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Abstract: A single-step information-theoretic algorithm that is able to identify
possible clusters in dataset is presented. The proposed algorithm consists in rep-
resentation of data scatter in terms of similarity-based data point entropy and
probability descriptions. By using these quantities, an information-theoretic asso-
ciation metric called mutual ambiguity between data points is defined, which then
is to be employed in determining particular data points called cluster identifiers.
For forming individual clusters corresponding to cluster identifiers determined as
such, a cluster relevance rule is defined. Since cluster identifiers and associative
cluster member data points can be identified without recursive or iterative search,
the algorithm is single-step. The algorithm is tested and justified with experiments
by using synthetic and anonymous real datasets. Simulation results demonstrate
that the proposed algorithm also exhibits more reliable performance in statistical
sense compared to major algorithms.
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1. Introduction

In a broader sense, a clustering algorithm is expected to perform a twofold op-
eration: Given a dataset, estimating a model e.g. number of data point groups
or clusters, with optimal fit and compactness, which is often abbreviated to by
cluster validity [4], and partitioning the dataset in accordance with the model,
e.g. number of clusters estimated as such. Major clustering algorithms rely on
certain observable regularities in data scatter of data points/feature vectors to be
statistically modeled. Hierarchical methods group data points by dividing/merging
substructures recursively till no further connected group is achievable, which re-
sults in a dendogram. Although their time complexity is high, e.g. O(N3), time
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complexity of some agglomerative hierarchical algorithms with speed-up reduces
to O(N2) where N is the number of data points [3, 13]. While most hierarchical
algorithms do not require the a priori knowledge for the number of clusters they
usually fail in case of overlapping densities and they are sensitive to outliers. Par-
titioning algorithms aim at obtaining a partition of dataset by assigning N data
points in hyper-surfaces to k clusters based on an optimality criterion as a separa-
tion quality between clusters. They generally run iteratively to inspect variation
of a distortion/compactness factor versus the a priori number for clusters which is
varied within a prescribed range: For example, k-means [2], and mixture of vary-
ing densities/distributions [12], have usually time complexity of O(kNI ) where k is
the a priori number of clusters being processed and I is the number of iterations
which strictly depends on adopted termination rule. As a variant of partitioning
methods, spectral algorithms are capable of clustering non-convex datasets with re-
duced dimensions by using k largest eigenvectors corresponding to Laplacian of the
similarity matrix [6]. Their complexity is usually O(N3/2 + kNI) or higher while
employing faster partitioning methods, such as k-means in initialization and/or
post processing steps. In density-based clustering, clusters are obtained as regions
where data points are densely located: In DBSCAN [5], similar to linkage-based
hierarchical clustering, those data points which are within a distance of presumed
threshold form clusters subject to a minimum number of data points. In mean-shift
clustering, each data point is moved to the possibly densest neighborhood based
on estimated maxima of kernel density being sought [17]. A data point that resides
at a (local) maximum of density after all data have moved is regarded as a cen-
troid/mean. Both methods do not require the a priori knowledge of the number of
clusters, and impose no constraint on the shape of the clusters. Since mean-shift
algorithm highly relies on estimating the neighboring data points to which mean
vectors are to be shifted at each successive step, it is computationally expensive
with O(N2I) where I was cited previously compared to DBSCAN which usually
has complexity O(N logN).

Information-theoretic notions, e.g. entropy and mutual-information, are invari-
ant to data representation and capable of capturing higher-order statistics [14,16].
Owing to these advantages and well-defined representation of data scatter prop-
erties in terms of entropy and mutual information as an association rule these
quantities have been applied in clustering studies, e.g. kernel-based hierarchical
clustering with use of optimized quadratic mutual-information [1], and clustering
algorithm based on Renyi’s entropy [10]. A recent study in [15] proposes a method
to estimate the number of clusters in single-step by identifying data points at pos-
sible cluster boundaries in a dataset based on information-theoretic sample (or
interchangeably referring to data point with presumed density profile) entropy and
probability descriptions. To our knowledge, there is no algorithm that yields both
the number of clusters and forms the respective clusters in single-step or one-pass.

In this study, a single-step clustering algorithm is presented with use of a new
information-theoretic association measure that exploits a quantity called mutual
ambiguity as an extension to information-theoretic notions given in [15]. It is
illustrated that the new algorithm successfully extracts even non-convex clusters
while preserving their actual shapes most major algorithms fail in. Simulations
with a real dataset for new algorithm and some major counterparts reveal that
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the new method statistically outperforms the counterparts in terms of successful
identification of clusters and sample classification with much lower time complexity.

