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Abstract: One of the most important problems in communication network design
is the stability of network after any disruption of stations or links. Since a network
can be modeled by a graph, this concept is examined under the view of vulnerability
of graphs. There are many vulnerability measures that were defined in this sense. In
recent years, measures have been defined over some vertices or edges having specific
properties. These measures can be considered to be a second type of measures.
Here we define a new measure of the second type called the total accessibility. This
measure is based on accessible sets of a graph. In our study we give the total
accessibility number of well known graph models such as Pn, Cn, Km,n, W1,n,
K1,n. We also examine this new measure under operations on graphs. A simple
algorithm, which calculates the total accessibility number of graphs, is given. We
observe that when any two graphs of the same size are compared in stability, it
is inferred that the graph of higher total accessibility number is more stable than
the other one. All the graphs considered in this paper are undirected, loopless and
connected.
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1. Introduction

A network can be modeled by a graph whose vertices represent the stations, the
processors etc. and whose edges represent the lines of communication links, roads,
paths etc. The vulnerability measures the resistance of the network to any disrup-
tion in its stations or in its communication links. It is also another subject area
to examine the remained network for failures after any disruption. Thus, the con-
struction of a communication network plays an important role in the efficiency of
the network. Communication networks can be modeled by connected graphs. The
vulnerability of a graph is the resistance of the graph keeping some of its properties
after any disruptions in any number of vertices or edges [1]. In the graph theory
many well known vulnerability measures such as connectivity, edge connectivity,
toughness, integrity, tenacity, and neighbor-integrity were studied widely in the
past to describe the stability of communication networks [2–6]. Since any network
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can be modeled by a graph, the vulnerability of a network can be examined by
some measures defined in graphs [11, 14, 16]. But all these measures work within
the whole vertex set or edge set of the graph. Recently, many theorists of graphs
have begun to work on some measures which work on vertices or edges of the graph
that have a specific property, for example a sub set of vertices of the graph which
is a dominating set [12, 13, 15]. In this paper, the total accessibility, which is a
new measure as the second type of measures mentioned above, is defined. It is
believed that such measures are more convenient. One of those measures is the
total redundancy depending on dominating sets of a graph [10]. The accessibility
number of graphs using the neighborhood concept is defined and some results have
already been published in [7]. We define the total accessibility number of a graph
by using the vertices in accessible sets of the graph.

A graph G is denoted by G = (V (G), E(G)), where V (G) and E(G) represent
the set of vertices and the set of edges of G, respectively.

Definition 1. A spanning graph is a subgraph of any graph G which contains
all the vertices of G.

Definition 2. In a graph G = (V,E), the open neighborhood of vertex v ∈ V
is N(v) = {x ∈ V | vx ∈ E}, the set of vertices adjacent to v.

Definition 3. The closed neighborhood of a vertex v ∈ V is denoted by
N [v] = N(v) ∪ {v}.

Definition 4. For a set S of vertices, the neighborhood of S is the union of
the neighborhoods of the vertices, and so it is the set of all vertices adjacent to at
least one member of S.

Definition 5. If G = (V,E) is a connected graph, the distance d(u, v) between
two vertices u and v of G is defined as the minimum length of a u, v path of G.

Definition 6. The eccentricity e(v) of v is maxu∈V d(u, v). That is, e(v) is
the distance between v and a vertex farthest from v.

Definition 7. The radius radG of G is the minimum eccentricity among the
vertices of G.

Definition 8. A set S ⊂ V is a dominating set if every vertex in V is either
in S or is adjacent to a vertex in S, that is V = ∪s∈SN [s].

Definition 9. The domination number γ(G) is the minimum cardinality of a
dominating set.

Definition 10. Let G = (V,E) be a connected graph for ∀x ∈ V − S, if vertex
x is adjacent to set S, N(S) or N [S], then set S ⊂ V is an accessible set of graph
G. Accessibility number is the minimum number cardinality of over all accessible
sets of graph G and denoted by η(G) [8, 9].

Here are some results on the accessibility number of some graph models:
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Result 1. For path Pn, η(Pn) = bn5 c+ 1.
Result 2. For cycle Cn, η(Cn) = bn5 c+ 1.
Result 3. For complete graph Kn, η(Kn) = 1.
Result 4. For complete bipartite graph Km,n, η(Km,n) = 1.
Result 5. For wheel graph W1,n−1, η(W1,n−1) = 1.
Result 6. For star graph K1,n−1, η(K1,n−1) = 1.

