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Abstract: Web 2.0 has led to the expansion and evolution of web-based communi-
ties that enable people to share information and communicate on shared platforms.
The inclination of individuals towards other individuals of similar choices, deci-
sions and preferences to get related in a social network prompts the development
of groups or communities. The identification of community structure is one of the
most challenging task that has received a lot of attention from the researchers.
Network community structure detection can be expressed as an optimisation prob-
lem. The objective function selected captures the instinct of a community as a
group of nodes in which intra-group connections are much denser than inter-group
connections. However, this problem often cannot be well solved by traditional opti-
misation methods due to the inherent complexity of network structure. Therefore,
evolutionary algorithms have been embraced to deal with community detection
problem. Many objective functions have been proposed to capture the notion of
quality of a network community. In this paper, we assessed the performance of four
important objective functions namely Modularity, Modularity Density, Community
Score and Community Fitness on real-world benchmark networks, using Genetic
Algorithm (GA). The performance measure taken to assess the quality of partitions
is NMI (Normalized mutual information). From the experimental results, we found
that the communities’ identified by these objectives have different characteristics
and modularity density outperformed the other three objective functions by un-
covering the true community structure of the networks. The experimental results
provide a direction to researchers on choosing an objective function to measure the
quality of community structure in various domains like social networks, biological
networks, information and technological networks.
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1. Introduction

Various real world complex systems of great significance can be modelled as net-
works [35]. Examples span various fields including Biological networks (food web,
protein networks), Technological networks (power grid, road networks), Social net-
works (friendships, collaboration networks), Information networks (World Wide
Web, co-citation), Distribution networks (blood vessels, postal delivery) and many
more [28]. The network data can be modelled with graph theory. A graph
G = (V,E) comprises of a vertex set V , where V denotes number of nodes or ver-
tices and an edge set E, where E represents interconnections among the nodes [37].

In the last decade, the exponential growth of social networks like Facebook,
Twitter, YouTube and LinkedIn has attracted the research community to study
and analyse their properties at a large scale [6, 24, 39, 40]. The increasing accessi-
bility and availability of data from these networks has given a thrust to research in
this area. In social networks, people are represented by nodes and edges between
nodes represent different types of social interaction including friendship, collabo-
ration or others. One of the imperative problem in studies of complex networks,
especially in social networks, is finding out underlying sub-structures or community
structures [25].

A community in a social network is defined as a set of nodes which has high edge
density among themselves and a lower edge density with rest of the network [10].
The problem of identifying n communities in a network, where the number n is
unknown, can be expressed as partitioning of the nodes in k subsets that have
more connections within and sparser connections among groups.

Communities occur in many networked systems like computer science, politics,
engineering, biology and economics. The Homophily principle – “the tendency
of individuals to associate with those similar to themselves i.e. similarity breeds
connection” has been discovered in many social networks [23]. So, people with
similar characteristics (race, gender, age, family, co-workers etc.) and interests
tend to form communities. Communities usually represent real social groupings
that share some common properties [10]. For example, communities on the web
may represent pages on related subjects [7] and communities in a citation network
may signify papers that are related to a single topic [4] .The identification of these
communities could help us to comprehend and exploit the networks more efficiently.

The capability of detecting communities in a network can give valuable intu-
itions to understand how the structure of ties influences people and their links.
Communities are of interest for many reasons. For example, the performance of
services provided on the World Wide Web can be improved by grouping Web clients
with similar interests and geographical proximity as each group could be served by
a dedicated mirror server [16]. Similarly, clustering clients with similar interests in
purchase networks enables to develop efficient recommendation systems and boost
the business prospects of online retailers [32].

Community detection can be formulated as an optimization problem, where the
objective function selected maximizes the number of links inside each partition of
the network. Genetic Algorithm is one of the most widely employed method to
solve complex optimization problems. GA is based on the mechanics of biological
processes of reproduction and natural selection to solve for the ‘fittest’ solutions
[14].

