
INFLUENCE OF (P)RNGS ONTO GPA-ES
BEHAVIORS

T. Brandejsky∗

Abstract: The main aim of this paper is to investigate if the evolutionary al-
gorithms (EAs) can be influenced by Random Number Generators (RNGs) and
pseudo Random Number Generators (pRNGs) and if different evolutionary opera-
tors applied within EAs requires different features of RNGs and pRNGs. Speaking
both about RNGs and pRNGs, the abbreviation (p)RNGs will be used. This
question is significant especially if genetic programming is applied to symbolic re-
gression task with the aim to produce human expert comparable results because
such task requires massive computations. Experiments were performed on GPA-ES
algorithm combining genetic programming algorithm (GPA) for structure develop-
ment and evolutionary strategy (ES) algorithm for parameter optimization. This
algorithm is described bellow and it applies extended scale of different evolutionary
operators (additional individuals generating, symmetric crossover, mutations, and
one point crossover). These experiments solved problem of symbolic regression of
dynamic system. The number of iterations needed for required quality of regres-
sion was used as the measure of (p)RNG influence. These experiments point that
different (p)RNGs fit to different evolutionary operators, that some combinations
(p)RNGs are better than others and that some theoretically excellent (p)RNGs pro-
duces poor results. Presented experiments point that the efficiency of evolutionary
algorithms might be increased by application of more (p)RNGs in one algorithm
optimised for each particular evolutionary operator.

Key words: (pseudo) Random Number Generator ((p)RNG); Genetic Program-
ming Algorithm (GPA); Evolutionary Strategy (ES); GPA-ES algo-
rithm; sensitivity to (p)RNG properties

Received: July 25, 2017 DOI: 10.14311/NNW.2017.27.033
Revised and accepted: January 2, 2018

1. Introduction

Evolutionary algorithms as genetic algorithms, self-organizing migrating algorithm
(SOMA), differential evolution algorithms, evolutionary strategies and genetic pro-
gramming algorithms are stochastic optimization algorithms. Their properties are
strongly influenced by used (pseudo) Random Number Generator (p)RNG. On the

∗Tomas Brandejsky; University of Pardubice, Department of Software Technologies, Faculty
of Electrical Engineering and Informatics, CS Legies Square 565, Pardubice, Czech Republic,
Tomas.Brandejsky@upce.cz

c©CTU FTS 2017 593

mailto:Tomas.Brandejsky@upce.cz

Neural Network World 6/2017, 593–605

opposite side, there exist signals that on the place of random number generator it
is possible to apply not only (pseudo) Random Number Generators [9], but also
deterministic chaos systems and even deterministic functions as sin(x) without sig-
nificant loss of evolution algorithm abilities. Such observations [1, 2, 7, 8, 15–18]
opened question which property of function applied on the place of random num-
ber generator are significant, if these property significance does not vary during
evolutionary process and in different evolutionary operators implemented by used
evolutionary algorithm. It also means that there might be used different generator
for initial population formation, parameter identification (in the case of GPA-ES
algorithm [12]), particular evolutionary operators control etc. The (p)RNGs influ-
ence evolutionary algorithms as well as intensively studied evolutionary operators,
see e.g. [3].

The problem of investigation of (p)RNG influence onto evolutionary algorithm
behaviors [13] consist especially in the needed number of experiments. There are
many stages of the algorithms function (e.g. initial population generating, evolu-
tionary operator application) and many evolutionary operators like mutation or
crossover which might be implemented many ways. The number of experiments is
increased by the stochastic nature of these algorithms caused especially by their
dependency on used (p)RNGs features.

Tests are implemented with GPA-ES [4] which is one version of standard GP
algorithm and it is described in the next chapter. Its main difference lies in use of
ES (evolutionary strategy) algorithm to optimize each population member constant
magnitudes in each evolutionary cycle as it is described in the next chapter. The ES
optimization cycle allows to decrease noise caused by constant identification (there
is significantly decreased of ill-defined constant magnitudes) and thus increases
preciseness of evolutionary operations (especially cross-over and mutation ones)
influence measurement. This capability is significant to this study.

