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Abstract: Recently, there has been a significant emphasis in the forecasting of the
electricity demand due to the increase in the power consumption. Energy demand
forecasting is a very important task in the electric power distribution system to
enable appropriate planning for future power generation. Quantitative and qualita-
tive methods have been utilized previously for the electricity demand forecasting.
Due to the limitations in the availability of data, these methods fail to provide
effective results. With the development of the advanced tools, these methods are
replaced by efficient forecasting techniques. This paper presents the computational
modeling of electricity consumption based on the Neural Network (NN) training
algorithms. The main aim of the work is to determine the optimal training al-
gorithm for electricity demand forecasting. From the experimental analysis, it is
concluded that the Bayesian regularization training algorithm exhibits low relative
error and high correlation coefficient than other training algorithms. Thus, the
Bayesian Regularization training algorithm is selected as the optimal training al-
gorithm for the effective prediction of the electricity demand. Finally, the economic
input attributes are forecasted for next 15 years using time series forecasting. Using
this forecasted economic attributes and with the optimal Bayesian Regularization
training algorithm, the electricity demand for the next 15 years is predicted. The
comparative analysis of the NN training algorithms for the proposed dataset and
larger datasets obtained from the UCI repository and American Statistical Asso-
ciation shows that the Bayesian Regularization training algorithm yields higher
correlation value and lower relative error than other training algorithms.
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1. Introduction

Electricity demand forecasting [55] plays a vital role in the planning of the elec-
tricity production, since it determines the quantity of the required resources to
operate the electricity plants. Further, it is the cornerstone of planning for electric
plants and networks. Prediction of the electric load demand pattern is very com-
plex, due to the irregular nature of the energy markets. It is therefore necessary
to develop new prediction methods to reduce the uncertainty of the predictions.
Accurate demand forecasting enables to make correct decisions for future planning
and development. This enables significant reduction in the operation and mainte-
nance costs and improved reliability of the power supply and distribution system.
It is really a critical task to find an appropriate forecasting model for the elec-
tricity demand forecasting. Many forecasting methods are developed to solve this
problem.

Traditional forecasting techniques such as time series, regression, econometric
and soft computing techniques such as Fuzzy logic, genetic algorithm and NNs are
utilized for the electricity demand forecasting [43]. But, none of these methods
have been generalized for the demand patterns of the power distribution network.
Among all the existing time series prediction models, the NN [4] shows better
performance in terms of the relative error and correlation coefficient than any
other model.

The NN model [5] is a recently developed class of nonlinear models, based on
the principles derived from the structure of the brain. The NNs are trained by
using the training algorithms. There are three types of training algorithms that
are found to be effective for variable range of weights.

• The Newton algorithm is found to be efficient for a small number of weights.
The memory requirement of this algorithm is directly proportional to the
square of the number of weights.

• Various Quasi-Newton algorithms are efficient for a moderate number of
weights. The memory requirement of these algorithms is directly propor-
tional to the square of the number of weights.

• Various conjugate-gradient algorithms are efficient for a large number of
weights. The memory requirement of these algorithms is directly propor-
tional to the number of weights.

The main disadvantage of the existing prediction models is its difficulty with
infinite recursion and structured representations. Hence, an efficient prediction
model is required to overcome these shortcomings. The purpose of this work is to
determine the optimal prediction method for forecasting electricity demand using
an economic data set. The main focus is to find an optimal training algorithm for
the forecasting purpose. All the prediction techniques are applied to the dataset
compiled from the Tamil Nadu Electricity Board and Statistical Department.

The empirical comparison results show that the Bayesian Regularization train-
ing algorithm achieves significant reduction in the relative error and high corre-
lation coefficient, among all other training algorithms. Based on this concept,
the optimal training algorithm is determined based on the correlation coefficient
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and relative error of the training algorithms. Therefore, it is concluded that the
Bayesian Regularization training algorithm is the optimal training algorithm for
electricity demand forecasting.

The rest of the paper is systematized as follows: Section 2 describes the ex-
isting works related to the electricity demand forecasting techniques. Section 3
illustrates the NN model used in this work. Section 4 describes the activation
functions for NN. Section 5 explains about the classification of the NN training
algorithms. Section 6 presents the dataset description and Section 7 involves the
results and discussion including the comparative analysis of the relative error and
correlation coefficient of various training algorithms and ranking of the training
algorithms. The conclusion and future implementation of this work are discussed
in the Section 8.

2. Literature survey

This section explains about the existing electricity demand forecasting techniques.
Various types of classifications based on the forecasting methods were introduced
over a period of time. [55] developed an improved hybrid model including moving
average, combined method, hybrid model and adaptive PSO algorithm (MA-C-
WH) for forecasting electricity demand in China. The performance of the proposed
MA-C-WH model was compared with the existing seasonal ARIMA (SARIMA).
Based on the results of popular forecasting precision indexes, the proposed model
was found to be effective for seasonal time series with nonlinear trend. [43] re-
viewed the various energy demand forecasting models including traditional methods
and soft computing techniques. The support vector regression, optimization tech-
niques such as Ant Colony Optimization (ACO) and Particle Swarm Optimization
(PSO) were also adopted for energy demand forecasting. The Market Allocation
(MARKAL) and Long range Energy Alternatives Planning (LEAP) models were
also used for the energy demand management. [14] proposed a NN based approach
for selecting the best prediction method depending on small number of customers.
The proposed approach did not require frequent retraining.

[5] developed a weighted fuzzy NN for monthly electricity demand forecasting
in Taiwan. The fuzzy NN framework was modified and the significance of every
factor amongst the different rules was calculated using a weighted factor. The NN
was trained using the historical data, to forecast the future electricity demands.
The monthly electricity demand forecasting accuracy of the NN model was higher
than the other approaches. [2] proposed a novel approach that combined multi-
output feed forward NN with filtering and seasonal adjustment. Empirical mode
decomposition (EMD) based signal filtering was performed for reducing the noise
signals. The seasonal component was removed from the denoised series and the
resultant series was modeled with a multi-output strategy. The season indexes
were restored to the forecasts and final prediction was obtained. The forecasting
accuracy was improved compared to the existing models.

[49] analyzed the PSO optimal Fourier Method, seasonal Autoregressive Inte-
grated Moving Average Model (ARIMA) model and also combined models of both
techniques for correcting the seasonal ARIMA forecasting results. The prediction
accuracy of the three residual modification models was better than single seasonal
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ARIMA model. The combined model was found to be more satisfactory than the
models. [45] introduced a decomposition approach for modeling the variation in
the electricity demand trend for medium and long-term forecasting. The histor-
ical time series was decomposed into a number of components according to the
seasonality variation, daily activity and day of the week. However, the decompo-
sition approach was relatively feasible for implementation, since it did not require
the structural models or time series analysis and reduced the complex non-linear
parameter estimation efforts.

[32] proposed a hybrid forecasting framework including a Multi-Input Multi-
Output (MIMO) forecasting engine to predict the electricity demand and price. A
Data Association Mining (DAM)-based rule extraction mechanism was employed
for determining and extracting the customer reaction patterns to the price fore-
cast. These extracted rules were used for tuning the initial forecasts of the MIMO
engine. [44] introduced a semi-functional partial linear model for forecasting the
electricity demand and price. The new forecasting model was compared with a
näıve method and seasonal ARIMA model. The performance of the new forecasting
model was better for the electricity demand forecasting than the price forecast. [39]
presented a new mid-term electricity demand forecasting framework for the prac-
tical and reliable forecast using the measurable amount of external variables. The
performance result of the proposed approach was better than the decomposition
forecasting methods. [47] proposed a novel approach that combined the first-order
gray differential equation and seasonal fluctuation from time series method. The
proposed model achieved a better performance than the original gray differential
equation model.

A nonlinear time series modeling technique was applied to analyze the elec-
tricity demand. A weighted largest Lyapunov exponent forecasting method was
proposed to improve the prediction accuracy. The PSO algorithm was used for
determining the optimal weight parameters of the forecasting method. The mean
absolute relative error (MARE) of the prediction model was relatively lower than
the forecasting errors of the existing methods [46]. [18] discussed the most relevant
studies on electricity demand prediction over the last 40 years, and presented dif-
ferent models for the future trends. Additionally, the latest studies on the demand
forecasting were analyzed in the future environments [53] modeled the electricity
demand in the Ontario province by using a neuro Fuzzy inference system. A neuro-
fuzzy model was created for the electricity demand, based on the data collected
using statistical methods [8] investigated the relationship between Turkish resi-
dential electricity consumption, using the application of the structural time series
model to the annual data. Finally, the Turkish residential electricity demand was
predicted accurately, based on different forecast assumptions.

