tors are initialized with real values either randomly or so, that they are evenly
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spread over the problem space. The latter initialization leads to better results of
the optimization [40]. During the optimization, the DE generates new vectors that
are scaled perturbations of existing population vectors. The algorithm perturbs
selected base vectors with the scaled difference of two (or more) other population
vectors in order to produce the trial vectors. The trial vectors compete with mem-
bers of the current population with the same index called the target vectors. If
a trial vector represents a better solution than the corresponding target vector, it
takes its place in the population [40].

The two most significant parameters of the DE are scaling factor and mutation
probability [40]. The scaling factor F ∈ [0,∞] controls the rate at which the
population evolves and the crossover probability C ∈ [0, 1] determines the ratio of
elements that are transferred to the trial vector from its opponent. The size of
the population and the choice of operators are other important parameters of the
optimization process.

The basic operations of the classic DE can be summarized using the following
formulae [40]: the random initialization of the ith vector with N parameters is
defined by

xij = rand(bLj , b
U
j ), j ∈ {1, . . . , N}, (5)

where bLj is the lower bound of j-th parameter, bUj is the upper bound of j-th
parameter, and rand(a, b) is a function generating a random number from the
range [a, b]. A simple form of the standard differential mutation is given by

vi = vr1 + F (vr2 − vr3), (6)

where F is the scaling factor and vr1, vr2, and vr3 are three random vectors from
the population. The vector vr1 is the base vector, vr2 and vr3 are the difference
vectors, and vi is the trial vector. It is required that i 6= r1 6= r2 6= r3.

The uniform (binomial) crossover that combines the target vector, xi, with the
trial vector, vi, is given by

vij =

{
vij if (rand(0, 1) < C) or j = jrand

xij , otherwise
(7)

for each j ∈ {1, . . . , N}. The random index jrand is in the above selected randomly
as jrand = rand(1, N). The uniform crossover replaces the parameters in vi by the
parameters from the target vector xi with probability 1 − C . The outline of the
classic DE according to [18,40] is summarized in Algorithm 1. The DE is a success-
ful evolutionary algorithm designed for continuous parameter optimization driven
by the idea of scaled vector differentials. That makes it an interesting alternative
to the wide spread genetic algorithms that are designed to work primarily with
discrete encoding of the candidate solutions. As well as GA, the DE represents a
highly parallel population based stochastic search meta-heuristic. In contrast to
the GA, the differential evolution uses the real encoding of candidate solutions and
different operations to evolve the population. It results in different search strategies
and different directions found by the DE during crawling of a fitness landscape of
the problem domain.
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Algorithm 1 A summary of classic Differential Evolution.
Initialize the population P consisting of M vectors using Eq. (5)
Evaluate an objective function ranking the vectors in the population
while Termination criteria not satisfied do

Let G = number of current generation
for i ∈ {1, . . . ,M} do

Differential mutation: Create trial vector vi according to Eq. (6)

Validate the range of coordinates of vi. Optionally adjust coordinates of vi so, that it is
valid solution to given problem

Perform uniform crossover. Select randomly one parameter jrand in vi and modify the
trial vector using Eq. (7)

Evaluate the trial vector.
if trial vector vi represent a better solution than target vector xi then

add vi to PG+1

else
add xi to PG+1

end if
end for

end while

3.2.1 Optimizing a finite mixture of von Mises distributions by the DE

To optimize the parameters of a finite mixture of von Mises distributions, one needs
to define a real-valued representation of candidate solutions, a fitness function, and
a population initialization algorithm.

In this work, we use a parameter optimization strategy introduced by Heck-
enbergerova, et al. [23]. The authors have used particle swarm optimization to
search for good parameters of the MvM model. The DE, however, has simi-
lar real-valued nature and identical problem representation can be used. In this
work, the mixture of k von Mises distributions is represented by a candidate vec-
tor v = (v1, . . . , vn), vi ∈ [0, 1] with three parts encoding the vector parameter
ν = (µ,κ,ω) respectively

v =

µ︷ ︸︸ ︷
(v1, . . . , vk, vk+1, . . . , v2k︸ ︷︷ ︸

κ

,

ω︷ ︸︸ ︷
v2k+1, . . . , vn) . (8)

The decoding of µ involves scaling of vi, i ∈ {1, . . . , k} to [0, 2π], and the decoding
of κ requires scaling of vi, i ∈ {k + 1, . . . , 2k} to [0, 700]. The upper bound of
κj has been chosen with respect to precision of the numerical algorithm used to
implement Bessel function I0(κj).