The main aim of presented research is to verify hypothesis that (p)RNGs sig-
nificantly influence evolutionary algorithms efficiency and if requirements on these
properties varies in different stages of evolutionary algorithm. During these tests,
the sufficient number of experiments must be determined to recognize differences
between different (p)RNGs reliably.

2. GPA-ES algorithm

Structure of hybrid GPA-ES system [3,4] is outlined at Fig. 1. Fig. 2 then illustrates
relationship between individuals in GPA population and vector of ES populations
(one population for each GPA individual) in the GPA-ES system. While Fig. 1
outlines control flow of hybrid algorithm, Fig. 2 is denoted to fundamental data
structures of this system.

Left part of Fig. 1 describes master GPA algorithm, which is implemented in
the way described by Koza [10, 11]. When execution of this algorithm enters into
state of individual evaluation, slave Evolutionary Strategy described by right part
of the Figure is called for each GPA individual. After the ES algorithm execution,
fitness of the best individual is reasoned as fitness of the GPA individual.

The first line of boxes in Fig. 2 represents individuals of GPA algorithm. Each
box in second line corresponds to related GPA individual. Each of these boxes

594

Brandejsky T.: Influence of (p)RNGs onto GPA-ES behaviors

described in the next chapter. Its main difference lies in use of ES (evolutionary strategy) algorithm
to optimize each population member constant magnitudes in each evolutionary cycle as it is described
in the next chapter. The ES optimization cycle allows to decrease noise caused by constant
identification (there is significantly decreased of ill-defined constant magnitudes) and thus increases
preciseness of evolutionary operations (especially cross-over and mutation ones) influence
measurement. This capability is significant to this study.
The main aim of presented research is to verify hypothesis that (p)RNGs significantly influence
evolutionary algorithms efficiency and if requirements on these properties varies in different stages
of evolutionary algorithm. During these tests, the sufficient number of experiments must be
determined to recognize differences between different (p)RNGs reliably.

2 GPA-ES algorithm
Structure of hybrid GPA-ES system [3, 4] is outlined at Fig. 1. Fig. 2 then illustrates relationship
between individuals in GPA population and vector of ES populations (one population for each GPA
individual) in the GPA-ES system. While Fig. 1 outlines control flow of hybrid algorithm, Fig. 2 is
denoted to fundamental data structures of this system.

End

Evolutionary operators

Initial structure population

Initial population of parameters

Parameters evaluation

Sort population

Intelligent Crossover

M Iterative cycles

Next

Ending
condition

Fig. 1 Hybrid GPA-ES system structure.

represents separate population of ES individuals used for parameters optimization.
Individuals of this ES population are represented as rows of magnitudes in the
relevant boxes.

Computational complexity of GPA-ES is expressed as (1), as it was analyzed
in [3]

O (GPAES) ' pqnm logm+ pqn log n, (1)

where

n is number of GPA individuals,

m is number of ES individuals,

l is complexity of structures created by GPA,

k is average number of constants in GPA genes, where k = 2l−2,

p is number of GPA populations,

q is number of ES populations.

595

Neural Network World 6/2017, 593–605

Figure 1: Hybrid GPA-ES system structure.

Left part of Fig. 1 describes master GPA algorithm, which is implemented in the way described by
Koza [10, 11]. When execution of this algorithm enters into state of individual evaluation, slave
Evolutionary Strategy described by right part of the Figure is called for each GPA individual. After
the ES algorithm execution, fitness of the best individual is reasoned as fitness of the GPA individual.

The first line of boxes in Fig. 2 represents individuals of GPA algorithm. Each box in second line
corresponds to related GPA individual. Each of these boxes represents separate population of ES
individuals used for parameters optimization. Individuals of this ES population are represented as
rows of magnitudes in the relevant boxes.

Computational complexity of GPA-ES is expressed as (1), as it was analyzed in [3]
 npqnmpqnmGPAESO loglog , (1)

where
n is number of GPA individuals,
m is number of ES individuals,
l is complexity of structures created by GPA,
k is average number of constants in GPA genes, where k= 2l−2

,
p is number of GPA populations,
q is number of ES populations.