[52] developed a hybrid energy demand forecasting procedure with higher pre-
cision, using PSO-Genetic Algorithm (GA) approach. The superior performance
of the proposed forecast method was higher than the single optimization meth-
ods and multiple linear regressions. [19] presented a Multi-Agent System (MAS)
model for virtual power plants. A set of agents was embedded with artificial NNs
for the collaborative forecasting of disaggregated energy demand of the domestic
users. The MAS was fed with relevant data to make informed decision, due to the
reduction in the error rate. [25] proposed a new hybrid method including PSO and
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ACO for estimating energy demand of Turkey. Estimation of the future energy
demand was done under different scenarios. The relative estimation errors of the
HAPE model were low and fitting solutions were provided. [40] proposed a Pattern
Forecasting Ensemble Model for day-ahead prediction of electricity demand. Five
forecasting models were implemented using different clustering techniques based
on the Pattern Sequence Similarity algorithm. The performance of the proposed
model was evaluated on electricity demand datasets and compared with five fore-
casting models. The performance of the proposed model was better in terms of
Mean Relative Error (MRE) and Mean Absolute Error (MAE), when compared to
the five forecasting models.

[41] presented a regression-SARIMA model with generalized autoregressive
conditional heteroskedastic (GARCH) for the electricity demand forecasting. Due
to the non-constant mean value and variance of the daily peak demand data and
multiple seasonality variation corresponding to weekly and monthly data, the possi-
bility of serial correlation in the instability was solved using the GARCH modeling
methodology. The forecasting accuracy of the proposed model was improved, while
enabling reduction in the mean absolute percent error. [9] investigated the relation-
ship between the variables such as Gross Domestic Product, aggregate electricity
consumption rate and price to forecast the future aggregate electricity demand in
Turkey. The structural time series technique was applied to the annual data over a
certain time period to estimate aggregate electricity demand function for Turkey.
Efficient prediction of aggregate electricity demand was performed based on the
estimated equation.

3. NN model

The model that predicts the relationship between the input and output values
with the sufficient learning repetitions is called Neural network (NN) models. The
approximation of non-linear decision boundaries required the high precision with
less computational time. The non-linear functions are utilized to compute the
most fitting during the transformation of input variables. The NN model includes
the input layer, hidden layers and an output layer with summation and activation
function. The correlation estimation calculates the linear relationship between
the input and output variables. The number of neurons in the hidden layers is
responsible for relationship measurement. The NN model comprises of an input
layer, few hidden layers, and an output layer. Fig. 1 shows the single neuron.
A feedforward artifician NN model includes a summation function and activation
function ‘G’ as shown in Fig. 2. This network is made up of many nodes connected
parallelly and in series.

ni =

k∑
j=1

wjixj + θi, (1)

yi = Gi = G

 k∑
j=1

wji xj + θi

 , (2)
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Fig. 1 Single Neuron.

Fig. 2 Feedforward NN model.

yi = g

 3∑
j=1

w2
jig(n1j ) + θ2j

 = g

 3∑
j=1

w2
jig

(
k∑
k=1

w1
kj + θ1j

)
+ θ2j

 , (3)

where

xk = Inputs of k neurons
wki = Weights of k-th neuron to i-th neuron
θi = Constant bias
G = Activation function
ni = The input neurons are multiplied by weights wki and summed with the

constant bias term θi and the superscript of ‘n’, ‘θ’ and ‘w’ refers to the
first or second layers.

yi = Output of the Network

The architecture 9-6-5-1 has the highest correlation value as shown in Fig. 3.
So, this architecture is chosen for the NN training. The architecture has 9 neurons
in the input layer, 6 neurons in the first hidden layer, 5 neurons in the second
hidden layer, and 1 neuron in the output layer.
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Fig. 3 Optimal Architecture 9-6-5-1.

3.1 NN parameters

NN parameters are used to obtain maximum similarity between the input and out-
put values. So, the error between the desired and actual outputs is reduced. These
NN parameters are very important and sensitive to the accuracy of the prediction.
Therefore, setting the NN parameters is very significant. While creating a NN,
selection of the input variable is mainly important to obtain a meaningful predic-
tion. The variables that influence the target variable are selected as input variable.
The correlation value is calculated between the input and target variables to mea-
sure their linear relationships. The numbers of hidden layers and the numbers of
neurons in the hidden layers are also important for the NN architecture. These
values are obtained by continuously changing the configuration during the training
process using a number of ancillary algorithms. The correlation value is calculated
for different combinations of numbers of hidden layers and numbers of neurons.
The NN is trained with a learning algorithm called a training algorithm. Here,
the NN is evaluated using different training algorithms including back propagation
algorithms, gradient descent methods, conjugate gradient descent, variable metric
methods and regularization methods. An activation function specifies the output
of a neuron for a given input. Neurons are ‘switches’ that outputs ‘1’ when they
are sufficiently activated and ‘0’ when not activated.

Training algorithms are the optimization procedures used for automatic adjust-
ment of the weights and biases of the network. The main objective of the training
algorithms is to reduce the global error GE defined as
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GE =
1

tp

tp∑
tp=1

Etp, (4)

where tp is the total amount of training patterns and Etp is the error contained in
the training pattern. Etp is calculated as

Etp =
1

2

N∑
i=1

(oi − ti)2, (5)

where N is the total number of the output nodes, oi denotes the output of the
network at the i-th output node, and ti is the target output at the i-th output
node. This global error is reduced by adjusting the weights and biases.

4. Activation functions for NN

The NN [6,20,35] is used in the time series prediction to find the best relationship
between the input and output values for a sufficient number of learning repetitions.
Here the dataset is partitioned into two sets of data for training and testing. They
allow the complex nonlinear relationships between the response variable and its
predictors. The NN models [17] have concentrated on forecasting future develop-
ments of the time series from values of x up to the current time. The advantage
of the NN includes automatic learning of dependencies only from measured data
without the need to add further information.

4.1 Hyperbolic tangent function

The hyperbolic tangent function [42] is the most common activation function for
the NNs, which produces output values ranging from −1 to 1. It is defined as the
ratio between the hyperbolic sine and cosine functions or the ratio of the difference
and sum of two exponential functions as seen below

tanh(x) =
sinh(x)

cosh(x)
=

ex − e−x

ex + e−x
. (6)

The sigmoid activation function does not return the values less than zero. But,
it is possible to move the sigmoid function towards a region with negative values.
This is performed by using the hyperbolic tangent function. Because of this higher
numeric range, the hyperbolic activation function is often used instead of the sig-
moid activation function. The tangent hyperbolic function is a bipolar version of
the sigmoid function. Fig. 4 shows the hyperbolic tangent function.

4.2 Linear activation function

Another common activation function for the NNs is the linear activation function
[27]. This function only produces positive numbers over the whole range of real
numbers. The mathematical formula for this function is shown as

f(x) = x. (7)
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Fig. 4 Hyperbolic tangent function.

4.3 Uni-Polar sigmoid function

The sigmoid function produces the positive output values ranging from 0 to 1.
Activation function of the uni-polar sigmoid function [33] is defined as

F (x) =
1

(1 + e−x)
. (8)

This function is especially advantageous for NNs trained by back-propagation
algorithms. As it is easy to distinguish, it minimizes the computation capacity for
training. Since the sigmoid activation function includes single constant derivative,
it is suitable only for the output layer of the NN trained with the gradient descent
based training methods. Fig. 5 shows the uni-polar sigmoid function.

Fig. 5 Uni-Polar Sigmoid Function.

4.4 Bi-Polar sigmoid function

The bi-polar sigmoid function produces the output values in the range of [−1, 1].
Fig. 6 shows the bi-polar sigmoid function. Activation function of the Bi-polar
sigmoid function [11] is given by

F (x) =
1− e−x

1 + e−x
. (9)
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Fig. 6 Bi-polar sigmoid function.

5. Classification of NN training algorithms

Tab. I shows the training algorithms used for training the NN. With the optimal NN
architecture, 17 different training algorithms and 9 sets of different combinations
of 3 activation functions for the hidden layer and output layer are used in the
NN training. This NN predicts the electricity consumption. The main function,
advantages and drawbacks of the training algorithms are discussed in this section.