626



Kaur S. et al.: Comparative analysis of quality metrics for community detection. . .

The objective function plays a vital role in the evolution process of a Genetic
algorithm. In many applications, the real community structure is not known, so,
there is a requirement for developing metrics to evaluate identified communities.
However, the results obtained from optimization of some of these objective func-
tions fail to depict real community structure [8]. Besides, different objective func-
tions may result in different group allotments. Some may produce communities
with coarser granularity (few communities of huge size), though some may give
back a finer granularity group structure. Due to lack of a direct way to compare
these objective functions based on their definitions, it is important to compare the
performance of these objective functions on real networks. Various objective func-
tions have been proposed in literature to capture the notion of communities. In this
paper, we evaluated the performance of four well-known objective functions, namely
modularity, modularity density, community score and community fitness, proposed
in literature, to gauge the quality of partitions of a network. We also compared our
results with the two existing algorithms – Fast Modularity and MOGA-Net. Our
results showed that the communities’ identified by these objectives have different
characteristics and modularity density gave the best results to identify community
structure. The experimental results give a direction to researchers for selecting
the suitable objective function to assess the quality of community structure of the
networks.

The remainder of this paper is organised as follows. Section 2 gives some related
background about network community detection approaches. Section 3 includes
details of the genetic algorithm used for community detection. Section 4 presents
the experimental results and conclusion is given in Section 5.

2. Related literature

To precisely analyse the community structure in networks, many community detec-
tion methods have been proposed using principles of different domains like physics,
artificial intelligence, graph theory etc. This section gives a brief description of
some of the pioneer work in community detection and research works in which GA
is used for community detection problem.

Girvan-Newman proposed a divisive algorithm that iteratively removes the
edges based on highest betweenness value [10]. The edge removal divides the net-
work into communities. The authors also defined a measure known as ‘modularity’
to estimate the quality of communities found. The modularity has been widely
used by researchers to measure the goodness of the partitions obtained from the
community detection algorithms. They also proposed a faster method version of
previous algorithm [26]. Radicchi F. et al. introduced the concept of strong and
weak communities and proposed an algorithm based on the GN algorithm and edge
clustering co-efficient [31]. But, these community detection algorithms have large
computational complexity and are not suitable for very large networks. A more
detailed review can be found in [2].

Among the GA approaches, M. Tasgin and H. Bingol were first to propose com-
munity detection based on genetic algorithm using network modularity measure to
find the best community structure. An individual or chromosome is represented by
N genes, where N is the number of nodes of network. The i-th gene corresponds
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to i-th node and its value represents the community id of node i. They also in-
troduced one-way crossover operation. The complexity of proposed algorithm is
O(e), where e is the number of edges in the network. Moreover, the algorithm does
not require any prior information about the number of communities present in the
network [36].

Liu et al. used clustering and genetic algorithm to find the community structure
in a network. The graph is repeatedly subdivided into two parts, and a nested
genetic algorithm is applied to them. They used modularity metric for successive
bipartitions of the graph. A bipartition is accepted only if total modularity of the
graph is increased by it [20].

In [8], authors have shown that the optimization of modularity has a major
drawback. It cannot find even the well-defined communities smaller than a fixed
scale. The scale depends on the network size and the interconnection degree of
the modules. This resolution limit is a weakness for all those algorithms that use
modularity as the objective function to optimize.

C. Pizzuti introduced a new measure of network partitioning called community
score and tried to optimize this measure using genetic algorithm known as GA-Net.
The locus-based adjacency representation is used to represent an individual of the
population. The algorithm does not require the prior information of number of
communities to find. Their experimental results on synthetic and real networks
showed the viability of the genetic approach to correctly find communities. But
the chromosome representation used requires an additional decoding step [30]. C.
Shi et al. proposed a genetic algorithm using locus-based adjacency encoding rep-
resentation and modularity as the fitness function and validated the performance
of algorithms on synthetic and real networks [34]. But the objective function used
could fail to uncover community structure of modules less than a particular scale.
P. Mazur et al. have compared the results of Pizzuti’s genetic algorithm by using
two fitness functions: modularity and community score [22].