Figure 2: Relationship between GPA population individuals and vectors of ES populations.

Experiment organization corresponds to this structure, there were 5 different (p)RNGs for GPA part
and 3 for ES part of the algorithm are reasoned. These generators are listed in the following Table1:

Table 1: Different (p)RNG use in the GPA-ES algorithm

 initial population of GPA generating
 regenerating of GPA population (except the best individual)
 mutation operators of GPA
 crossover operators of GPA (it is useful to use more different operators like symmetric

crossover and one-point-crossover to prevent stagnation of evolution caused trapping in
evolutionary cycle like it is demonstrated for simple case in [4])

 control of GPA operation
 initial ES population generating
 control of ES intelligent crossover operator
 addition of new individuals into ES population

+ *

*
- / y

x C1 x C2 x C1

...

C1=1;C2=5
...
...
C1=0;C2=99

C1=2
...
...
C1=17

Fig. 2 Relationship between GPA population individuals and vectors of ES popula-
tions.

Experiment organization corresponds to this structure, there were 5 different
(p)RNGs for GPA part and 3 for ES part of the algorithm are reasoned. These
generators are listed in the following Tab. I.

– initial population of GPA generating
– regenerating of GPA population (except the best individual)
– mutation operators of GPA
– crossover operators of GPA (it is useful to use more different operators

like symmetric crossover and one-point-crossover to prevent stagnation of
evolution caused trapping in evolutionary cycle like it is demonstrated for
simple case in [4])

– control of GPA operation
– initial ES population generating
– control of ES intelligent crossover operator
– addition of new individuals into ES population

Tab. I Different (p)RNG use in the GPA-ES algorithm.

There is hidden significant problem of comparability of particular (p)RNG in-
fluence to whole GPA-ES evolutionary system behaviour, see e.g. [14]. There is no
possibility to imply e.g. if generator A is the best on position of mutation operation
generator when other generators are of type B that this generator will be the best
when type of the remaining generator types change. There are mutual influences
of evolutionary operators given especially by common genome, that does not al-
low analysing of each operator individually. This is problem for choice of optimal
(p)RNG combination but it is not the limit of presented project because it is still
possible to analyse requirements of particular evolutionary operators to (p)RNGs.

The efficiency of GP algorithm is influenced by many powers. On the first
places it is possible to mention population sizes, function sets, probabilities of

596

Brandejsky T.: Influence of (p)RNGs onto GPA-ES behaviors

particular operations (like mutation or crossover), real independence of GPA and
ES threads and particular (p)RNGs etc. In the presented study, the big effort
was focused to elimination of these influences. Population sizes were constant
as well as probabilities of particular operations. Thread independence is solved
through openMP library. The biggest problem is thread independence of (p)RNGs.
In presented experiments, <random>library of 11th version of C++ standard is
applied. This library declares thread independence, but many implementations
even in the same GNU compiler version do not ensure this feature.

Because the significant role to reliability of presented data plays number of
particular generator calls during single test, Tab. II enumerates their number when
we are reasoning 100 individuals in GPA population, 100 individuals in each of 100
corresponding ES populations, constant number of 40 ES evolutionary cycles and
100 GPA evolutionary cycles in average:

There is significant influence of seed magnitudes observed in the experiments.
Unfortunately, it was observed that large number of individuals in studied popu-
lations (e.g. populations of 1000 individuals) is not able to eliminate this factor.
This influence shall be eliminated only by a large number of experiments with dif-
ferent seed magnitudes. The performed experiments concludes that it is need to
use at least 2000 different seed magnitudes to decrease error of measurement to
magnitude smaller than 0.1%.

3. Observed dynamics

The results of experiments are significantly influenced by regressed functions, es-
pecially their structure. To increase reliability of experiments, the large number of
test functions is frequently applied by many researchers and benchmark sets were
formed. Because it is need to use large number of seed magnitudes for each function
and large populations in each experiment, there it is extreme computational power
need and experiments are calculated on supercomputer. Fortunately, if structure
of the algorithm is known, it is possible to estimate probability of occurrence of
given structure in the population and transpose results from measured experiments
to another test case, as it was presented in [6, 13, 18], where the first monograph
presents many ways based especially on the schema theory, the second paper brings
approach close to Markov processes.