2. Total accessibility number

Definition 11. Let G be a connected graph. The total accessibility number
of G is defined as

TA(G) = min

{∑
v∈S

(2 + deg(v)) : S ⊆ V ∧ |N [x] ∩N [S]| ≤ 1∀x ∈ V

}
.

Theorem 12. If in any connected graph G radG ≤ 4 and X be the set of
central vertices, then

TA(G) =
∑
v∈X

deg(v).

Theorem 13. If any spanning subgraph of graph G is a star graph, then

TA(G) = δ(G) + 2.

Proof. If a graph contains a star as a subgraph, every vertex of the graph is
accessible (reachable) from central vertex. Hence the necessity in the TA definition
is met. By the way, since the TA value is expected to be lower we need to chose
the vertex that is of the minimum degree. This minimum degree corresponds to δ
of the graph.

The results on total accessibility number of well known graph models are listed
below:

Result 1. For Pn,

TA(Pn) =


4 · η(Pn), n ≡ 0, 4 (mod 5),

4 · η(Pn)− 1, n ≡ 2, 3 (mod 5),

4 · η(Pn)− 2, n ≡ 1 (mod 5).

Result 2. For Cn, TA(Cn) = 4 · ηCn.
Result 3. For complete bipartite graph Km,n, TA(Km,n) = 2 + min{m,n}.
Result 4. For wheel graph W1,n−1, TA(W1,n−1) = 5.
Result 5. For star graph K1,n−1, TA(K1,n−1) = 1.
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3. Graph operations and total accessibility
number

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs of having different orders, no
common vertices and with no isolated vertex.

Definition 14. The union G = G1 ∪ G2 of graphs G1 and G2 with disjoint
vertex sets V1 and V2 and edge sets E1 and E2 is the graph with V1 ∪ V2 and
E1 ∪ E2.

Definition 15. The join G = G1 + G2 of graphs G1 and G2 with disjoint
point sets V1 and V2 and edge sets E1 and E2 is the graph union G1 ∪G2 together
with all the edges joining V1 and V2.

Definition 16. The cartesian product G1 ·G2 of graphs G1 and G2 is a graph
such that the vertex set of G1 ·G2 is the cartesian product V (G1) ·V (G2); and any
two vertices (u, u′) and (v, v′) are adjacent in G1 ·G2 if and only if either

u = v and u′ is adjacent with v′ in G2, or
u′ = v′ and u is adjacent with v in G1.

Theorem 17. Total accessibility number of the union of graphs G1 and G2 is

TA(G1 ∪G2) = TA(G1) + TA(G2).

Theorem 18. Total accessibility number of the union of graphs G1, G2, . . . ,
Gm−1, Gm is

TA(G1 ∪ · · · ∪Gm) = TA(G1) + · · ·+ TA(Gm).

Theorem 19. For Pn and Pm, where m < n, TA(Pn + Pm) = m+ 3.

Proof. Since m < n, the vertex of the optimal accessible set have to be chosen
from Pn. In this case the number and degrees of these vertices will be lower. Let us
choose vertex v from Pn, which is connected to vertex u in Pm. The vertex degree
of v is equal to 2 +m or 1 +m at least. In both cases the rest of all vertices will be
connected to the neighborhood of vertex v. Thus TA(Pm + Pn) = (1 + m) + 2 =
m+ 3.

Theorem 20. For K1,n−1 and K1,m−1, where n < m,

TA(K1,n−1 +K1,m−1) ≥ TA(K1,n−1) + TA(K1,m−1).

Proof. Due to the definition of TA, we need to choose the vertices from the
graph K1,m−1 which will form the accessible set since degree of any vertex will be
lower in this set. Thus deg(v) = 1+m. Since n < m, it is better to choose the vertex
v which satisfies deg(v) = 1+n. Then TA(K1,n−1 +K1,m−1) = (1+m)+1 = 2+m
is obtained. Also TA(K1,n−1) = 1 + 2 and TA(K1,m−1) = 1 + 2.

Theorem 21. For W1,n−1 and W1,m−1 where n < m,
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TA(W1,n−1 +W1,m−1) ≥ TA(W1,n−1) + TA(W1,m−1).