2. Similarity-based sample density and entropy and
cluster analysis

A definition of similarity, sij , between D-dimensional data points xi and xj with
xi 6= xj is commonly given by

sij = e−βd
2
ij , (1)

where d2
ij = (xi − xj) (xi − xj)

T
is the Euclidean distance (metric) between them.

The parameter β is the kernel size or resolution coefficient and it is usually taken
unity. Given a dataset of N data points, we define a similarity-based (experimental)
sample probabilistic distribution (SBD) for which data point xi is at the center as

pi =
∑
∀j 6=i

sij , (2)

where summation is taken over all xj and xj 6= xi. It is possible to express
differential variation in similarity as

∂sij = −2βisij(xi − xj) • ∂(xi − xj) = ∇sij • ∂(xi − xj), (3)

where∇sij refers to the gradient vector of similarity between xi and xi with respect
to difference xi−xj and ‘•’ is the dot-product. Density or mode seeking algorithms,
e.g. mean-shift clustering, are based on identifying a data point xi that meets∑

∀j 6=i

∇sij • ∂(xi − xj) = 0 (4)

in terms of local optima to be sought. It is seen that as other data points are
brought closer to xi respective SBD reaches a local maximum, which suggests a
representation for data scatter of neighborhood. However, SBD is not suitable for
characterizing data scatter in uncertain regions, e.g. overlapping or superposition of
similarities, or uniformly distributed regions of data points. Similar to stochastic
entropy definition, an experimental counterpart can be suggested, which we call
similarity-based sample entropy (SBE) given by

Hi = H (xi) = −
∑
∀j 6=i

sij log sij (5)

as a measure of data scatter around xi. From above descriptions, it is straight-
forward to see close resemblance between information-theoretic probabilistic, i.e.
stochastic entropy and its experimental similarity-based counterpart: Given a par-
ticular data point xi its SBE decreases toward a minimum as other data points are
moved either very close to or far from it. It reaches a maximum as other data points
are positioned at a distance irregularly where it is difficult to assert on proximities.
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Above quantities have been used in [15] to identify possible data regions for
cluster availability within a given dataset in single-step. It employs a function
called cluster-boundary indicator (CBI) given by G = e−ϕ where ϕ = |p− λH|2
with λ > 0. A data point x∗ which satisfies ∂2G = 0 for a maximum of G close to
1 refers to availability of a cluster shown as the shaded area in Fig. 1. A respective
cluster is formed with data points which satisfy |p− λH| < 1. Data point xc is the
mean or centroid of the cluster formed as such. The scaling factor λ is determined
such that

∑
∀i (pi − λHi)

2
is minimum, which yields λ =

∑
∀i (piHi)

∑
∀iH

2
i , [12].

Fig. 1 A typical plot for SBD (p), SBE (H), and CBI (G).

Although above definitions when combined are capable of identifying data
points that reside at boundaries of clusters, they will fail in case of uniformly
distributed data points and non-convex datasets. They also disregard intra-cluster
data scatter behavior, which may yield incorrect cluster-like regions. Thus, it is
not obvious how distinct clusters will be associated to overall data scatter rather
than inter-cluster data points. In following section, we provide a new approach to
remedy these issues and to identify cluster-like regions with combined scatter and
data associative characteristics.

3. New clustering algorithm

Given a dataset of N data points in a D-dimensional hyperspace, a similarity
measure between xi and xj and similarity-based probabilistic distribution for xi
were defined in Eq. 1 and 2, respectively. It is seen that similarity definition in
Eq. 1 can be interpreted as a joint probabilistic term between xi and xj , that
is sij = pi,j = p(xi,xj). Hence, it concludes that the SBD description in Eq. 2
refers to a marginal probability term while SBE in Eq. 5 can be interpreted as a
similarity-based marginal entropy for data point xi.

In order to associate data points to representative cluster identifiers in forming
clusters, we need to derive an association metric in terms of proximities between
data points. We suggest a conditional entropy between xi and xj as

Hi|j = H (xi |xj) = pi,j log (pj/pi,j) = − sij log sij + sij log pj (6)
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to express measure of association. With above conditional entropy defintion, it is
appropriate to identify how two data points can be related to each other in terms
of being representative on each other since Hi|j 6= Hj|i. We consider the following
expression of ambiguity between them given by

|Ψ(xi,xj)| =
∣∣Hi|j −Hj|i

∣∣ = |sij log(pj/pi)| , (7)

which is a measure of net uncertainty reduction due to respective neighborhood
between these two data points. Since |Ψ(xi,xj)| is a reflexive, i.e. symmetric,
relationship, it is a metric and can be used to assess how two distinct points convey
information for each other. Total net uncertainty with distinctiveness for xi to be
a representative data point within a grouping can be expressed as