R. Agrawal proposed a Bi-Objective Community Detection (BOCD) using Ge-
netic Algorithm that employed modularity and community score as fitness function.
The results obtained showed enhanced performance over the existing community
detection methods [1]. Hafez et al. performed both single-objective and multi-
objective GA based optimization for community-detection problems. They used
the well-known objective functions proposed in literature and also showed correla-
tion among various objectives [13].

C. Pizzuti proposed a multi-objective approach, named multi-objective genetic
algorithm (MOGA-Net), to determine communities in networks using genetic al-
gorithms. The first objective function uses the concept of community score and
the second defines the concept of fitness of the nodes belonging to a module. The
approach was tested on synthetic and real life networks and showed its ability to
appropriately identify communities. However, the multi-objective approach used
has a time complexity quadratic of the population size [29]. R. Shang put forward
a community detection method based on modularity as the objective function, and
used simulated annealing method as the local search. The drawback of algorithm is
that it requires prior information about the number of community structures [33].
L. Yun et al. developed a GA based on matrix encoding and nodes similarity
and network modularity as fitness function. The matrix encoding needs no ad-
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ditional decoding and node’s similarity is used to generate an initial population.
The proposed approach performed poorly with networks with unclear community
structure [18].

Ali Ghorbanian’s algorithm optimizes modularity density using genetic algo-
rithm approach. Matrix encoding was used to initialize population and used Ad-
justed Rand Index (ARI) as performance measure. The encoding scheme used
requires additional decoding step [9]. G. chen et al. proposed a multi-objective
evolutionary algorithm for dynamic networks community detection based on Mod-
ularity density and normalized mutual information and designed a local search
operator to improve the quality of community detection. But, the algorithm has
not been tested on real life networks [3].

So, it is clear from literature review that many objective functions have been
proposed that use Genetic Algorithms (GA) as an effective optimization technique.
Therefore, it is important to study the performance of these objective functions and
to understand the structural properties of groups’ identified by various objective
functions. This will help in the selection of the most apt objective with regards to
a given network.

3. Community detection using Genetic Algorithm

Genetic algorithms have many advantages such as adaptive heuristic search nature,
require limited auxiliary knowledge of the problem, converge a problem to a smaller
solution space, and generates near optimal solutions, which makes them a suitable
candidate for community detection problem. GA is generally appropriate for the
problems with a large solution space and where an extensive search for the optimal
solution is unfeasible. Moreover, prior knowledge about the community structure
is not easy to obtain in real-world. The GA based community detection methods
can automatically determine the number of clusters in a network which makes
them useful for real world networks. In GA, a population of chromosomes or
individuals is randomly initialized where chromosome represents a possible solution
to the problem. Each member of the population is then evaluated and a ’fitness’
function is calculated for that individual, which shows the goodness a solution
member towards the solution of the problem. To improve the overall fitness of
the population, Selection is used to discard the worst solutions and only keeping
the best individuals in the population. Thereafter, the population of solutions is
modified to generate a new population by applying genetic operators like crossover
and mutation and the whole process repeats until the stopping criterion is fulfilled
[11].

3.1 Representation and initialization

When GA is applied to the community detection problem, the two dominant meth-
ods for representing the individuals are used: the string encoding representation [36]
and the locus-based adjacency representation [30,34]. Using string encoding, a par-
tition of the network G is encoded as an integer string x =

{
x1, x2, . . . , xn

}
, where

n denotes number of the vertices and xi is the integer cluster identifier of vertex
vi, whose value lie between 1 and n. In locus-based or graph-based representation,
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each individual G is represented by n genes {G1, G2, . . . , Gn} and each Gi can take
one of the adjacent nodes of node i. Thus, a value of j assigned to the i-th gene, is
then interpreted as a link between nodes i and j; in the resulted partition solution,
the two nodes will be in the same community. A decoding step, however, is neces-
sary to identify all the components of the corresponding graph. In this paper, we
have used string encoding representation because of its simplicity.