S. No Training Algorithms

1 Quasi Newton (QN)
2 Limited Memory Quasi-Newton (LM-QN)
3 One Step Secant (OSS)
4 Levenberg Marquardt (LM)
5 Bayesian Regularization (BR)
6 Quick Propagation (QP)
7 Online Back Propagation (OBP)
8 Batch Back Propagation (BBP)
9 Resilient Back Propagation (RBP)
10 Conjugate Gradient Decent (CGD)
11 Scaled Conjugate Gradient (SCG)
12 Fletcher-Powell Conjugate Gradient (FPCG)
13 Polak-Ribiére Conjugate Gradient (PRCG)
14 Powell/Beale Restarts Conjugate Gradient (PBRCG)
15 Variable Learning Rate Gradient Descent (VLRGD)
16 Gradient Descent with Momentum (GDM)
17 Gradient Descent (GD)

Tab. I Neural Network training algorithms.
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5.1 Bayesian regularization

Bayesian regularization [31,50] is a mathematical process that converts a nonlinear
regression into a well-modeled statistical problem in the manner of a ridge regres-
sion. It is the most suitable method for the estimation when a large number of
inputs is used for the best output. Bayesian regularization reduces the linear
combination of the squared errors and weights. It also adjusts the linear combi-
nation to produce the network with good generalization qualities at the end of
training. The Bayesian optimization of the regularization parameters requires the
computation of the Hessian matrix of F(w) at the minimum point w∗. F is the
objective function and w is the vector of network parameters.

The Bayesian regularization requires numerical approximation of analytically
intractable integrals. It provides the estimated values based on the prior approx-
imations of the parameters. These approximations are expressed with the proba-
bility density functions. In this technique, the number of subjective choices spec-
ifications is required for the prior parameters. The prior confidence about the
parameters is approximated before collecting the data. It is also used to estimate
the parameters of unknown model by combining the prior knowledge and the ob-
served data for providing a probability distribution. The regularization parameters
α and β are calculated as follows:

α =
ρ

2Ew
, (10)

β =
ED − ρ

2ED
, (11)

where, α and β are the objective functions, ρ defines the effective number of pa-
rameters, Ew is the error of weights and ED is the error of data points. It treats
the weight values as a random variables and assumes that the prior probabilities
of P are Gaussian. The following mathematical model is used to compute the
regularization

P (v|S, α, β,N) =
P (S|v, β,N)P (v|α,N)

P (S|α, β,N)
, (12)

where S denotes the dataset, N represents the particular NN model, v is the
vector of network weights, P (S|v, β,N) defines the likelihood function that is the
probability of the occurring data for the weights v, P (v|α,N) represents the prior
density of the weights and P (S|v, β,N) is the normalization factor that guarantees
the probability as 1.

5.2 Levenberg-Marquardt

The Levenberg–Marquardt (LM) algorithm [7,13] is one of the most popular tools
for solving the non-linear minimum mean squares problems. This algorithm is
designed to attain the second-order training speed, without the need for computing
the Hessian matrix. The Hessian matrix can be approximated as

H = JTJ. (13)
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The gradient is computed as

G = JTe, (14)

where e is a vector of network errors and J is the Jacobian matrix containing first
derivatives of the network errors corresponding to the weights and biases. The
Jacobian matrix is calculated using a standard back-propagation technique, which
is really simpler than the Hessian Matrix computation.

5.3 Scaled Conjugate Gradient

The Scaled Conjugate Gradient (SCG) descent algorithm [22, 24, 38, 51] does not
require the computationally expensive line search and at the same time possess
the advantage of the Conjugate Gradient descent algorithms. The step size in
the conjugate direction in this case is determined using the LM approach. The
algorithm starts in the direction of the steepest descent given by the negative of
the gradient as

Pu = −∇Vu, (15)

where Pu is the search direction, ∇ is the gradient and Vu is the direction.

The updated weights and biases are then given by

Xk+1 = Xk − αk Pk, (16)

whereXk is the weights, αk is the step size determined by the Levenberg-Marquardt
algorithm.

The next search direction that is conjugate to the previous search directions
is determined by the combination of the previous search direction with the new
steepest descent direction. This is given by

Pk = −∇Vk + βk Pk−1, (17)

where βk is defined as

βk =
|∇vk+1|2 −∇Vk+1∇Vk

µk
, (18)

and where µk is given by

µk = PTk ∇Vk. (19)

5.4 Back propagation

The back propagation algorithms [48, 51] performs the training of a feed-forward
multilayer NN for a given set of input patterns with known classifications. The
network examines its output response to the sample input pattern, during the
presentation of every entry of the sample set to the network. The output response is
then compared with the known and desired output and the error value is calculated.
The connection weights are adjusted based on the error value.
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5.5 Resilient back propagation

The main purpose of the resilient back propagation [28,37] is to eliminate the detri-
mental effects of the degree of the partial derivatives. The direction of the weight
update is determined only by the sign of the partial derivative. The magnitude of
the partial derivative does not have any effect on the weight update. By using a
different update value, the size of the weight change is determined.

There is an increase in the update value for every weight and bias by a specific
factor, when the derivative of the performance function holds the same sign for two
successive iterations, with respect to that particular weight. The update value is
reduced by the factor, when the derivative changes sign from the previous iteration,
with respect to that weight. The update value for the weight and bias remains the
same, if the derivative is zero. The weight change is decreased, during variations
in the weights. The magnitude of the weight change increases, if the weight change
continues in the same direction for multiple iterations.

∆Wij(t) =


−∆Pij , if

∂E

∂Wij
(t) > 0

−∆Pij , if
∂E

∂Wij
(t) < 0

0, if
∂E

∂Wij
(t) = 0

, (20)

∆Pij(t) =


α+.∆Wij(t− 1), if

∂E

∂Wij
(t− 1).

∂E

∂Wij
(t) > 0

α−.∆Wij(t− 1), if
∂E

∂Wij
(t− 1).

∂E

∂Wij
(t) < 0

∆Wij(t− 1), if
∂E

∂Wij
(t− 1).

∂E

∂Wij
(t) = 0

, (21)

where α is the learning rate, W is the weight, P is the change in the weight,
α+ = 1.2 and α− = 0.5.

5.6 Online back propagation

The online back propagation algorithm is a heuristic method that includes two
phases. During the first phase, the learning rate is adjusted after every iteration,
so as to quickly attain the minimum value of the error criteria on the validation
set. The search process is refined during the second phase, by repeatedly returning
to previous weight configurations and reducing the global learning rate. Training
is performed online, i.e. the weights of the NN are updated after the presentation
of each training sample. The given weight Wij(t) is updated by adding a ∆Wij(t)
at every iteration t,

∆Wij(t) = −ε(t) ∂E(t)

∂Wij(t)
, (22)

where ε is the learning rate. The validation set is used to control the adjustment
of the learning rate ε(t) after each training iteration t. The true gradient descent
is not involved in this method, since the sum of all pattern derivatives over the
given iteration is never determined for a particular set of weights. Instead of
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this, the weights are changed slightly after each pattern, by evaluating the pattern
derivatives that are relative to slightly different weight values.

5.7 Batch back propagation

In the batch back propagation approach [54], all patterns are provided for the
network before the learning process. In the batch training protocol, initially all
the training patterns are presented and their corresponding weight updates are
summed. Then the actual weights in the network are updated. This process is
repeated, until some stopping criterion is satisfied. In batch back propagation,
there is no need to select the patterns randomly, since the weights are updated
only after the presentation of all patterns.

In batch mode, the value of ∂EP /∂Wij is calculated after the submission of
every pattern to the network. Then, the total derivative ∂E/∂Wij is calculated
during the end of a given iteration, by the summation of the individual pattern
derivatives. The weights are updated, after the calculation of the total derivative.
The batch mode approximates the gradient descent, as far as the learning rate ε is
smallest.

5.8 Powell/Beale restarts conjugate gradient

The Beale-Powell restart algorithm [38, 51] is highly useful for the large-scale un-
constrained optimization applications. The search direction is reset periodically
accoding to the negative values of the gradient, based on the inequality condition.
If the number of iterations becomes equal to the number of the network parameters
such as weights and biases, there will be the occurrence of the standard reset point.
The training efficiency is improved by other reset methods. Powell and Beale have
proposed a reset method, if the orthogonality between the current gradient gk and
previous gradient gk−1 is low. This is validated using the following inequality:

|gT
k−1gk| ≥ 0.2‖Gk‖2. (23)

The search direction is reset according to the negative value of the gradient, if
this inequality condition is satisfied.

