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Abstract: Image data and 3D model data have emerged as resourceful foundation
for information with proliferation of image capturing devices and social media. In
this paper, a feature matching method based on hash binary encoding for multi-
view 3D models in social media is proposed. SIFT algorithm is first used to extract
features of the depth image, and then RANSAC is utilized as a filter. Finally, a cas-
cade hash binary encoding algorithm is adapted to match the feature of multi-view
models. Experimental results on SHREC2014 dataset have shown the effectiveness
of the proposed method.
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1. Introduction

Online social networking is attracting more and more attention in today’s Internet,
where users can share and consume all kinds of multimedia contents. The contents
range from 3D models, images, and videos, to text available on the Web or kept
in storage as a collection of big data [2]. Information retrieval has been developed
from a single text object to 2D image or other multimedia information, and even
more realistic 3D models or 3D scene. Furthermore, 3D model has been widely
used in many fields such as CAD, 3D games, medical image, art restoration and so
on [12, 14, 27]. However, it is a challenging task to gain a desired model in a mass
retrieval database due to the explosive growth of the 3D models in recent years.

There are many kinds of classification for the 3D model retrieval [22]. Based on
the types of features employed, existing 3D model retrieval techniques can be clas-
sified into four categories: geometry-based, graph-based, view-based, and hybrid
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techniques. In the view-based methods, 3D objects are represented by a group of
images from different directions. These images are captured with a static camera
or virtual camera array. As each object is represented by a set of multiple views
instead of original 3D model, some existing image processing/matching methods
can be employed. In view-based techniques, a 3D model is represented by a set of
rendered views. The visual similarity between the views of two models is regarded
as the model difference. An example of multi-view 3D model is shown in Fig. 1.

Fig. 1 An example of multi-view 3D model.

2. Related works

In this paper, general RGB images without background and the projection render-
ing silhouette images, contour images and depth images of 3D model are referred
as views.

Generally, the extracted features from the depth images are as follows: depth
buffer descriptor [25], the two-dimensional discrete wavelet transform [21], aligned
multi-view depth line feature descriptor [3], view-based PCA feature descriptor [24].
DSIFT feature descriptor [18,23] and 3D surf descriptor [10,11] etc.

Lindstrom et al. [13] presented notion of image-driven simplification, a frame-
work that uses images to decide which portions of a model to simplify. Mahmoudi
et al. [17] applied two value images of 3D model projection apply to 3D model shape
retrieval. Chen et al. [4] proposed a Light Field Descriptor (LFD). Vrani C et al. [25]
suggested to regard 3D model projection as a set of depth images (6 images), and
put forward a depth image of the Depth buffer-based descriptor. Ansary et al. [1]
proposed an adaptive views clustering (AVC) algorithm which could achieve 3D
model retrieval. Papadakis et al. [21] proposed an unsupervised retrieval algorithm
based on panoramic view. Gao et al. [8] proposed a SSCD (spatial structure cir-
cular descriptor) descriptor which 3D model are projected to its minimum outer
bounding sphere. Ohbuchi et al. [19] adapted the SIFT descriptor to depth im-
age and proposed an approach using DSIFT, SSIFT, and 1-SIFT to achieve good
results. Similarly, Wang et al. [26] proposed a discriminative probabilistic object
modeling and defined the upper bound of the Kullback-Leibler divergence as the
distance of two object to accomplish the retrieval.
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3. The proposed method

3.1 Feature extraction

We first perform image normalization to eliminate the influence of linear and non-
linear illumination on the images as a preprocessing. We have a set of depth
images whose foreground have already been extracted. Laplacian operator is used
to sharpen depth image, then SIFT algorithm is adopted to get the key points. An
algorithm called RANSAC [6] (Random Sample Consensus) is employed as the fil-
ter before feature matching. It can efficiently remove non-related matching points,
and thus improve the matching accuracy. The processing of feature extraction and
feature matching is shown in Fig. 2.

View set

View  feature  
exaction Feature matching Result

View acquisition
SIFT

K-means Visual words BoF-FV

CasHash

Fig. 2 The process of the proposed algorithm.

3.1.1 Image sharpening

During the process of image sharpening, the edge of the image gray transition can
be sharpened. Laplacian operator is one of isotropic derivative operator in second
differential equations. We use the Laplacian operator for image sharpening.

3.1.2 SIFT algorithm

SIFT (Scale Invariant Feature Transform) algorithm was developed by David Lowe
[15]. The SIFT descriptor is robustness against partial occlusion, clutter, noise,
lighting changes, and geometric translations. This algorithm is widely used in
computer vision related to point matching between different views of a 3D scene
and view-based object recognition [16]. We used SIFT to create the various feature
vectors for each image.