During population initialization, each vertex is assigned a random community
identifier. However, it is a typical practice to give the genetic algorithm not a
completely random initialization but a biased one in order to accelerate the con-
vergence. To introduce bias, we randomly picked a vertex vi and assigned its
cluster id to all of its neighbours. This operation was repeated αn times for each
chromosome in the initial population where α = 0.2 is used in this paper.

3.2 Selection

The Tournament selection procedure is used to select parental population for mat-
ing in GA. Tournament selection provides selection by holding a tournament among
a few individuals that are randomly chosen from the population. The individual
with the highest fitness is the winner of the tournament of the S tournament
competitors. The winner is then inserted into the mating pool that comprises of
tournament winners and hence provides a higher average fitness than the average
population fitness [12].

3.3 Fitness function

In this paper, the performance of following objective functions proposed in litera-
ture has been evaluated:

Definition 1. Modularity: The network modularity Q is defined as

Q =
∑
i

(eii − a2
i ), (1)

where i represents index of communities, eii is the fraction of edges connecting two
nodes in a community i, to the total number of edges in the network and ai is
the faction of all the edges with at least one node in the community i to the total
number of edges in the network [27]. Although, Modularity maximization is an
effective method for community detection but Fortunato and Barthelemy showed
the resolution limit problem of this method [8].

Definition 2. Modularity Density: Let N1 and N2 be the two disjoint subsets
of N , then L (N1, N2) =

∑
i∈N1,j∈N aij and L (N1, N1) =

∑
i∈N1,j∈N1

aij and

L
(
N1, N̄1

)
=
∑
i∈N1,j∈N̄1

aij , where N̄1 = N − N1. Given a partition Ω =
{N1, N2, . . . , Nm} of the graph, where Ni is the vertex set of subgraph Gi for
i = 1 . . .m. The modularity density is defined as follows:

D =
m∑
i=1

L (Ni, Ni)− L(Ni, N̄i)

|Ni|
. (2)
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A general modularity density measure is given as

Dλ =
m∑
i=1

2λL (Ni, Ni)− 2(1− λ)L(Ni, N̄)

|Ni|
. (3)

By changing the value of λ, more detailed and hierarchical grouping of the networks
can be uncovered [19].

Definition 3. Community Score: Let R ⊂ G be the sub graph and the degree of
i with respect to R can be written as

ki (R) = kiin (R) + kiout(R), (4)

where kiin (R) =
∑
j∈R aij is the number of edges connecting i to the other nodes

in R and A is the adjacency matrix of G.

kiout (R) =
∑
j /∈R aij is the number of edges connecting i to the rest of the

network.

Let µi is the fraction of edges connecting i to the other nodes in R. Then,
µi=

1
|R|k

i
in (R) where |R| is the cardinality of R.

The power mean of R of order k, M (R) is given by

M (R) =
∑

i∈R
(µi)

k
. (5)

The volume Vr of a community is defined as the number of edges connecting nodes
inside R,

Vr =
∑

i,j∈R
aij . (6)

The score(R) of R is defined as

score (R) = M (R)× Vr. (7)

The Community score of a clustering {R1, . . . ,Rm} of a network is defined as [30]

CS =
∑m

i=1
score(Ri). (8)

Definition 4. Community Fitness: Let kiin(M) and kiout (M) be the internal and
external degrees of the nodes belonging to a community M . The community fitness
P (M) of M is defined as follows:

P (M) =
∑
i∈S

kiin(M)

(k
i
in (M) + kiout(M))

α , (9)

where α is resolution parameter that controls the size of the communities [17].
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3.4 Cross over