5.9 Polak-Ribiere conjugate gradient

Polak and Ribiere [38,51] have proposed another version of the conjugate gradient
algorithm. The search direction for each iteration is determined by

Pk = −Gk + βkPk−1, (24)

where Pk is a search direction.
For the Polak-Ribiére update, the constant βk is computed by

βk =
∆gTk−1Gk

gTk−1Gk−1
. (25)

This is defined as the ratio of the product of the previous gradient with the current
gradient to the norm squared value of the previous gradient.
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5.10 One-step secant

As the Quasi-Newton algorithm exhibits high storage and computational complex-
ity in each iteration when compared to the conjugate gradient algorithms, there
arises a need for the secant approximation. The OSS training algorithm [51] needs
minimum stotrage and computation requirements than the Quasi-Newton algo-
rithm, and slightly high storage and computation requirements than the conjugate
gradient algorithms. Thus, the OSS method is considered as a mutual compromise
between the Quasi-Newton algorithms and conjugate gradient algorithms.

5.11 Limited memory Quasi-Newton

The Limited Memory Quasi-Newton method [12,36] is used to update the variables
with indices outside the active set. The main idea behind this approach is to use
the information from only the most recent iterations only, while the information
from earlier iterations is discarded for reducing the memory consumption.

5.12 Quasi-Newton

Newton’s method [4], is found to be an alternative for the conjugate gradient ap-
proaches because of its rapid optimization. The fundamental step of the Newton’s
method is

Xk+1 = Xk −A−1k Gk, (26)

where A is the Hessian matrix of the performance index of the present values of
the weights and biases.

Quasi-Newton method [10,24] involves a generation of a sequence of matrices G
that represents increasingly accurate approximations to the inverse Hessian. Using
only the first derivative information of E, the updated expression is presented as
follows:

Gk+1 = Gk +
PPT

PTV
−

(GkV)V
T
Gk

VTGkV
(VTGkV)UUT, (27)

where Gk is a symmetric positive definite matrix and T represents the transpose
of the matrix.

5.13 Variable learning rate gradient descent

The learning rate parameter is used to determine the fast convergence of the Back-
linear Propagation (BP) to the minimum solution. The convergence is faster, when
the learning rate is large and the step is big. To speed up the convergence time,
the variable learning rate gradient descent BP utilizes larger learning rate α, when
the NN model is far from the solution and smaller learning rate α, especially when
the neural net is near the solution. The new weight vector wk+1 is adjustedt the
same as that is in the gradient descent with momentum above but with a varying
α1. Typically, the new weight vector wk+1 is defined as

wk+1 = wk − αk+1Gk + µwk−1, (28)

αk+1 = βαk, (29)
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where

β =

{
0.7 If new error > 1.04 (old error)
1.05 If new error < 1.04 (old error)

. (30)

5.14 Conjugate gradient descent

In the conjugate gradient descent algorithms [24,26] the search process is performed
along the conjugate directions, to determine the step size. This produces generally
faster convergence than the steepest descent directions. During every iteration, the
step size is adjusted. The search direction during every iteration is determined by
updating the weight vector as

wk+1 = wk + αPk, (31)

where

Pk = −Gk + βkPk−1, (32)

βk =
∆GT

k−1Gk

GT
k−1Gk−1

, (33)

∆GT
k−1=GT

kG
T
k−1. (34)

5.15 Quick propagation

The Quick propagation algorithm [23] computes the weight change by using the
quadratic function f(x) = x2. Relating the secant to the quadratic function, it
is possible to calculate the minimum point f ′(x) = 0. The X-coordinate of the
minimum point is decided as the new weight value.

S(t) =
∂E

∂Wi(t)
=

∆wi(t)

α
, (35)

∆Wi(t) =
S(t)

S(t− 1)− S(t)
·∆Wi(t− 1), (36)

where W is the weight, i is the neuron, E is the error function, t is the time and
α is the learning rate.

5.16 Gradient descent with momentum

Momentum allows the network to respond to the local gradient, and also to the
recent trends in the error surface. This also allows the network to ignore the small
features in the error surface. The momentum constant is denoted as µ which exists
between 0 to 1 range. When the momentum constant is 0, the weight change is
performed based only on the gradient. When the momentum constant is 1, the new
weight change is set to equal the previous weight change, while simply ignoring the
gradient [24,34]. The new weight vector wk+1 is adjusted as

wk+1 = wk − αGk + µwk−1. (37)
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5.17 Gradient descent

The gradient descent algorithm [5, 22, 24] updates the weights and biases along
the steepest descent direction. The network weights and biases are modified in a
direction that reduces the performance function rapidly i.e. the negative of the
gradient of the performance function. The updated weights and biases in this
algorithm are given by

xk+1 = xk − αk∇Gk, (38)

where xk is the vector of the current weights and biases, αk is the learning rate
and ∇Gk is the current gradient of the performance function. Tab II shows the
advantages and disadvantages of the NN training algorithms.

S.No Training advantages disadvantages
algorithms

1.

B
a
y
es

ia
n

re
g
u

la
ri

za
ti

o
n

•Bayesian regularization ex-
pands the cost function to
search not only for the mini-
mal error, but also for the min-
imal error by using the mini-
mal weights.
•By using Bayesian regulariza-
tion, the need for a costly cross
validation is avoided.
•This also reduces the need for
testing the various numbers of
hidden neurons for a problem.
•Bayesian regularization pro-
vides better generalization per-
formance than others, since it
does not require a separate val-
idation dataset.

•The main disadvantage of the
Bayesian regularization algo-
rithm is that it generally takes
more time to converge than
early stopping.

2.

L
ev

en
b

er
g
-M

a
rq

u
a
rd

t

•Because of the properties of
the fast convergence and sta-
bility, this method is employed
in many modeling problems.

•One of the main drawbacks
of the LM algorithm is that it
needs the large storage of some
matrices, for certain problems.
•LM algorithm is really depen-
dent on the initial predictions
for the network parameters.
•Based on the initial weights
of the network, this algorithm
may converge to the local min-
ima or do not converge at all.
•The Levenberg-Marquardt is
very sensitive to the initial net-
work weights. It also does
not consider outliers in the
data,which may lead to overfit-
ting noise.
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3.

S
ca

le
d

C
o
n

ju
g
a
te

G
ra

d
ie

n
t

•The SCG algorithm avoids
the time-consuming line
search.
•The calculation complexity
and memory consumption of
the SCG algorithm are also
low.
•Hence, the speed-up rate of
the SCG algorithm is really
high.

•The SCG algorithm does not
perform the line search during
every iteration.

4.

B
a
ck

p
ro

p
a
g
a
ti

o
n

•Back propagation is a very
simple and efficient method for
computing the gradient in the
NN.

•Slow rate of convergence.
•The learning time of the
back propagation algorithm in-
creases and recall performance
reduces, with the increase in
the size and complexity of
data.

5.

R
es

il
ie

n
t

B
a
ck

P
ro

p
a
g
a
-

ti
o
n

•It is generally much faster
than the standard steepest de-
scent algorithm.
•The memory requirements are
also moderate.

•However, the learning speed
and convergence rate are mod-
erate for the artificial hyper-
bolic test functions.

6.

O
n

li
n

e
b

a
ck

p
ro

p
a
g
a
ti

o
n

•The online back propagation
algorithm improves the gener-
alization capacity and shows
the good convergence speed.
•Further, the online back prop-
agation is superior to the batch
back propagation, when there
is a maximum degree of redun-
dancy in the training data.
•This is used for the dynamic
environments that provide a
continuous stream of data val-
ues.

•The computational complex-
ity of the online back propaga-
tion algorithm is high.

7.

B
a
tc

h
B

a
ck

P
ro

p
a
g
a
-

ti
o
n

•Batch back propagation
yields a highly stable descent
to the local minimum.

•It requires a much longer time
to converge, as it considers the
total training error over all the
patterns.

8.

P
o
w

el
l/

B
ea

le
R

es
ta

rt
s

C
o
n

ju
-

g
a
te

G
ra

d
ie

n
t •The performance of the

Beale-Powell restart algorithm
is higher than the conjugate
gradient back propagation.

•The storage requirements for
the Powell-Beale algorithm are
higher than the storage re-
quirements for Polak-Ribiére.

9.

P
o
la

k
-

R
ib

ie
re

C
o
n

ju
-

g
a
te

G
ra

d
ie

n
t •Highly effective and suitable

for solving large-scale non-
smooth and free convex opti-
mization problems.

•The storage requirements for
the Polak-Ribiére are slightly
larger for Fletcher-Reeves.

10.

O
n

e-
S

te
p

S
ec

a
n
t

•Requires low storage and
computation requirements,
when compared to the Quasi-
Newton algorithm.

•There is no guaranteed error
bound for the computed itera-
tions.
•The convergence rate is slower
than the Newton algorithms.

11.

L
im

it
ed

M
em

o
ry

Q
u

a
si

-
N

ew
to

n •The Limited Memory Quasi-
Newton method requires low
memory and less computa-
tional time.