3.1.3 Sample consensus algorithm

RANSAC (Random Sample Consensus) algorithm was proposed by Fischler and
Bolles [6], also referred as a random sample of the consistency algorithm, which
is a robust parameter estimation method. A set of observed data sets are mainly
utilized to fit a mathematical model on the iterative method, followed by random
sampling to remove the uncertainty points in the image.

The result of feature extraction by using SIFT algorithm is shown in Fig. 3.
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Fig. 3 SIFT algorithm result.

3.2 Feature matching

A cascade matching hash binary algorithm (CasHash algorithm) is adapted for the
feature matching process. Fig. 4 shows the processing of the feature matching.

Fig. 4 The process of Multi-View 3D model feature matching.

The locality-sensitive hashing (LSH) algorithm is another approximating near-
est neighbor search algorithm based on hash index. LSH can reduce the dimen-
sionality of high-dimensional data. LSH hashes map similar items to the same
“bucket”. As shown in Fig. 5, the locality-sensitive hashing algorithm is designed
as Eq. (1):

hr (q) =

{
1 r · q > 0
0 r · q < 0

, (1)

where r is a d dimensional random vector which obeys the normal distribution
N(0, 1). And q is a depth image feature vector to be binarized.
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Fig. 5 Locality-sensitive hashing (LSH).

Distance formula is shown as Eq. (2):

D(x, y) =
θ(x, y)

π
, (2)

where θ(x, y) is the cosine distance.
The proposed Cascade Hashing structure contains three layers which map the

3D model representation into binary codes from coarse to fine, resulting in signif-
icant speedup of model matching. In addition, each layer of the Cascade Hashing
adopts different measures and filtering strategies, which is demonstrated to be less
sensitive to the noise of feature points.

CasHash algorithm consists of three steps. They are Hashing lookup, Hashing
remapping and Hashing ranking. The 0–1 binary coding granularity of these three
hash maps are from coarse to fine, that is to say, feature dimension is increasing.

The essence of CasHash algorithm is that for each feature point on the image
I (the feature vectors of the SIFT key points), three steps of the CasHash were
applied to return the matching points of the image J . The process of finding the
matching point in image J for the feature point p in image I is as follows.

(1) Hashing lookup: LSH is used to make the feature point p and all the feature
points in the image J for the low-dimensional binary coding. Assumeit is
m-dimensional. The feature points with same coding were put into the same
bucket, the feature point p and the matching points which fall into the same
bucket on the image J return as candidate feature points. We proposed the
low-dimensional and multi-table method to increase the number of the feature
points which fall into the same bucket. Supposed the number of table is L,
an m×L d-dimensional independent random vectors r is needed to be built.
This step is a coarse-search process. Experiments have shown that when m
was taken 8 and r was taken 6, a better result could be obtained.

(2) Hashing remapping: Due to the huge number of candidate feature points,
LSH is used to remap the feature point and candidate feature point set into
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hamming space which is high-dimensional coding. The proposed dimensional
of the remap is 128.

(3) Top K ranking: We build the hash table by using the hamming distance of
the feature point p and candidate feature point set. Firstly, the distance is
sorted as the key value. The feature points with the same key value will fall
into the same hash bucket. Then, we traverse the hash table from front to
back, until we get the K feature points. Finally, we propose the Euclidean
distance to get the Top 2 in the K candidate set. If these two feature points
pass the Lowes ratio test, the matching point of the feature point p on the
image J is found.

In this paper, we transformed the number of the key points in the two depth
images into the similarity distance (hausdorff distance) between the two depth
images. And based on the transformation, the matching method between view sets
are given. The time complexity of CasHash algorithm is shown as Eq. (3):

O
(
TH · LN2/2m + TE ·Nk + dmLN + ndLN/2m

)
. (3)

In Hashing lookup step, the time complexity of hausdorff distance for LN/2m

points is O(TH ·LN2/2m) and the comlexity of the hash is O(dmLN). In Hashing
remapping step, the time complexity of the hash is O(ndLN/2m). In the final Top
K ranking step, it costs O(TE · k) (Euclidean distance is represented by E).

4. Experiments

SHREC 2014 LSSTB TARGET MODELS [11] is chosen as the experimental dataset.
This dataset contains 171 classes and 8987 models. Each class has 53 models. The
number of vertices of each model is 5233. The model files are stored into OFF
format which are ASCII text files. Fig. 6 shows 8 types of models in the dataset.