As it was written above, the test set of herein presented experiments was re-
stricted to three functions describing Lorenz attractor system (2 and 3):

x (t) = σ (y (t)− x (t)) , (2)

y (t) = (ρ− z (t))− y (t) ,

z (t) = x (t) y (t)− βz (t) ,

σ = 16 β = 4 ρ = 45.91 (3)

The regressed data are in the form of table of 600 points describing Lorenz attractor
system movement sampled with period of 0.01 sec. The estimation process stops
when sum of error squares across all 600 points is less or equal to 1× 10−7.

Lorenz attractor system is not a typical benchmark. Many researchers use
different ones like [19]. These benchmarks are many times focused to different

597

Neural Network World 6/2017, 593–605

– Initial GPA population generating – approximately 550 (p)RNG calls for
average depth of initial operator tree between 2 and 3. This operation is
applied only once.

– Regenerating of GPA population (except the best individual) - approxi-
mately influences 30% individuals in the each next population means 7500
(p)RNG calls in average. Regenerating operation is a generating of totally
new individuals without any relation to existing ones in contrast to mu-
tation operation which modifies previously existing ones.

– Mutation operators of GPA are called in 50% of evolutionary operator
calls ad in represents 200000 random numbers.

– Crossover operators influence about 20% of GPA individuals when there
are two versions called classical crossover used in even cycles and symmet-
ric crossover in odd cycles. Symmetrical one-point crossover differ from
other variants (brief reviews bring e.g. [4, 10, 11, 14]) in the same move-
ment in both recombined structures. The purpose of this modification of
crossover operator is to increase semantic similarity of produced structures
(and efficiency of the algorithm).

– classical crossover – about 1740 (p)RNG calls in our model case.
– symmetric crossover – about 1740 (p)RNG calls in presented average case.
– Control of GPA operation – 200 (p)RNG calls.
– Initial ES population generating – because to each individual of GPA part

of the algorithm it is need to create and evolve separate ES population,
the average number of (p)RNG calls for above described parameters is
equal to 5000000.

– Control of ES intelligent crossover operator (p)RNG call number depends
on numbers of regenerated ES individuals, ES and GPA cycles and GPA
populations and it is equal to 396000. This crossover operator uses lin-
ear interpolation between both individuals with overlaps below and over
interval defined by original individual coordinate positions.

– Addition of new individuals into ES population then also represents 396000
(p)RNG calls.

Tab. II Estimations of (p)RNG call numbers in separate parts of GPA-ES algo-
rithm.

problem than symbolic regression ones. There is also another problem that these
benchmarks are not representing non-similar functions. As it was analysed in [6],
it is necessary to analyse probability of particular structure in the population and
it depends on the used algorithm. Thus results obtained from Lorenz attractor
system symbolic regression might be transformed and then compared e.g. with
results of [19].

The 1st equation describing x variable is linear and simple. It is easy to discover
it and the needed number of iteration is the smallest. The Tab. III and Fig. 3.
Used random number generators are following: rand denotes standard c random
number generator – the simplest linear congruential one, minstd0 is multiplicative
congruential pseudo-random number generator as well as minstd (they differs in

598

Brandejsky T.: Influence of (p)RNGs onto GPA-ES behaviors

X rand minstd0 true randlux24 minstd Lorenz Lorenz Lorenz
random x y z

GPA initial
population
generating

21.84 21.47 21.94 22.04 22.19 22.12 21.88 22.90

GPA population
regenerating

22.87 22.29 22.40 21.73 22.77 23.38 22.01 22.77

GPA mutation
control

22.13 22.56 22.44 22.77 22.29 22.05 22.57 20.96

GPA crossover
control

22.13 22.56 22.44 22.77 22.29 22.05 22.57 20.96

GPA operation
control

22.24 22.35 21.92 22.62 22.08 19.78 21.92 13.75

ES initial popula-
tion generation

22.05 20.97 21.76 20.54 20.67 21.78 21.28 21.52

ES crossover
control

22.35 21.07 21.33 21.11 21.00 21.28 21.25 27.81

ES new individual
addition control

22.69 21.77 21.24 22.05 21.98 8.40 7.44 17.27

Tab. III Influence of Number Generators to GPA-ES efficiency for symbolic re-
gression x-axis function of Lorenz attractor data.