Traditional crossover operation is not suitable for community detection problem. In
this, we have used two-way crossing over operation that involves random selection
of two chromosomes, called xa and xb, where xa corresponds to the source and xb to
the destination chromosome. Then, random pick a vertex vi, and then find cluster
assigned to vi (i.e. xia) in the xa chromosome. Finally, all the vertices with this
cluster identifier of xa are also assigned to the same cluster identifier in chromosome
xb. Then, xb is taken as source chromosome and xa as target chromosome, and
then repeat the steps described. This process returned two new chromosomes xc
and xd. An example of two-way crossing over is given in Tab. I. Two-way crossing
can increase the diversity of chromosomes by generating children carrying features
common to the parents [12].

v xa xb xc xd xa xb v

1 5 → 2 → 5 5 5 2 1

2 3 6 6 6 ← 3 ← 6 2

3 → 5 → 6 → 5 6 ← 5 ← 6 ← 3
4 7 5 5 7 7 5 4

5 2 6 6 6 ← 2 ← 6 5

6 5 → 3 → 5 5 5 3 6
7 3 2 2 3 3 2 7

Tab. I Two way Crossover operation.

3.5 Mutation

During mutation, a vertex is picked randomly on the chromosome, then the cluster
of the vertex is randomly changed to the cluster of one of its neighbours. This op-
erator introduces random changes in various chromosomes to increase the diversity
of the population and speed up the convergence [12].

The algorithm stops when the maximum number of generations have reached.
The above methodology shown in Fig. 1 has been applied on four real life bench-
mark networks which are discussed in next section.

3.6 Time complexity

Community Detection is NP hard problem in which search space is 2n. GA involves
a heuristic approach, therefore, the solution space is not exhaustibly searched and
lowers the computational complexity. The fitness function evaluation is the most
time consuming process in the algorithm. Calculating the objective function has
the complexity of O(n) where n is length of chromosome. So, the overall complexity
of algorithm is O (G× S × n) which is linear with the size of the network. Here,
G is the running generation, and S is the population size.
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Representation and 
Initialization 

Evaluate Fitness of 
candidate solutions 

Select the fittest using 
Tournament Selection

Apply Cross-over and 
Mutation Operator 

Update Population 

Terminate

End

Yes

No

Fig. 1 Flowchart of GA for Community Detection.

4. Experimental results

This section gives the simulation results of the algorithm, on four real world bench-
mark networks, implemented using MATLAB. The parameters employed are given
in the Tab. II.

Parameter Value

Population size, Spop 500
Number of generations 50
Crossover probability, Pc 0.8
Mutation probability, Pm 0.2
Tournament size 2
Size of the mating pool Spop/2

Tab. II Parameter settings for the algorithm.
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4.1 Dataset description

In this paper, four real-world social networks are employed to verify the perfor-
mance of objective functions. These are well-known benchmark datasets for the
community detection problem and have known (true) community structures, which
provides ground-truth for validating the results.

• Zachary Karate Club Network: It was generated by Zachary, who examined
the fellowship of 34 individuals for a time of two years from a karate club.
Over the span of the study, a disagreement developed between the adminis-
trator and instructor of the club leading to its split [38]. This network has
34 nodes and 78 edges. The network is shown in Fig. 2.

• Bottlenose Dolphin Network: The network consists of 62 bottlenose dolphins
living in New Zealand and was compiled by Lusseau by studying dolphin
behaviour for seven years. A link between 2 dolphins was established by
their statistically frequent association [21]. The network is shown in Fig. 3.

• American College Football Network: This network, compiled by Girvan and
Newman, represents American football games. The vertices in the network
are the college football teams and there is an edge between two teams if they
played a match during the season. The network consists of 115 nodes and
616 edges grouped into 12 teams. The teams are divided into conferences
containing around 8–12 teams each [10]. The network is shown in Fig. 4.