H∆ (xi) =

∣∣∣∣∣∣
∑
∀j 6=i

Ψ(xi,xj)

∣∣∣∣∣∣ =

∣∣∣∣∣∣pi log pi +
∑
∀j 6=i

sij log pj

∣∣∣∣∣∣ , (8)

which is a non-negative quantity for any i with 0 as a global minimum. For a
simplified view of description above, let us consider the case where xi is within a
fixed distance to other data points such that sij,j 6=i = δ, i.e. pi = (N − 1)δ and
sjk,k 6=j = γ, i.e. pj = (N − 1)γ, then H∆ ≈ |−(N − 1)δ log?(γ/δ)|. If we assume
that xi is within a region of data points closely localized to each other and xi,
i.e. δ ≈ γ ≈ 1, then we should expect H∆(xi) to decay to a local minimum. If
other data points are taken further away from xi, then δ becomes smaller, which
may then increase H∆(xi). However, depending on scatter properties of other
neighboring data points such that δ >γ, H∆(xi) will decrease. Thus, we conclude
that xi is a possible cluster identifier with pi which goes to a locally maximum
enforcing H∆(xi) to a locally minimum, e.g. 0. Hence, it is possible to suggest

an indicator function such as θi = e−[H∆(xi)]
2

to identify cluster-related points: θi
may be exploited to refer to availability of a cluster when it is greater than a
suitably chosen threshold θth, i.e. xi being a cluster identifier if θi >θth. Each
candidate cluster is initialized with a respective identifier c found as such. Cluster
membership for other points can be assigned to individual identifiers by using
a quantity called mutual ambiguity given by Ψ(c, xj) + H∆(c) where c 6= xj :
Given a set of N data points X= {xi}i=1...N and a set of K cluster identifiers
C = {ck}k=1...K , a data point xm ∈ X is assigned to a cluster on the basis of
minimum mutual ambiguity

arg min
k
|Ψ (ck,xm) +H∆ (ck)| , (9)

once possible cluster identifiers have been identified. It is seen that the main
computation of the new algorithm is due to calculation of similarity and similarity-
based sample marginal probability terms in forming Eq. 2, 5–7 along with the
indicator function to determine possible cluster centers by using Eq. 9. Once these
terms have been obtained, it is straightforward to cluster data points in kN steps.
Since these data points can be determined a priori without further iteration or
recursion, the algorithm is single-step.

Having described the new algorithm, it is convenient to demonstrate its capa-
bilities and compare it against a popular partitioning algorithm, e.g. k-means,
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for clustering a dataset with two non-convex ring-shaped inner-clusters shown
in Fig. 2(a). For comparison purpose, a variant of k-means algorithm called k-
means* [11], which adopts weight adjustment of clusters is chosen. The k-means*
algorithm is required to be provided with the number of clusters available a priori.
On the other hand, for the new algorithm, the cluster identifiers are found with
θi > θth where θth is taken 0.95. A set of 2000 vectors x = [x1x2] was generated
from uniformly distributed 2D (bivariate) random density within region |x1,2| ≤ 2.5
and then the respective circular regions were defined as clusters. As an example,
Fig. 2(a) shows two such clusters while Fig. 2(b) and (c) visualize simulation results
for k-means* and new algorithm, respectively.

Fig. 2 Data scatter of two inner-clusters: (a) raw dataset, (b) clustered with k-
means* [11], (c) clustered with new algorithm.
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From above plot, it is seen that the new method successfully extracts the original
non-convex clusters without distortion. On the other hand, k-means* counterpart
fails even in regenerating shape of the clusters.

4. Experiments

Further to justification above, two sets of 100 experiments were conducted with
publicly available real datasets for comparing new method and its information-
theoretic hierarchical (normal-density) model-based [1], DBSCAN [5], kernel spec-
tral [8], k-means* [11], hierarchical splitting [13] counterparts. The kernel width for
spectral method and other relevant methods was taken 1. For k-means*, spectral
and information-theoretic model-based algorithms, the initial number of clusters
was taken twice the (actual) number of clusters (or classes) and iteratively decre-
mented to 1 with randomly selected data points ac centroids, which is an hindering
factor. The number of clusters was estimated based on Davies–Bouldin index [7],
as a compactness factor. Densities for DBSCAN and the clusters for splitting
methods were initialized with data points having similarity larger than 0.5 instead
of conditional constraint of minimum number of samples to initiate density for-
mation. In evaluation, a pre-specified quadratic mutual-information function for
inclusion/exclusion of data points with randomly initialized clusters built. Those
data points that add/subtract to incremental variation were included/excluded
for respective cluster availability. The algorithms were also evaluated in statis-
tical terms in (number of successfully classified data points)/N and (number of
iterations)/N once number of classes/clusters has been found successfully.