•However, the Limited Mem-
ory Quasi-Newton method still
needs to solve subproblems at
every iteration.
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12.

N
ew

to
n

M
et

h
o
d

•Newton’s method exhibits
faster convergence rate than
the conjugate gradient ap-
proaches.
•This method generalizes
more easily for solving the si-
multaneous types of nonlinear
equations.

•Unfortunately, it is more com-
plex and really expensive for
computing the Hessian matrix
for the NNs.

13.
Q

u
a
si

-N
ew

to
n

•Quasi-Newton methods are
chosen, since it does not
require computation of the
Hessian matrix.
•Quasi-Newton Method is
much faster than the steepest
decant method.
•Convergence rate of this
method is superlinear.

•The problem with this ap-
proach is the requirement of
computation and storage of
the approximate Hessian ma-
trix for every iteration.

14.

V
a
ri

a
b

le
L

ea
rn

in
g

R
a
te

G
ra

d
ie

n
t

D
es

ce
n
t

•A near-optimal learning rate
is obtained for the local ter-
rain.

•However, this algorithm be-
comes unstable, if the learning
rate is made too large. On the
other hand, if the learning rate
is set to be too small, the al-
gorithm will take a longer time
to converge.

15.

C
o
n

ju
g
a
te

G
ra

d
ie

n
t

D
es

ce
n
t

•The convergance rate is faster
than the gradient descent algo-
rithm.
•The conjugate gradient al-
gorithms are usually much
quicker than the variable learn-
ing rate backpropagation.

•The time consuming line
search is required during all the
iterations of the weight update.

16.

G
ra

d
ie

n
t

D
es

ce
n
t

w
it

h
M

o
m

en
tu

m

•Gradient Descent with Mo-
mentum yields better predic-
tion accuracy without requir-
ing more training time.
•With the usage of momen-
tum, the stability of the algo-
rithm is maintained during the
higher learning rate.

•The results are not accurate,
due to the low prediction capa-
bility.

17.

G
ra

d
ie

n
t

D
e-

sc
en

t •Gradient descent is much
more faster.

•Convergence rate is low.
•Not invariant to the linear
transformations.

Tab. II Advantages and disadvantages of NN training algorithms.

6. Dataset description

This section describes the dataset used in our work. Tab. III shows the units and
descriptions of the target variable. Tab. IV shows the units and descriptions of the
input variables and. Tab. V shows the economic based information and Electricity
consumption data for 50 years.

The economic information and electricity consumption data of Tamilnadu from
1964 to 2013 are collected from the Tamil Nadu Electricity Board (TNEB) and
Department of Economics and Statistical department, Tamilnadu, India. The ex-
periment utilizes a NN with the economic input factors that influence the electric
energy consumption as input variables.
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Variable Target
Variable

Simple Description Units

Y 1 Electricity
Consump-
tion

Electricity Consumption is a measure
of the consumption rate of electric en-
ergy by the consumers during the pe-
riod of year. It is measured in kwh.
The electricity consumption is used as
target variable to be forecast in the neu-
ral network.

Million Units

Tab. III Units and description of target variable.

The economic input factors that influence the electricity consumption is selected
as the input variables. The economic input variables include the following: pop-
ulation, wholesale price index, urban consumer price index, rural consumer price
index, gross state domestic product, state per capita income, exports, imports and
industries income. Electricity consumption is the target variable or the dependent
variable. The input variables are the independent variables that are used to train
the NN to obtain the electricity consumption.

Every independent variable is a time series data belonging to particular eco-
nomic factors. With the multi-layer perceptron, the parameters of NN are modified
in such a way to obtain maximum similarity between inputs and outputs for all
training data. The training data is fed at the network input. For every pattern, the
error between the desired and actual network output is analyzed. Depending on
the value of this error, correction of the neural weights is performed. The process is
repeated until certain conditions of training termination are achieved. The results
are obtained using an optimal architecture with different training algorithm and
with a different combination of input and output activation functions. The results
are compared based on the lowest relative error and highest correlation coefficient.

Tab. VI shows the correlation coefficient of the input variable to the target
variable. The table indicates that all the selected input variables have the highest
correlation coefficient with the dependent variable. From the correlation coefficient
values, it is confirmed that the selected economic-based input variables influence
the dependent variable. So, these input variables are the optimal input variables
for the NN model.

Tab. VII illustrates the correlation coefficient for different NN architectures.
From the table, it is clearly evident that the NN architecture 9-6-5-1 has the high-
est correlation coefficient than the other NN architectures. Hence, this NN archi-
tecture is chosen and trained by using the best training algorithm for the effective
computation of electricity consumption. The electricity consumption is measured
in Megawatt [MW]. Over the years, there is a constant increase in the electricity
consumption rate.

158



Usha T.M., Appavu alias Balamurugan S.: Computational modeling of electricity. . .

Variable Input Variables Description Units

X1 Population With the increase in the pop-
ulation growth, consumption of
electric energy for the routine ac-
tivities also increases.

Number
of personnel

X2 Wholesale price
index

The Wholesale Price Index
(WPI) represents the special
price of goods that are sold
in bulk and traded between
the organizations, instead of
individual consumers.

Index
Numbers

X3 Consumer
price index
– Urban

The Consumer Price Index
(CPI) measures the changes
in the price level of consumer
goods and services purchased
by the households. It is a
comprehensive measure used for
approximating the price changes
of the commodities.

Index
Numbers

X4 Consumer
price index
– Rural

X5 Gross State
Domestic Product

The Gross State Domestic Prod-
uct (GSDP) is a measure of the
economic output of the nation.
It represents the total amount
of productivity of goods and ser-
vices during a year.

Amount
of Money

X6 State Per Capita
Income

State per capita income is de-
fined as the average income of in-
dividuals in a state.

Amount
of Money

X7 Exports Export is the process of selling
goods and services produced in
the home country to the Inter-
national markets.

Amount
of Money

X8 Imports Import is the process of the re-
ceiving goods and services from
an external producer.

Amount
of Money

X9 Industrial
income

Industrial income is the total
amount of income incurred by
the industries.

Amount
of Money

Tab. IV Units and description of input variables.

7. Results and discussion

This section explains the comparative analysis of the NN training algorithms.
Among these training algorithms, the optimal training algorithm is determined.
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Year Population 

(Number) 