• Books about US politics: The network of political books was compiled by V.
Krebs [15]. It consists of 105 books about US politics published in 2004 and
sold by the online book retailer Amazon.com. Edges between books represent
frequent co-purchasing of books by the same purchasers. Books were divided
by Newman according to their political alignment (conservative or liberal)
into three communities. The network is shown in Fig. 5.

4.2 Performance measure

Normalized mutual information (NMI) is used to measure closeness between the
true community structure and the detected community structure. Given two par-
titions X and Y of a network, Z is the confusion matrix. The rows of Z represent
the “real” communities, and the columns represent the “found” communities. The
element of Z, zij is the number of nodes in the real community i that are also
present in community j. The similarity measure between the partitions, based on
information theory, is then given as [5]

NMI (X,Y ) =
−2
∑CX

i=1

∑CY

j=1 zij log
(
zijN
zi.z.j

)
∑CX

i=1 zi. log
(
zi.
N

)
+
∑CY

j=1 z.j log
( z.j
N

) ,
where CX is the number of real communities, CY is the number of found communi-
ties and N is the number of nodes. The sum over row i of matrix zij is denoted by
zi. and the sum over column j is denoted by z.j . The higher value of NMI indicates
the more approximation of detected communities to the true communities.
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Fig. 2 Zachary Karate Club Network. Fig. 3 Bottlenose Dolphin Network.

Fig. 4 American College Football Club. Fig. 5 Books about US politics.

4.3 Results and discussion

The following Tab. III shows the result obtained for modularity. For each network,
we calculated the normalized mutual information by running the algorithm 10 times
and recorded the best normalized mutual information value over the 10 runs of the
algorithm.

The results obtained for other objective functions are presented in the Tab. IV.
We recorded the results for parameters by choosing different values ranging from
0.2 to 0.8.

The above three objective functions are parameter dependent i.e. by tuning the
parameter λ, κ and α, we are able to explore the network at different resolutions.
For the smaller values, the number of clusters formed are small, but as we increase
the parameters, we can uncover the community structure at the finer granularity.
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Dataset
Number of Real Number of Detected

NMI
Communities Communities

Zachary’s Karate club 2 4 0.687
Bottlenose Dolphin network 2 5 0.593
American College Football Club 12 11 0.888
Books about US politics 3 4 0.574

Tab. III NMI obtained for modularity of four networks.

Dataset

Modularity Density Community Score Community Fitness

λ NMI No. of κ NMI No. of α NMI No. of
clusters clusters clusters

Zachary’s
0.2 0.000 1 0.2 0.2259 2 0.2 0.226 2

Karate
0.3 1.000 2 0.3 0.8255 3 0.3 0.6694 3

club
0.4 0.6995 3 0.4 0.7730 4 0.4 0.6021 4
0.6 0.6872 4 0.6 0.7327 5 0.6 0.5921 5
0.8 0.6369 5 0.8 0.5502 8 0.8 0.4730 8

Dolphin
0.2 0.8888 2 0.2 0.8884 2 0.2 0.8888 2

social
0.4 1.000 2 0.4 0.4953 14 0.4 0.4724 8

network
0.6 0.4778 6 0.6 0.3736 19 0.6 0.4323 10
0.8 0.4333 11 0.8 0.3635 21 0.8 0.3716 15

American
0.2 0.6047 4 0.2 0.5696 6 0.2 0.907 11

college
0.4 0.6267 5 0.4 0.9269 12 0.4 0.9234 12

football
0.6 0.9323 12 0.6 0.9026 13 0.6 0.9116 13
0.8 0.9002 13 0.8 0.9260 14 0.8 0.8978 13

Books
0.2 0.5686 2 0.2 0.5746 3 0.2 0.5979 2

about US
0.4 0.5734 3 0.4 0.5365 9 0.4 0.5010 7

politics
0.6 0.5363 6 0.6 0.4688 13 0.6 0.4115 14
0.8 0.4055 11 0.8 0.4110 18 0.8 0.3691 22

Tab. IV Results obtained for modularity density, community score and community
fitness for four networks.