For the first set of 100 experiments, the Character Trajectories Dataset [18]
was used. Dataset consists of 3-dimensional 2858 labeled data points of pen tip
segment trajectories for the 20 single pen-down characters, e.g. ‘a’, ’e’, ‘w’. The
feature vectors are composed of respective coordinates x, y, and pen tip force. At
each experiment, 50 random samples from each of randomly selected 5 characters
were drawn, i.e. N = 250. Minimum number of samples for DBSCAN algorithm
to initiate density formation was taken 25. Results of the algorithms studied with
this dataset are summarized in Tab. I.

The second set of experiments was carried out with use of Musk (Version 2)
Dataset [9]. This dataset describes a set of 102 molecules of which 39 are judged
by human experts to be musks and the remaining 63 molecules are judged to be
non-musks. However, the D = 166 features that describe these molecules depend
upon the exact shape, or conformation, of the molecule. Because bonds can ro-
tate, a single molecule can have different shapes. To generate this data set, all the
low-energy conformations of the molecules were generated to produce 6598 con-
formations. At each experiment, 100 random data points were drawn from each
class, i.e. N = 200. Each feature was normalized to respective maximum to allow
straightforward computation of distances and avoid prohibitive matrix inversion
operation. Simulation results of the algorithms studied with the second dataset
are summarized in Tab. II.

From Tab. I and II, it is seen that for both datasets, the new clustering algorithm
exhibits better and consistent statistical characteristics in (correctly) estimating
the number of clusters and scattering data points to estimated clusters/classes
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Classification Number of (Number of
Algorithm success [%] clusters found iterations)/N

Avg. / Std. dev. Avg. / Std. dev. Avg. / Std. dev.

New 68.3 / 2.8 4.8 / 0.7 1.4 / < 0.2
Inform. theoretic
kernel density, [1]

43.3 / 4.6 5.7 / 1.9 414.3 / 15.2

DBSCAN, [5] 57.5 / 3.2 4.2 / 1.6 73.6 / 7.5
Kernel spectral, [8] 44.2 / 4.1 4.5 / 1.5 295.3 / 11.2
k-means*, [11] 53.6 / 3.2 5.3 / 1.5 92.1 / 7.8
Splitting, [13] 49.7 / 3.5 4.4 / 1.3 302.5 / 11.7

Tab. I Statistical performance measures for the proposed (New) and some other
clustering algorithms with Character Trajectory Dataset.

Classification Number of (Number of
Algorithm success [%] clusters found iterations)/N

Avg. / Std. dev. Avg. / Std. dev. Avg. / Std. dev.

New 57.1 / 3.1 2.7 / 0.8 5.2 / <1.6
Inform. theoretic
kernel density, [1]

42.8 / 5.1 4.9 / 1.6 421.8 / 19.6

DBSCAN, [5] 54.2 / 4.1 3.4 / 1.2 218.4 / 11.5
Kernel spectral, [8] 46.5 / 5.0 3.5 / 1.6 1989.8 / 27.6
k-means*, [11] 39.1 / 3.9 3.7 / 1.9 371.6 / 12.2
Splitting, [13] 43.6 / 4.2 3.9 / 1.5 19140 / 82.4

Tab. II Statistical performance measures for the proposed (New) and some other
clustering algorithms with Musk (Version 2) Dataset, D = 166.

with much smaller number of iterations compared its counterparts. High classifica-
tion success, which is the ratio of data points correctly assigned to their respective
classes once the correct value of number of clusters/classes has been established
results from inherent associative nature of the new algorithm between data points
in dataset. Of other counterparts, DBSCAN exhibits closer performance of classi-
fication success for both datasets to the new algorithm than others while its time
complexity is still much higher than the new algorithm. As expected, splitting
algorithm has the highest time complexity for the second dataset due to increased
feature vector dimension.

5. Conclusions

In this paper, a single-step clustering algorithm is described based on a new
information-theoretic association measure that uses a quantity called ambiguity
metric as a net conditional entropy difference between data points. The new algo-
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rithm identifies possible clusters based on how density and scatter characteristics
of neighboring data points around each data point vary associated to well-defined
similarity description. The algorithm is fully unsupervised, i.e. no requirement of
a priori knowledge of number of clusters or shape of clusters as opposed to major
counterparts is imposed. Since all computation is performed in single step, no re-
cursion or iteration is required. It is illustrated that new algorithm is capable of
extracting even non-convex clusters with their actual shapes for which most major
algorithms fail. Simulations with two real datasets for new algorithm and some
major counterparts show that the new method statistically outperforms the coun-
terparts in terms of successful identification of clusters and assigning data points
to respective clusters/classes with much lower time complexity.
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