Whole 
sale  
price 
index 

- Number 

Consumer 
price 

index – 
Urban 

-Number 

Consumer 
price 

index – 
Rural 

-Number 

Gross 
State 

Domestic 
Product  
-Lakhs 

State 
Per 

Capita 
Income 
-Lakhs 

Export 
-Lakhs 

Import 
-Lakhs 

Industry 
income 
-Lakhs 

1964 38156286 80.02 24.12 30.12 286566 105 4153 62367 50950 
1965 38283967 85.02 25.35 34.35 329567 133 7128 85156 53550 
1966 38411647 88.02 42.35 48.35 368800 192 9465 87077 69640 
1967 38539327 99.02 50.35 59.35 405707 267 12814 87774 81360 
1968 38667007 105.02 64.35 73.35 454014 338 15849 95101 108520 
1969 38794687 115.02 76.35 82.35 488921 416 24383 101937 124950 
1970 38922367 127.02 84.35 92.35 532374 491 32517 106792 127770 
1971 40199168 137.02 97.35 104.35 557097 548 39963 107921 154930 
1972 41008997 142.02 108.35 114.35 606603 617 24535 90122 171020 
1973 41818826 149.02 123.35 129.35 645436 688 26660 94372 182740 
1974 42628654 154.02 135.35 142.35 672222 744 29635 103076 209900 
1975 43438483 171.02 143.35 152.35 694027 822 36860 125864 226330 
1976 44248312 166.37 161.35 167.35 720810 899 39198 127785 229150 
1977 45058141 178.87 170.35 176.35 744859 967 42547 128482 197910 
1978 45867970 181.83 179.35 186.35 784955 1022 45581 135809 230670 
1979 46677798 199.34 193.35 200.35 824655 1074 54166 142646 242230 
1980 47487627 225.31 210.2 219.2 866113 1151 62300 147500 259640 
1981 48297456 263.91 251.09 260.09 898394 1350 81500 209400 230930 
1982 49031542 277.73 256.95 263.95 918879 1269 89700 224075 255065 
1983 49765628 303.41 302.79 311.79 961097 1373 97900 238750 272645 
1984 50499715 333.72 314.31 322.31 998466 1376 106100 253425 313385 
1985 51233801 346.28 330.07 335.07 1031660 1827 114300 268100 338030 
1986 51967887 381.53 357.26 366.26 1063491 2510 141800 290700 342260 
1987 52701973 419.16 389.75 399.75 1229030 2719 181200 298900 295400 
1988 53436059 451.74 416.34 425.34 1449271 3141 216900 385100 365800 
1989 54170146 493.78 455.34 459.45 1703392 3321 317303 465527 486600 
1990 54904232 536.16 491.68 498.19 2014567 3688 412993 522638 580500 
1991 55638318 613.25 572.27 572.04 2156190 3966 538988 535921 606500 
1992 56285570 693.75 643.91 654.55 2484052 4428 688423 731065 767400 
1993 56932822 718.76 689.73 695.71 2886822 5237 908580 811180 884600 
1994 57580074 779.23 751.65 766.28 3522440 6935 1246009 1254153 1156200 
1995 58227326 851.31 826.35 836.67 4793736 7236 1583283 1741672 1320500 
1996 58874579 937.9 934.09 935.51 5815175 9954 1759627 1496654 1348700 
1997 59521831 1046.06 1091.42 1093 6613382 11215 1652964 3687789 1036300 
1998 60169083 1162.23 1165.5 1164.67 8103589 15152 1877128 2348290 1363900 
1999 60816335 1199.27 1217.47 1227.47 10525616 17525 2698375 2560016 1479500 
2000 61463587 1223.26 1270.23 1280.23 11564416 18786 1173696 1882137 1653600 
2001 62110839 1251.77 1302.34 1310.34 13173056 21229 1263124 1862805 1462200 
2002 63032640 1270.32 1339.91 1345.91 13091746 20975 2503900 3569700 1510000 
2003 63954440 1340.84 1308.79 1359.95 13678087 21738 3306800 4379800 1910100 
2004 64876241 1341.00 1333.76 1365.73 14965415 23476 3478200 7874000 2156700 
2005 65798042 1373.00 1351.12 1370.34 16718287 25965 5129800 11298300 2798100 
2006 66719843 1377.00 1358.37 1377.41 20750283 31920 6775900 15903500 3778400 
2007 67641643 1451.00 1425.72 1443.49 24626587 37635 9176200 19016100 3934100 
2008 68563444 1539.00 1540.25 1540.23 27928746 36915 9060300 23098700 3971400 
2009 69485245 1640.00 1661.45 1668.45 29458192 49831 11309300 28906600 5914300 
2010 70407045 1687.00 1778.3 1772.38 33921164 51097 9176200 19016100 7199300 
2011 71328846 1798.00 2122.67 2134.67 42491835 70219 9060300 23098700 7695600 
2012 71601574 2026.00 2368.72 2492.13 54726662 72993 11309300 28906600 9136400 
2013 71874302 2204.00 2623.07 2770.16 63902460 84496 11309300 28906600 9576510 
 

Tab. V Economic based information and electricity consumption data for 50
years.
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S. No Input Variables Correlation coefficients

1 Population 0.940
2 Wholesale price index 0.982
3 Urban – Consumer price index 0.978
4 Rural – Consumer price index 0.977
5 Gross State Domestic Product 0.916
6 State Per Capita Income 0.875
7 Exports 0.906
8 Imports 0.859
9 Industries income 0.978

Tab. VI Correlation coefficients of the input variables to the target variable.

NN architectures Correlation coefficient

[9-3-5-1] 0.940274
[9-4-5-1] 0.998368
[9-5-5-1] 0.897638
[9-6-5-1] 0.999982
[9-7-5-1] 0.996277

Tab. VII Correlation Coefficient for different NN architectures.

Alyuda NeuroIntelligence 2.1 software [1] and MATLAB 2013b software [29] are
utilized for experimentation. The comparative analysis of the relative error and
correlation coefficient of the training algorithms with different combinations of the
activation functions is carried out in this section. The dataset involves the elec-
tricity consumption data for 50 years. The dataset is partitioned into two sets
of data for training and testing. The dataset is partitioned into two sets of data
for training and testing. 90% of data is used for training and 10% is used for
testing. Tab. VIII shows the comparative analysis of the correlation coefficient of
every training algorithm. The comparative analysis of the relative error of each
NN training algorithm is shown in the Tab. IX. Tab. X shows the ranking of the
NN training algorithms based on relative error and correlation coefficient.

7.1 Relative error

The Relative Error (RE) is obtained by dividing the difference between the actual
and the desired output values. It is calculated by using the following equation

RE =

(
1

N

N∑
i

|Yi − Yp|
Yp

)
× 100, (39)
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where Yi represents the mean value of the NN output, Yp is the predicted value of
the NN output and N represents the number of cases used for the calculations of
statistical parameters.

7.2 Correlation coefficient

The correlation coefficient is defined as the degree of the relationship between the
input and output variables. The values of the correlation coefficient ranges from
−1.0 to 1.0. If the correlation coefficient is +1.0, there is a high positive correlation
between the variables. If the correlation coefficient is −1.0, there is a high negative
correlation between the variables. If it is equal to 0, it denotes the non-correlation
between the variables.

Fig. 7 shows the graph illustrating the comparison between the correlation
coefficients for NN training algorithms. The correlation coefficient of the Bayesian
Regularization training algorithm is higher than other training algorithms. Fig. 8
shows the comparison graph of the relative error values of every training algorithm.
The relative error of the Bayesian Regularization training algorithm is 0.000257,
which is the lowest value among the relative error of other training algorithms.
Hence, the Bayesian Regularization training algorithm is selected as the optimal
training algorithm for the effective computation of the electricity consumption. It
creates the computing model to predict the electricity consumption using the nine
economical quantities.

Fig. 7 Correlation coefficient analysis for the NN training algorithms.
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Fig. 8 Relative Error of each training algorithm.

The comparative analysis of correlation coefficient of every NN training algo-
rithm with different combinations of the activation function is shown in Tab. VIII.
From the table, it is clearly observed that the correlation coefficient of the Hy-
perbolic Tangent – Hyperbolic Tangent of the Bayesian Regularization training
algorithm is found to be the highest, among all the other activation functions.

The comparative analysis of the relative error of every training algorithm with
different combinations of the activation function is depicted in Tab. IX. The relative
error of the Hyperbolic Tangent-Hyperbolic Tangent activation function of the
Bayesian Regularization training algorithm is found to be the lowest, among all
the other activation functions.

This implies that the Bayesian Regularization training algorithm is the optimal
training algorithm for the electricity consumption forecasting. The ranking of the
training algorithms based on the accuracy parameter is shown in the Tab. X. Based
on the lower relative error and higher correlation coefficient in both the training
and testing period, the Bayesian Regularization training algorithm obtains the
highest rank. The Levenberg Marquardt training algorithm is ranked second. It
accurately predicts the electricity demand rate more closely to the actual data. This
means that the deviation of the predicted electricity demand rate from the actual
demand rate is minimum. Hence, it is concluded that the Bayesian Regularization
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training algorithm is determined as the optimal training algorithm for the effective
computation of electricity consumption.
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QN 0.9985 0.8656 0.9942 0.9993 0.8565 0.999 96 0.999 0.8011 0.8774
LM-QN 0.9951 0.9975 0.9973 0.993 0.9714 0.9905 0.9947 0.9897 0.9915

OSS 0.9982 0.8667 0.8555 0.9994 0.8565 0.9835 0.9993 0.7411 0.8755
LM 0.9985 0.8656 0.9942 0.9982 0.8603 0.999 97 0.9996 0.8684 0.999 998
BR 0.9987 0.858 0.9943 0.9998 0.8881 0.999 99 0.9998 0.8692 0.999 999
QP 0.9971 0.9878 0.9866 0.9573 0.9818 0.8035 0.9897 0.9983 0.9862

OBP 0.9952 0.9974 0.9966 0.9442 0.9699 0.982 0.9904 0.9987 0.9924
BBP 0.9981 0.9975 0.991 0.9929 0.9713 0.9904 0.9938 0.9889 0.9914
RBP 0.9986 0.8657 0.9943 0.9995 0.8685 0.999 98 0.9992 0.8668 0.9999
CGD 0.9981 0.9982 0.9982 0.9574 0.9982 0.9982 0.9757 0.9897 0.9982
SCG 0.9984 0.8666 0.9945 0.9992 0.9945 0.999 99 0.9987 0.8561 0.999 98

FPCG 0.9979 0.8661 0.9944 0.9988 0.8774 0.9987 0.9989 0.8521 0.9994
PRCG 0.9983 0.8654 0.9943 0.9989 0.8565 0.9954 0.9989 0.8411 0.9996

PBRCG 0.9976 0.8658 0.9942 0.999 0.8774 0.9948 0.9989 0.8566 0.9998
VLRGD 0.9987 0.8865 0.9946 0.9994 0.8565 0.9994 0.9993 0.8041 0.8228

GDM 0.0381 0.2356 0.1831 0.2913 0.2451 0.3296 0.2893 0.2451 0.3296
GD 0.0381 0.2356 0.1831 0.2913 0.2451 0.3296 0.2893 0.2451 0.3296

Tab. VIII Comparative analysis of correlation coefficient of each training
algorithm with different combinations of activation functions.