To satisfy the constraint (4) for the weights of mixture members, ωj , the fol-
lowing decoding rule has been devised

ωj =


vi, if j = 1

vi ·
(

1−
j−1∑
l=1

wl

)
, otherwise.

(9)

This is the simplest decoding that guarantees that the sum of all weights ωj is equal
to 1 and does not impose any additional constraints on candidate vector handling.
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All vectors created during the optimization process are valid candidate solutions
representing a mixture of k von Mises distributions.

In the proposed approach, the initial population of particles is formed from
randomly perturbed analytical estimates of µ, κ, and ω created according to the
principles outlined in [23]. The fitness of each candidate solution is evaluated using
root mean-squared error (RMSE), defined as

RMSE =

√√√√ 1

T

i=1∑
T

(Oi − npi)2, (10)

where T is the number of frequency classes, Oi is the observed frequency of i-th
class, n is the sum of all observed frequencies, and pi is the theoretical (modelled)
probability of i-th frequency class. RMSE is a common measure often used to
evaluate the differences between predicted and observed values. It combines intu-
itive interpretation with good mathematical properties [50]. Low value of RMSE
suggests good fit of observed and theoretical probabilities while large values of
RMSE are associated with loose correspondence between observed and modeled
phenomena.

3.3 Evolutionary fuzzy rules

Fuzzy classification is an umbrella term for different methods capable of efficient
soft classification of data. In contrast to its crisp counterpart, fuzzy classification
provides a more sensitive tools for data analysis [7]. Fuzzy decision trees and fuzzy
if-then rules are prime examples of efficient, transparent, and intelligible fuzzy
classifiers and value estimators [7, 46].

The need for interpretable and linguistically comprehensible classification and
regression tools is widely recognized [12,47]. It is also well-known that bio-inspired
and evolutionary methods possess the ability to learn and optimize various types
of fuzzy systems [12, 13] and data mining models [3, 5]. Evolutionary fuzzy rules
(FR) [30, 31, 41] are simple yet powerful classification and regression instruments
based on the merger of fuzzy information retrieval (IR) and genetic programming.

Fuzzy information retrieval uses extended Boolean queries that consist of search
terms, operators, and weights, and evaluates them against an internal representa-
tion (index) of a collection of documents. It is based on the fuzzy set theory and
fuzzy logic that facilitate flexible and accurate search [39]. Evolutionary fuzzy rules
use similar basic concepts, data structures, and operations, and apply them to gen-
eral data processing tasks such as classification, prediction, and so forth. Here, the
concepts of information retrieval are employed to interpret data and to define the
classification or regression models. Symbolic rules of such models are then evolved
using genetic programming [2], a generic, problem-independent meta-heuristic ma-
chine learning algorithm.

The data processed by a fuzzy rule is a real valued matrix. Each row of the
matrix corresponds to a single data record interpreted as a fuzzy set of features.
Such a general, real valued matrix D with m rows (data records) and n columns
(data attributes, features) can be mapped to an IR index that describes a collection
of objects.
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A fuzzy rule takes the form of a weighted symbolic expression roughly corre-
sponding to an extended Boolean query in the fuzzy IR analogy. The rule consists
of weighted feature names and weighted aggregation operators. The evaluation of
such an expression assigns to each data record a real value from the range [0, 1].
Such valuation can be interpreted as an ordering, labeling, or a fuzzy set induced
on the data records.

The fuzzy rule is a symbolic expression that can be parsed into a tree structure
consisting of nodes and leafs. There are three types of leafs (a.k.a. terminal nodes)

a) Feature node which represents the name of a feature (a search term in the IR
analogy). It specifies a requirement for a particular feature in the currently
processed data record.

b) Past feature node which defines a requirement on certain feature in a previous
data record. The index of the previous data record (current - 1, current - 2,
etc.) is a parameter of the node.

c) Past output node which puts the requirement on a previous output of the pre-
dictor. The index of the previous output (current - 1, current - 2, etc.) is a
parameter of the node.