GPA operation
control 22,24 22,35 21,92 22,62 22,08 19,78 21,92 13,75
ES initial
population
generation 22,05 20,97 21,76 20,54 20,67 21,78 21,28 21,52
ES crossover
control 22,35 21,07 21,33 21,11 21,00 21,28 21,25 27,81
ES new
individual
addition control 22,69 21,77 21,24 22,05 21,98 8,40 7,44 17,27

Figure 3: Number of iterations of symbolic regression process of x-variable of Lorenz attractor data
in dependence on chosen number generator type.

Table 4: Influence of Number Generators to GPA-ES efficiency for y-axis function symbolic
regression of Lorenz attractor data

Y rand minstd0
true
random

randlux
24 minstd Lorenz_x

Lorenz
_y

Lorenz
_z

GPA initial
population
generating 203,24 204,76 203,23 197,50 207,01 206,08 200,33 202,86
GPA population
regenerating 198,14 209,89 204,21 203,08 201,93 204,14 198,89 203,35
GPA mutation
control 204,41 205,25 202,19 204,18 204,11 197,84 198,88 295,83
GPA crossover
control 204,41 205,25 202,19 204,18 204,11 197,84 198,88 295,83
GPA operation
control 204,48 198,82 205,40 204,78 206,38 195,90 219,46 174,02

Fig. 3 Number of iterations of symbolic regression process of x-variable of Lorenz
attractor data in dependence on chosen number generator type.

599

Neural Network World 6/2017, 593–605

Y rand minstd0 true randlux24 minstd Lorenz Lorenz Lorenz
random x y z

GPA initial
population
generating

203.24 204.76 203.23 197.50 207.01 206.08 200.33 202.86

GPA population
regenerating

198.14 209.89 204.21 203.08 201.93 204.14 198.89 203.35

GPA mutation
control

204.41 205.25 202.19 204.18 204.11 197.84 198.88 295.83

GPA crossover
control

204.41 205.25 202.19 204.18 204.11 197.84 198.88 295.83

GPA operation
control

204.48 198.82 205.40 204.78 206.38 195.90 219.46 174.02

ES initial popula-
tion generation

203.46 199.55 205.11 205.78 206.28 205.14 201.37 206.09

ES crossover
control

200.23 196.50 205.20 202.80 202.19 277.62 268.48 377.75

ES new individual
addition control

203.80 205.55 199.43 206.26 197.41 139.01 129.95 197.18

Tab. IV Influence of Number Generators to GPA-ES efficiency for y-axis function
symbolic regression of Lorenz attractor data.

ES initial
population
generation 203,46 199,55 205,11 205,78 206,28 205,14 201,37 206,09
ES crossover
control 200,23 196,50 205,20 202,80 202,19 277,62 268,48 377,75
ES new
individual
addition control 203,80 205,55 199,43 206,26 197,41 139,01 129,95 197,18

Figure 4: Number of iterations of symbolic regression process of y-variable of Lorenz attractor data
in dependence on chosen number generator type

Table 5: Influence of Number Generators to GPA-ES efficiency for z-axis of Lorenz
attractor data

Z rand minstd0
true
random randlux24 minstd

Lorenz
_x

Lorenz
_y

Lorenz
_z

GPA initial
population
generating 30,46 31,33 30,51 31,26 31,41 30,44 32,67 32,27
GPA population
regenerating 30,74 31,59 30,94 30,52 31,27 30,97 31,78 30,71
GPA mutation
control 30,98 31,15 31,31 30,37 30,93 31,09 32,34 29,90
GPA crossover
control 30,98 31,15 31,31 30,37 30,93 31,09 32,34 29,90
GPA operation
control 31,35 31,28 30,60 31,42 30,67 31,80 31,26 28,46
ES initial
population
generation 30,78 31,47 30,75 30,70 31,61 30,33 30,30 30,94

Fig. 4 Number of iterations of symbolic regression process of y-variable of Lorenz
attractor data in dependence on chosen number generator type.