7.3 WEKA time series analysis

After finding an optimal training algorithm, the future electricity consumption is
to be forecasted. For further forecasting of electricity consumption, all 9 econom-
ical quantities are needed. Since all the variables are time dependent, a Waikato
Environment for Knowledge Analysis-version (WEKA) based time series forecast-
ing can be done for every input variable. A WEKA-version 3.7.6 (WEKA 3.7.6)
tool [16] is used for time series forecasting. The time series forecasting is reliable for
the data that represents the long-time predictions. It can be used easily as the his-
torical observations are readily available from secondary sources. These successive
observations are statistically dependent. The time series forecasting is concerned
with the analysis of statistical dependencies.
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QN 0.038 2.075 0.498 0.029 2.143 0.211 0.036 2.143 0.491
LM-QN 0.031 1.848 0.071 0.427 1.732 0.058 0.094 1.922 0.077

OSS 0.045 2.076 0.183 0.035 2.143 0.009 0.034 2.143 0.492
LM 0.046 2.075 0.182 0.062 2.081 0.001 0.033 2.073 0.0004
BR 0.047 2.091 0.184 0.0163 2.084 0.000 27 0.016 2.089 0.000 25
QP 0.043 1.715 0.101 0.099 1.418 0.086 0.377 1.133 0.168

OBP 0.033 1.814 0.08 0.08 1.132 0.111 0.046 1.915 0.074
BBP 0.049 1.939 0.087 0.08 1.232 0.111 0.07 1.769 0.131
RBP 0.047 2.076 0.189 0.048 0.189 0.004 0.051 2.079 0.006
CGD 0.056 1.812 0.09 0.32 1.348 0.201 0.088 1.832 0.045
SCG 0.049 2.075 0.185 0.029 2.073 0.003 0.036 2.073 0.005

FPCG 0.037 2.076 0.184 0.048 2.077 0.116 0.041 2.082 0.019
PRCG 0.044 2.076 0.186 0.047 2.074 0.037 0.041 2.09 0.017

PBRCG 0.044 2.076 0.182 0.044 2.074 0.132 0.042 2.078 0.008
VLRGD 0.046 2.087 0.192 0.031 2.143 0.038 0.036 2.143 0.687

GDM 22.216 2.1031 3.7297 2.0783 2.1431 1.0992 1.9652 2.1431 1.0992
GD 22.216 2.1031 3.7297 2.0783 2.1431 1.0992 1.9652 2.1431 1.0992

Tab. IX Comparative analysis of relative error of each training algorithm with
different combinations of activation functions.

In the time series forecasting, the prediction of the future values does not de-
pend on the explanatory variables that affect the system. As the collection of
information on the explanatory variables is highly cumbersome, there is a problem
in the availability of long-term data. In such conditions, the time series model is a
boon for forecasting.

Tab. XI shows the Forecasting of input variable using WEKA Time Series Anal-
ysis for the next 15 years. Time series forecasting uses a model to predict the future
values based on previously observed values. The forecasted time series data is ap-
plied to the computational model to predict the electricity consumption of next
15 years. Tab. XII shows the prediction of the electricity consumption using the
Bayesian Regularization training algorithm. The electricity consumption is mea-
sured in Megawatt (MW). Fig. 9 shows the predicted electricity consumption using
Bayesian regularization training algorithm for the 2014-2028. Fig. 10 shows the ac-
tual and predicted electricity consumption. From the graph, it is observed that
there is a linear increase in the acutal and predicted electricity consumption from
the year 1964 to 2028.
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Rank 1 BR Hyp. Tan. Hyp. Tan. 0.000 305 0.000004 0.000 25 0.999 999
Rank 2 LM Hyp. Tan. Hyp. Tan. 0.000 346 0.00069 0.000 40 0.999 998
Rank 3 SCG Logistic Hyp. Tan. 0.002 78 0.0024 0.002 68 0.999 984
Rank 4 RBP Logistic Hyp. Tan. 0.005 28 0.0008 0.004 11 0.999 994
Rank 5 PBRCG Hyp. Tan. Hyp. Tan. 0.007 49 0.00833 0.007 71 0.999 803
Rank 6 OSS Logistic Hyp. Tan. 0.0110 0.00289 0.008 86 0.999 962
Rank 7 PRCG Hyp. Tan. Hyp. Tan. 0.0170 0.0155 0.016 58 0.999 436
Rank 8 FPCG Hyp. Tan. Hyp. Tan. 0.0204 0.0139 0.018 73 0.999 626
Rank 9 LM-QN Hyp. Tan. Logistic 0.0192 0.0286 0.021 64 0.998 668
Rank 10 QN Logistic Linear 0.0337 0.0140 0.028 57 0.999 434
Rank 11 VLRGD Logistic Linear 0.0372 0.0135 0.031 03 0.999 436
Rank 12 CGD Hyp. Tan. Logistic 0.0221 0.0620 0.032 48 0.998 281
Rank 13 QP Hyp. Tan. Logistic 0.0198 0.0721 0.033 41 0.989 689
Rank 14 OBP Hyp. Tan. Linear 1.0063 0.0647 0.045 52 0.993 832
Rank 15 BBP Hyp. Tan. Linear 0.0731 0.0597 0.069 64 0.994 668
Rank 16 GDM Hyp. Tan. Hyp. Tan. 1.2715 0.6087 1.099 0.329 695
Rank 17 GD Hyp. Tan. Hyp. Tan. 1.2715 0.6087 1.099 0.329 695

Tab. X Ranking of training algorithms based on relative error & correlation
coefficient.

Fig. 9 Predicted electricity consumption using Bayesian regularization training
algorithm.
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2014 72147030 2183 2957 3173 74447610 98567 11309 28906 9847770
2015 72419758 2684 3071 3191 77467807 102819 12139 30555 10274124
2016 72692486 2811 3223 3223 81699163 117332 13623 31673 10356816
2017 72965214 2958 3387 3387 87547989 128779 15495 32381 10429978
2018 73237942 3145 3567 3567 92735709 139659 18147 33135 10597092
2019 73510670 3437 3888 3888 99681483 155275 22796 35663 10854890
2020 73783398 3686 4160 4160 104527870 166557 26884 38114 11103548
2021 74056126 4115 4658 4658 112559964 177413 33845 41549 11520636
2022 74509893 4937 5544 5544 132939225 197733 51681 48825 12721422
2023 74963660 5500 6159 6159 153340199 210521 72534 55944 13956157
2024 75417427 6552 7077 7377 159871549 233739 113464 71944 15720542
2025 75871194 7247 8357 8357 162012257 256974 143161 103492 18268664
2026 76324961 7962 9909 9909 173860266 269228 160474 166963 19278201
2027 76778728 8798 10716 10716 198558032 298993 184480 184402 21719262
2028 77232495 9030 11218 11238 206584178 319437 198051 214918 22374716

Tab. XI Forecasting of input variable using WEKA Time Series Analysis.

Fig. 10 Actual and Predicted electricity consumption.
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Year Predicted Electricity Consumption [MW]

2014 61,210
2015 61,980
2016 62,100
2017 62,200
2018 63,512
2019 64,248
2020 66,126
2021 67,086
2022 69,156
2023 76,066
2024 84,757
2025 91,009
2026 98,110
2027 105,645
2028 109,645

Tab. XII Prediction of electricity consumption using Bayesian Regularization
Training Algorithm.

7.4 Complexity analysis

The complexity of the NN training algorithms is analyzed by using the training
speed, number of iterations and computation time. Tab. VIII shows the computa-
tion time of every NN training algorithm. The Bayesian Regularization algorithm
requires minimum number of iterations and computation time than other training
algorithms.

7.5 Evaluation using larger dataset

Different size of datasets such as Energy efficiency dataset [3], Tamilnadu Electric-
ity Board Hourly Readings [21], Individual household electric power consumption
dataset [15] are collected from UCI Repository and the Electric bill data [30] is
collected from American Statistical Association. They are applied for validating
the performance of all NN training algorithms. The missing data is present in an
input variable and replaced with the average value of previous and next value of
the corresponding input variable. Tab. XIV illustrates the descriptions of UCI and
American Statistical Association datasets.