A fuzzy rule can be expressed using a simple infix notation

feature1:0.5 and:0.4 (feature2[1]:0.3 or:0.1 ([1]:0.1 and:0.2 [2]:0.3)),

where feature1:0.5 is a feature node, feature2[1]:0.3 is a past feature node, and
[1]:0.5 is a past output node. Different node types can be used when dealing
with different data sets. For example, the past feature node and past output node
are useful for the analysis of time series and data sets where the ordering of the
records matters. But their usage is pointless for the analysis of regular data sets.
The feature node is the basic building block of classifiers and predictors developed
for arbitrary data.

The evaluation of a node, f:a, with value f ∈ [0, 1] and weight a ∈ [0, 1],
is performed using a threshold interpretation of the retrieval status value (RSV)
concept known from fuzzy information retrieval [8]

g(f, a) =

{
P (a) fa , f < a

P (a) +Q(a) f−a1−a , f ≥ a
, (11)

where P (a) = 1+a
2 and Q(a) = 1−a2

4 are coefficients used to fine-tune the threshold
curve.

Typical evolutionary fuzzy rules support and, or, not, prod, and sum operator
nodes. However, more general or domain specific operators can be used as well.
Both nodes and leafs are weighted to soften the criteria they represent.

The operators and, or, not, prod, and sum are evaluated using fuzzy set oper-
ations. In this study, the standard t-norm and s-norm [52] are used to implement
and and or operators, respectively

t(x, y) = min(x, y),

s(x, y) = max(x, y),
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operator not is evaluated using the standard fuzzy complement

c(x) = 1− x,

and prod and sum operators, respectively, using the product t-norm and its dual
s-norm, bounded sum

tprod(x, y) = xy,

ssum(x, y) = a+ b− ab.

However, other classes of complement, intersection, and union models [29, 37] can
be used as well.

A fuzzy rule is a simple version of a general fuzzy rule-based system that consists
of a single expression describing soft requirements on data records in terms of
their features. In evolutionary fuzzy rules, this expression is evolved using genetic
programming [2]. The tree structures, corresponding to the parsed fuzzy rules, are
developed by an iterative application of crossover, mutation, and selection operators
in order to find an accurate model of the training data.

The general process of rule evolution is used for data-driven search for custom
classifiers or predictors. Different data sets may by characterized by different prop-
erties and different hidden structure, and the adaptability of genetic programming
is essential for the evolution of problem-specific fuzzy rules. On the other hand,
the stochastic nature of genetic programming introduces probabilistic elements into
the process of rule evolution.

The evolutionary fuzzy rules, although machine-generated, retain the under-
standable structure and ease of interpretation inherited from the extended Boolean
search expressions, and allow a soft classification/regression without the complexity
and computational costs of full-featured fuzzy rule-based systems [30]. For more
information on fuzzy rules, their structure, weighting, evaluation, evolution, and
applications, see e.g. [30, 31,41].

In this work, FRs are used as a machine learning tool to discover annual wind
energy coefficients from parameters of optimized statistical models (MvM) of wind
direction distributions.

4. Experiments

All building blocks of the proposed energy potential assessment framework were
implemented from scratch in C++ and a series of computational experiments was
conducted. They used a unique real-world data set combining the information
about long-term wind direction measurements and the volumes of wind energy
produced by particular wind power plants. The aim of the experiments was to
confirm the viability of the proposed approach to accurately learn models of wind
energy potential from real–world data, collected from several wind turbines oper-
ating in the Czech Republic. This section discusses the data, the experiments and
their parameters, and obtained results.
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4.1 Description of sites and data

This sub-section describes the wind turbine properties as well as data properties.
Wind turbines properties are summarized in following Tab. I.

Site Manufacturer Type Installed power Year of installation
[kW]

Drahany Vestas V90 2000 2006
Kamen Vestas V90 2000 2008
Lipna Vestas V90 2000 2008
Maletin Vestas V90 2000 2008
Veseli 26367 Vestas V90 2000 2008
Maletin Vestas V90 2000 2008
Veseli 26368 Vestas V90 2000 2008

Tab. I Wind turbine properties.

As can be seen from Tab. I, all the wind turbines are from the same manufac-
turer, are the same type with the same installed power. The only differences are
in the place of installation, the altitude and also in the surrounding environment.