Proof. The vertex having a minimal degree is chosen from W1,m−1 to construct
the accessible set. In this case every chosen vertex v satisfies deg(v) = n. Hence
TA(W1,n−1+W1,m−1) = (n+2)+3 = n+6 is obtained. Also TA(W1,n−1) = 3+2 =
5 and TA(W1,m−1) = 3 + 2 = 5. Then it is clear that TA(W1,n−1 + W1,m−1) ≥
TA(W1,n−1) + TA(W1,m−1).

Theorem 22. For Km,n and Kp,r, where m < n < p < r,

TA(Km,n +Kp,r) ≥ TA(Km,n) + TA(Kp,r).

Proof. Let us do the proof in an algebraic way. Our purpose is to find general
values for left-hand side and right-hand side of the inequality. To obtain the optimal
value of TA(Km,n + Kp,r), each element of accessible set should be chosen from
the graph Kp,r. Hence the degree of each chosen vertex is (m + n) + p and TA
value is m + n + p + 2 in this case. If we take into consideration TA values of
Km,n, Kp,r graphs separately, we obtain m + 2 and p + 2 respectively. Finally
TA(Km,n) + TA(Kp,r) = m + p + 4 from the definition of bipartite graphs n ≥ 2.
Therefore we have m+ n+ p+ 2 ≥ m+ p+ 4.

Theorem 23. For Pm and Pn, where m = 3,

TA(P3 · Pn) < 4 · η(Pn).

Proof. Since the resulting graph after the product operation has a lattice struc-
ture, we need to choose vertices from the vertex set lying in the middle of the graph
to find the optimal value of TA. The set of vertices of this selection corresponds to
the accessibility number of Pn. And the vertex degree of each vertex in this set is
4. From the definition of TA we can obtain 4 · η(Pn) at most. The vertex degree of
at most 2 vertices in this accessible set can be 3. In this case we have an inequality
form instead of an equality one. Thus TA(P3 · Pn) < 4.η(Pn).

Theorem 24. For Cn and Cm,

TA(Cn · Cm) = η(Cm · Cn) · 6.

Proof. All graphs resulting from Cn ·Cm produce 4-regular graphs. In any cycle
each vertex is connected to 2 other vertices. When this is taken into consideration,
after product operation each vertex has degree 4. If the accessible number of this
new resulting graph is found, it is easy to calculate the TA value of this new graph
since it is a 4-regular. From the definition of TA for each vertex we add 2 and then
TA(Cn · Cm) = η(Cm · Cn) · 6.

4. Algorithm for total accessibility number of a
graph

The pseudocode for computing the total accessibility number of a graph is given in
Algorithm 1. It uses the adjacency matrix of graph G. With the help of adjacency
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matrix, a distance matrix of the graph is constructed. The accessible sets of the
graphs are found by making a search on the distance matrix of the graph where
the distance between any vertex pair is 2 at most. After finding the accessible sets
of the graph, the sum of degrees of vertices in every accessible set is calculated.
Then the accessible set, which has the minimum value, is taken.

Algorithm 1 Computation of the total accessibility number of a graph.

Require: N : order of the graph, A = {aij}: adjacency matrix of graph G
Ensure: TA: total accessibility number of graph G

Initialize v = [v1, v2, . . . , vN ]← 0
Initialize s = [s1, s2, . . . , sN ]← 0
for m = 1 to N do
vm ← 1 {Mark the vertex as used}
for i = m to N do

if vi 6= 0 then
for j = 1 to N do

if vj 6= 0 then
if aij = 1 then
vj ← 0

end if
end if

end for
end if
si ← si + vi {Accessible sets are produced for every chosen vertex.}

end for
end for
for j = 1 to N do

for i = 1 to N do
tj ← deg si + 2

end for
end for
TA← t1
for i = 2 to N do

if ti > TA then
TA← ti

end if
end for

5. Conclusion

In this study, a new vulnerability measure called the total accessibility number
(based on accessible sets) is defined. The total accessibility numbers of some graphs
such as Pn, Cn, Km,n, W1,n−1, K1,n−1 are examined. In communication networks
after any disruption on stations, the stability of remaining components plays a great
part in network design. In this sense, the connection in remaining components can
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be examined on accessible sets. When two graphs that have the same order are
compared for stability, in some cases the graph, whose TA value is higher, is more
stable and reliable then the other one. This means, the communication range in
remaining components of the network is more dense after any breakdown in the
network whose TA value is higher. We intend to study directed graphs and trees
in order to give exact bounds for the total accessibility number. Our next target
is to improve the algorithm for graphs of larger size.
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