From the results obtained, it can be seen that only modularity density achieved
a perfect NMI value for two networks namely Karate Club and Dolphin network.
That is, the community structure detected is exact of the real community structure.
For the American Football Club, no objective function has attained NMI value of
1 but all showed promising result by obtaining a value greater than 0.9. That is,
the detected community structure is very close to the real community structure.
Similarly, the results obtained for the US Politics Books dataset, the performance
of all the three objectives was almost similar and comparable with results obtained
by the other state-of the art methods. As shown in Fig. 5, this network is very
dense and it is hard to detect real community structure of the network. The Fig. 6
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Karate club Dolphin College Football US politics Books
0

0.2

0.4

0.6

0.8

1

1.2

Modularity Modularity Density Community Score Community Fitnesss

Datasets

NMI

Fig. 6 Performance of different objective functions based on NMI.

shows the graphical comparison of objective functions by comparing the best results
obtained by them.

The Tab. V shows the results obtained on the basis of number of communi-
ties detected by the objective functions. The last column shows the real number
of communities. The Modularity Density is able to detect the exact number of
communities as compared to other three objectives.

Dataset Modularity
Modularity Community Community Real
Density Score Fitness Communities

Zachary’s Karate club 4 2 3 3 2
Dolphin social network 5 2 2 2 2
American college football 11 12 12 12 12
Books about US politics 4 3 3 2 2

Tab. V Number of communities detected by modularity density, community score
and community fitness.

Fig. 7 shows the comparison of our algorithm based on best NMI value for
Modularity Density with MOGA-Net [25] and Fast Modularity Algorithm [15] NMI
values for Karate club, Dolphins Network, American Football Club and US Politics
Books Datasets. The figure clearly shows the good performance of Modularity
Density as compared to other two approaches.

Fig. 8 shows the running time of algorithm w.r.t. different population size and
number of generations. The results show that the running time increases almost
linearly with the increase in generation and population size.
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Fig. 7 Comparison of our algorithm using Modularity Density, GA-Net and New-
man’s Fast algorithm relative to Normalized Mutual Information for different data
sets.

Fig. 8 Running time of algorithm based on different parameters.

Tab. VI shows the standard deviation values of NMI recorded over the 10 runs
of the algorithm. The small value of standard deviation indicates convergence of
the algorithm. Similar results were obtained for the other three datasets.

5. Conclusion

In this paper, we examined the most widely used objective functions for the commu-
nity detection problem. From the experimental results, it was found that different
objective functions result in different community identification. The modularity
function, Q suffers from resolution limit problem i.e. it is unable to detect commu-
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Dataset λ NMI Std. Dev.(NMI)

0.200 0.000 0.000
Zachary’s 0.300 1.000 0.000
Karate 0.400 0.699 0.102
club 0.600 0.687 0.050

0.800 0.637 0.030

Tab. VI Standard Deviation of NMI for Karate Club dataset for modularity den-
sity.

nities of small size and favours network partitions with larger communities. Modu-
larity Density was able to achieve best results both in terms of NMI and number of
detected communities. For Karate Club and Dolphin Network, it was able to detect
the real community structure. Community Score also attained promising results
and for some of networks, its performance is equivalent to Modularity Density.
However, the modularity density, Community Score and Community Fitness are
parameter dependent objective functions and only by adjusting these parameters
ideal community structure can be detected. By varying the value of parameter, we
can explore network structure at different granularities. At smaller values, the al-
gorithm tend to divide network into small number of communities of large size (i.e.
coarser) and at large values, more detailed community structure can be viewed (i.e.
large number of communities with of small size). These findings will be helpful for
choosing the most fitting objective function with for a network. Future research will
aim at using other evolutionary algorithms to optimize the both single objective
and multi objective functions for community detection and to test the algorithms
on large scale social networks.
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