All the data are provided by the wind turbine operator and are obtained from
the installed monitoring system which is integral of each wind turbine. Moreover,
the monitoring system is the same in each wind turbine, because they have the
same properties. The experimental data were collected for year 2011, where there
were no missing data in the dataset. All the data were stored into database in
10-min average values.

4.2 Optimizing wind direction distribution parameters
by DE

A /DE/1/rand differential evolution with population size 100, scaling factor, F =
0.9, crossover probability, C = 0.9, and maximum number of generations, Gmax =
50, 000, was used to optimize the parameters of a finite mixture of 6 simple von
Mises distributions for each site. The fixed parameters were set on the basis of
best practices [40], initial trials, and past experience of the authors. The number of
simple von Mises distributions corresponds to the number of distributions suggested
in the literature [9, 23].

The optimization algorithm used problem representation and fitness function
introduced in Section 3.2.1. Because of the stochastic nature of the algorithm, each
experiment was performed 30 times, independently. The results of the optimization
in terms of RMSE are summarized in Tab. III. For comparison purposes, the table
also contains for each location the RMSE of analytical wind distribution model
(i.e. model without optimization), created according to the principles summarized
e.g. in [23]. The parameters of the best models found for each location are listed
in Tab. II and visually illustrated in Figs. 2–7.

Tab. III and Figs. 2–7 clearly illustrate that the DE-optimized models fit the
wind direction data for each location significantly better than the models with
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Site RMSE [-]

DE-optimized model Analytical

min avg (σ) max model

Drahany 78.97 91.90 (12.74) 123.36 258.20
Kamen 64.77 86.85 (21.31) 136.27 565.70

Lipna 49.16 61.33 (10.33) 89.27 498.71
Maletin 83.07 96.37 (8.91) 107.10 452.94

Veseli 26367 62.89 69.06 (8.78) 83.67 618.46
Veseli 26368 41.82 43.63 (2.09) 48.59 609.10

Tab. III Minimum, average, and maximum RMSE of optimized wind distribution
models found for each location by the DE. Standard deviation, σ, is provided as
well.

parameters set by the analytical method. This is in line with previous results on
optimization of wind direction distribution parameters by nature-inspired methods
presented in [23,24]. In this work, the optimized wind direction distribution models,
describing accurately annual wind direction distribution in given locations, are
further utilized to approximate wind energy potential of the corresponding sites.
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Fig. 2 Optimized wind direction model for Drahany site.
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Fig. 3 Optimized wind direction model for Kamen site.
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4.3 Learning annual wind energy efficiency coefficient by FR

Wind direction distribution models, optimized by the DE, and annual wind energy
efficiency coefficients, based on actual production of wind power plants located
at corresponding sites, were used to evolve energy efficiency estimator based on
evolutionary fuzzy rules. Genetic programming [2] was used to evolve a fuzzy
rule mapping wind distribution model parameters onto annual energy efficiency
coefficients. The coefficients of all wind power plants considered in this study are
summarized in Tab. IV.

Site Annual wind energy efficiency coefficient [%]

Drahany 28.738
Kamen 29.969

Lipna 27.864
Maletin 19.930

Veseli 26367 25.090
Veseli 26368 22.929

Tab. IV Annual wind energy efficiency coefficients.

The GP employed 100 candidate fuzzy rules, mutation probability m = 0.2,
crossover probability c = 0.9, a limit of 50,000 generations, and the F-score mea-
sure known from the area of IR as a fitness function [30]. Also in this case, the
parameters were set with respect to best practices and initial trial-and-error runs.
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Fig. 4 Optimized wind direction model for Lipna site.

Because of the small number of input – output (i.e. optimized wind distri-
bution model – wind energy efficiency coefficient) pairs, a leave-one-out cross-
validation [22] was used to evaluate the energy efficiency estimator. In the leave-
one-out cross-validation, n − 1 data records are used to evolve a model (i.e. they
form a training data set) and the last remaining record is employed to asses the
generalization ability of the model (i.e. assumes the role of a test data set). Every
possible combination of training and test data sets is used and average accuracy of
the model is reported.
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Fig. 5 Optimized wind direction model for Maletin site.
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Fig. 6 Optimized wind direction model for Veseli 26367 site.
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Fig. 7 Optimized wind direction model for the Veseli 26368 site.