Energy Efficient Dataset comprises of 768 samples and 8 features, to predict
two real valued responses such as heating load and cooling load. The features
are relative compactness, surface area, wall area, roof area, overall height, orien-
tation, glazing area and glazing area distribution. Tamilnadu Electricity Board
Hourly Readings dataset involves the real time readings to find the accuracy con-
sumption of electricity per hour in Tamilnadu around the Thanjavur district. This
data is obtained for the residential, commercial, industrial and agriculture applica-
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Metric

Training Training Speed Number of Computation
Algorithm [iterations/s] Iterations Time [s]

QN 107.03 3746 35
LM-QN 485.45 30001 61.8

OSS 81.12 10059 124
LM 52.95 1006 19
BR 51.28 923 18
QP 3409.2 30001 8.8

OBP 3000.1 30001 10
BBP 3658.65 30001 8.2
RBP 358.57 10040 28
CGD 187.5 30001 160.01
SCG 265.42 10086 38

FPCG 114 114 1
PRCG 143 429 3

PBRCG 141 141 1
VLRGD 549.1 11531 21

GDM 5 23 4.6
GD 5 21 4.2

Tab. XIII Computation time of each NN training algorithm.

tions. Individual household electric power consumption dataset contains 2075259
electric power consumption measurements collected in one household with a one-
minute sampling rate between December 2006 and November 2010. Electric Bill
dataset involves the household electric bill amount and electricity consumption on
a monthly basis presented as a time series for January 1991 through December
2000.

The optimal splitting proportion is highly important for successful training.
Here, the small size dataset is split into 90% for training and 10% for testing. The
medium size dataset is split into 70% for training and 30% for testing. The larger
size dataset is split into 60% for training and 40% for testing. The relative error and
correlation in the prediction of electricity consumption on different size of datasets
are calculated using all the NN training algorithms. The results are compared to
analyze the prediction accuracy for different size of datasets.

Tab. XV shows the relative error of the NN training algorithms for different
sizes of datasets. Fig. 11 depicts the comparison of the relative error for different
datasets. The presence of instances and attributes result in the increase in the
relative error. The prediction accuracy decreases with the increase in the size
of the dataset. From the Tab. XIV, the number of attributes in the proposed
econometric variable dataset is lesser than other datasets. Hence, the relative error
of the proposed econometric variable dataset is low and prediction accuracy is
high. From the Tab. XV it is observed that the Bayesian regularization training
algorithm yields lower relative error than other training algorithms.
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Data Name of the No. of No. of Response Data
Source Dataset Instance Attribute Variable Type

TNEB and
Economics &
Statistical
Deparment

Proposed Economet-
ric Variable Dataset

50 9 Electricity
consumption

Real &
Integer

American
Statistical
Association

Electric Bill Data 120 11 Calculated
consumption

Real &
Integer

UCI Energy efficiency
Data for Heating
Load Consumption

768 8 Heating Load
consumption

Categorical
&, Real

UCI Energy efficiency
Data for Cooling
Load Consumption

768 8 Cooling Load
consumption

Categorical
& Real

UCI Tamilnadu Electric-
ity Board Hourly
Readings

45781 5 Electricity
consumption

Categorical
& Real

UCI Individual household
electric power con-
sumption

2075259 9 Global active
power

Real

Tab. XIV Descriptions of UCI and American Statistical Association Datasets.

Tab. XVI shows the correlation value of the NN training algorithms for different
sizes of datasets. Fig. 12 depicts the comparison of the correlation value for different
datasets. From the comparative analysis, it is observed that the correlation value
of the Bayesian Regularization training algorithm is higher than other training
algorithms.

8. Conclusions and future work

The conclusion and future implementation of this survey are discussed in this sec-
tion. The objective of this survey is to determine the optimal NN training algorithm
for achieving effective prediction using multiple time series data. This paper has an-
alyzed a number of NN training algorithms to identify the optimal algorithm. The
accuracy parameters such as relative error and correlation coefficient of the train-
ing algorithms have been calculated. Various training algorithms are compared to
find out the optimal model for Tamilnadu electricity consumption forecasting. The
results show that the Bayesian regularization training algorithm with a hyperbolic
tangent activation function is proved to be the optimal NN training algorithm. It
effectively reduces the relative error to 0.000257 and achieves a high correlation
coefficient of 0.99999993. Due to the reduction in the relative error and improved
correlation coefficient, the deviation from the actual electricity consumption is min-
imized. Hence, the Bayesian Regularization training algorithm is selected as the
optimal training algorithm for the effective computation of electricity consump-
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BR 0.000 257 1.3171 0.0149 0.0260 0.4364 0.0437
LM 0.0004 1.8250 0.0211 0.0585 0.4996 0.1678

CGD 0.032 48 6.7212 0.5682 0.5022 6.9144 4.5233
SCG 0.005 6.6921 0.5231 0.4336 6.5546 3.4272
RBP 0.006 4.8824 1.1404 0.8316 6.5565 13.479

PBRCG 0.008 6.0993 0.8529 0.3889 6.5716 0.7761
OSS 0.492 5.4418 0.8848 0.6095 6.5108 10.248

PRCG 0.017 6.5729 0.5036 0.9471 6.5376 4.1404
FPCG 0.019 4.9870 0.6897 0.3353 6.5550 2.7863

LM-QN 0.077 5.2928 0.0778 0.0600 6.7544 0.3682
QN 0.491 5.3290 0.0709 0.0712 6.7527 0.0469

VLRCG 0.687 3.4490 0.6695 0.4409 6.5655 7.6193
QP 0.168 6.8100 0.0607 0.0609 6.7530 0.0881

OBP 0.074 5.8410 0.0845 0.0781 6.8046 0.0751
BBP 0.131 7.0351 0.2803 0.3654 6.7977 0.4654
GDM 2.0638 5.0992 6.7541 6.3468 10 787.4 11 404 046
GD 2.0638 5.0992 6.7541 6.346 82 10 787.4 11 404 046

Tab. XV Relative error of NN training algorithms for different sizes of datasets.

tion. It creates the computing model to find the electricity consumption using
nine economical quantities. The flexibility of this method is the capacity for using
the non-static parameters. The convenience of this method is the insertion of new
data and this will continuously improve the estimation process. This approach
combines the observed data and the unknown parameters for providing the poste-
rior information. Finally, the economic input attributes are forecasted for the next
15 years using time series forecasting. Using these forecasted economic attributes
and with the optimal Bayesian Regularization training algorithm, the electricity
consumption for the next 15 years is predicted. The comparative analysis of the
NN training algorithms for the proposed dataset and larger datasets obtained from
the UCI repository and American Statistical Association shows that the Bayesian
regularization training algorithm yields higher correlation value and lower relative
error when compared to other training algorithms. The main intention of this fu-
ture work is to increase the accuracy of forecasting and examining the application
of neural networks for the modeling and forecasting of the electricity demand.
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BR 0.999 999 0.9978 0.9991 0.9964 0.0234 0.9989
LM 0.999 998 0.9557 0.9981 0.9836 0.0126 0.9308

CGD 0.9982 0.5874 0.1345 0.5271 0.1145 −0.5696
SCG 0.9999 0.6014 0.1162 0.5960 0.0145 −0.3696
RBP 0.999 989 0.1645 0.4825 0.7817 0.0089 −0.6016

PBRCG 0.9998 0.2849 0.0621 0.3455 0.0025 0.2307
OSS 0.8774 0.1435 0.8292 0.4470 0.0039 −0.5509

PRCG 0.9994 0.2544 0.0177 0.4294 0.0090 −0.2765
FPCG 0.9996 0.0324 0.2562 0.2734 0.0095 −0.3354

LM-QN 0.9924 0.9806 0.9863 0.9805 0.0035 0.9790
QN 0.8755 0.9819 0.9882 0.9695 0.0047 0.9985

VLRCG 0.8228 0.0106 0.4356 0.1933 0.0062 −0.6048
QP 0.9862 0.1289 0.9844 0.9809 0.0073 0.9984

OBP 0.9982 0.9747 0.9853 0.9809 0.0031 0.9978
BBP 0.9914 0.9784 0.9701 0.9541 0.0043 0.9980
GDM 0.9862 0.8212 0.6134 0.5138 −0.1007 −0.1198
GD 0.9862 0.8212 0.6134 0.5138 −0.1007 −0.1198

Tab. XVI Correlation value of NN training algorithms for different sizes of
datasets.
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