Fig. 6 Example models in the dataset.
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We have adopted six evaluation criteria which have been widely used in the field
of 3D shape retrieval: Precision-Recall, Nearest neighbor, First-tier, Second-tier,
E-Measure, Discounted Cumulative Gain [11].

• Precision-Recall plot (PR): Assume there are n models in the dataset, pre-
cision P is to measure the accuracy of the relevant models among the top
K(1 ≤ K ≤ n) ranking results, while recall R is the percentage of the relevant
class that has been retrieved in the top K results.

• Nearest neighbor: the rate of the closest models that belong to the same class
as the inquiry. The maximum score is 100 %, a higher score shows a better
result.

• First-tier, Second-tier: The rate of models in the inquiry’s class that appear
within the top K models and the K depends on the size of the inquiry’s class.
If a class get C members, the first tier is K = C − 1 , and the second tier is
K = 2(C − 1).

• E-Measure: A measure of the PR (precision-recall) for an established number
of results. And this measure only considers the first 32 models. The E-
measure is defined as follows Eq. (4):

E =
2

1
P + 1

R

. (4)

The maximum score is 1.0, a higher score explains a better result.

• Discounted Cumulative Gain(DCG): A statistic of the weights that correct
results in the front of the list more than correct results later in the last of
the list, because some users do not take care of elements in the end of the
list. The result list R is transformed to a vector g, if the element gi get value
1, the element ri get a correct result, otherwise the value is 0. Discounted
cumulative gain is defined as follows Eq. (5):

DCGi =

{
g1 i = 1,

DCGi−1 + gi
log2i

otherwise.
(5)

Then the result is divided by the maximum DCG to get the final value and
n is the number of the dataset.

DCG =
DCGn

1 +
∑C

j=2
1

log2j

. (6)

In the matching algorithm, we use Hausdorff distance and hash binary encoding
as the matching algorithm respectively. Comparisons with other algorithms are
shown in Tab. I. DI-SIFT is the proposed algorithm. And DI-SIFT-haus-100 means
the Hausdorff distance is used with 100 images. DI-SIFT-hash-200 means hash
binary encoding is used with 200 images.
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Algorithm NN FT ST E DCG

SD[20] 0.23 0.10 0.17 0.05 0.53
CSI-SD[9] 0.50 0.13 0.20 0.07 0.56
SSC[7] 0.48 0.08 0.12 0.05 0.51
ZFCE-BoF[9] 0.55 0.17 0.19 0.09 0.59
SC-GALIF[5] 0.63 0.28 0.38 0.15 0.68
DI-SIFT-haus-100 0.82 0.37 0.49 0.20 0.75
DI-SIFT-haus-200 0.83 0.38 0.50 0.20 0.75
DI-SIFT-hash-100 0.81 0.35 0.46 0.18 0.73
DI-SIFT-hash-200 0.60 0.41 0.54 0.21 0.74

Tab. I The 5 evaluation criteria results of the SIFT algorithm.

From Tab. I, we can see that the Hausdorff distance and hash binary matching
get the similar result. When the number of projection image is 200, the matching
result is slightly better than that of the number 100.

The P-R result of the DI-SIFT based on Hausdorff distance and hash binary
encoding is given in Fig. 7. There is little difference between using Hausdorff
distance and hash binary encoding algorithm. When projection images are 200,
the hash binary encoding matching algorithm achieve the best result.

Fig. 7 The P-R result of the DI-SIFT based on Hausdorff distance and hash binary
encoding.

Here we compare the time complexity of proposed method to DI-SIFT based
on Hausdorff distance methods. A comparative experiment based on the Hausdorff
distance and hash binary encoding of the average time (Mean Feature Match,
(MFM) is shown in Fig. 8. From Fig. 8, we can find the matching time of the hash
binary encoding is tens time faster than using Hausdorff distance.
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Fig. 8 The matching time comparison between using Hausdorff distance and hash
binary encoding.

Fig. 9 The P-R result of the DI-SIFT algorithm and other algorithm.

The Precision-Recall curves of DI-SIFT algorithm and other algorithms are
given in Fig. 9. Compared with SC-GALIF, ZFCE-BoF, SD, CSI-SD and SSC
algorithm, DI-SIFT algorithm gets the best retrieval result.

5. Conclusions

In this paper, we proposed a multi-view 3D model feature matching algorithm based
on cascade hash binary encoding. In the processing of the feature extraction, we
employed the laplacian operator to sharpen depth image and RANSAC as the filter.
In the feature matching stage, the hash binary encoding achieved a similar result
with the method based on Hausdorff distance with less matching time. However,
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the computation cost of feature extraction is still high. Our future work will focus
on improving the efficiency of multi-view 3D model feature extraction algorithm.
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