Also the GP is a stochastic procedure and so the cross-validation was performed
30 times independently. Results of annual wind energy efficiency coefficient learning
are summarized in Tab. V. The table shows that the best evolved estimators were
able to approximate the annual energy efficiency coefficient perfectly, with 0 RMSE,
average estimators achieved RMSE smaller than 0.5 %, and even the worst found
estimators were able to approximate the annual wind energy efficiency coefficient
with error smaller than 5%. An example of a perfect estimator (i.e. an estimator
with RMSE = 0 for both, training and test data) is graphically illustrated in Fig. 8.
The figure illustrates the combination of wind direction distribution model param-
eters that are employed to approximate the annual efficiency coefficient. Labels of
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RMSE [%]

Data min avg (σ) max

Training 0 0.43 (0.49) 2.68
Test 0 0.37 (0.85) 4.90

Tab. V Results of annual wind energy efficiency coefficient learning.

and : 0.55 

ω6 : 0.152 and : 0.643 
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and : 0.561 µ5 : 0.345 

and : 0.672 and : 0.65 
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and : 0.817 and : 0.878 

not : 0.682 µ5 : 0.775 ω6 : 0.14 and : 0.423 

and : 0.217 

ω6 : 0.0547 and : 0.65 

κ6 : 0.556 µ4 : 0.892 

and : 0.217 µ1 : 0.077 

ω6 : 0.152 and : 0.693 

or : 0.216 µ4 : 0.892 

and : 0.443 prod : 0.826 

κ4 : 0.0604 ω3 : 0.382 κ1 : 0.387 ω1 : 0.868 

and : 0.217 and : 0.561 ω6 : 0.14 µ1 : 0.077 

ω6 : 0.152 µ4 : 0.894 and : 0.669 and : 0.791 
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and : 0.443 prod : 0.826 
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µ1 : 0.433 µ6 : 0.646 

ω6 : 0.14 µ1 : 0.077 

Fig. 8 A sample annual wind energy efficiency coefficient estimator.

the terminal nodes show which model parameters are utilized by the estimator and
labels of the non-terminal nodes illustrate which operators are used to aggregate
the values of terminals and branches.

5. Conclusions

This study proposed a two-stage method for accurate location-specific wind energy
potential assessment. The method uses accurate statistical modelling of wind di-
rection distribution and machine learning of annual efficiency coefficient estimators
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for wind energy. In this framework, an annual wind direction distribution model in
the form of a finite mixture of von Mises distributions is developed from long-term
wind direction observations. Its parameters are then optimized by differential evo-
lution to provide an accurate representation of the conditions on the investigated
site.

The parameters of such optimized model are in the second phase of the proposed
procedure used to approximate the annual wind energy efficiency coefficient for this
location by a machine-learned estimator. The estimator was in this study based
on evolutionary fuzzy rules, a hybrid soft-computing classification and regression
method based on fuzzy information retrieval and genetic programming. Computa-
tional experiments have shown that evolutionary fuzzy rules can find good energy
efficiency estimators. Although only a limited number of samples was used for
estimator evolution and evaluation due to the uniqueness of this type of data, the
performed leave-one-out cross-validation analysis suggests that the evolved estima-
tors have a good ability to generalize and can be used to approximate the energy
efficiency coefficient of unknown sites with high accuracy.

Extending of this work may be done in many ways. Different methods for
optimization of the wind direction distribution parameters evaluated within the
context of energy efficiency approximation and different regression methods used
in place of evolutionary fuzzy rules are two of them. Moreover, the optimized wind
direction distribution models, together with e.g. rejection sampling [17], can be
used to simulate the wind direction on specific sites in-silico with a high degree of
precision. Such realistic models used as a part of large-scale wind energy generation,
transmission, and consumption simulations that can contribute to a new level of
truly ’smart’ energy grid operations.
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[12] CORDÓN O. A historical review of evolutionary learning methods for mamdani-type fuzzy
rule-based systems: Designing interpretable genetic fuzzy systems. International Journal of
Approximate Reasoning. 2011, 52(6), pp. 894–913, doi: 10.1016/j.ijar.2011.03.004.
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