600

Brandejsky T.: Influence of (p)RNGs onto GPA-ES behaviors

Z rand minstd0 true randlux24 minstd Lorenz Lorenz Lorenz
random x y z

GPA initial
population
generating

30.46 31.33 30.51 31.26 31.41 30.44 32.67 32.27

GPA population
regenerating

30.74 31.59 30.94 30.52 31.27 30.97 31.78 30.71

GPA mutation
control

30.98 31.15 31.31 30.37 30.93 31.09 32.34 29.90

GPA crossover
control

30.98 31.15 31.31 30.37 30.93 31.09 32.34 29.90

GPA operation
control

31.35 31.28 30.60 31.42 30.67 31.80 31.26 28.46

ES initial popula-
tion generation

30.78 31.47 30.75 30.70 31.61 30.33 30.30 30.94

ES crossover
control

31.60 31.31 30.39 30.21 31.72 31.04 31.50 34.83

ES new individual
addition control

31.59 31.61 31.36 31.02 30.71 21.54 20.37 27.57

Tab. V Influence of Number Generators to GPA-ES efficiency for z-axis of Lorenz
attractor data.

ES crossover
control 31,60 31,31 30,39 30,21 31,72 31,04 31,50 34,83
ES new
individual
addition control 31,59 31,61 31,36 31,02 30,71 21,54 20,37 27,57

Figure 5: Number of iterations of symbolic regression process of x-variable of Lorenz attractor data
in dependence on chosen number generator type.

Above presented graphs points some interesting dependencies. The generators used to formation of
initial population are able to influence whole symbolic regression process. There is strong evidence
that requirements of GPA crossover and mutation operators to Number Generators are similar. ES
part of the algorithm is extremely sensitive to application of non-random Lorenz attractor based
Number Generators to influence symbolic regression process.
For the practical applicability of obtained results in multi-number generator evolutionary systems
there will be crucial presence on some form of superposition of results obtained by investigation of
single distinguish generator influence. Because it is possible to estimate, that composition of specific
generators will be complicated and non-linear, this problem will be subject of future research too.
Table 6 brings example of superposition of generators and presented results gives chance that
presented analysis of independent NGs is applicable to real multi-number generator evolutionary
systems design.
The first two lines of this table presents situations when all NGs are rand() functions and start with
seed 0 except one, which seed magnitudes vary from 0 up to 1999. These initial seed magnitude
vectors are applied to GPA mutation and GPA operation control NGs. The next two lines replaces
GPA mutation and GPA operation control NGs with minstd or Lorenz z-axis based NG respectively.
The results produced by these generator vectors are better than in the first two cases. The last two
lines of Table 6 present combination of both previous NG vectors and when one seed magnitude
vector is applied. The obtained numbers of iteration cycles are smallest, thus they confirm the
presence of constrained form of superposition.

Table 6: comparison of numbers of needed iteration cycles for different sets of NGs

Test case x y z

Fig. 5 Number of iterations of symbolic regression process of x-variable of Lorenz
attractor data in dependence on chosen number generator type.

601

Neural Network World 6/2017, 593–605

parameters, true random generator is based on stochastic processes to generate
a sequence of uniformly distributed random numbers, randlux24 is a subtract-
with-carry pseudo-random generator of 24-bit numbers and Lorenz X, Y and Z
generators uses differential equation describing Lorenz deterministic chaos system
coordinate X, Y and Z respectivelly.

Above presented graphs points some interesting dependencies. The generators
used to formation of initial population are able to influence whole symbolic regres-
sion process. There is strong evidence that requirements of GPA crossover and
mutation operators to Number Generators are similar. ES part of the algorithm is
extremely sensitive to application of non-random Lorenz attractor based Number
Generators to influence symbolic regression process.

For the practical applicability of obtained results in multi-number generator
evolutionary systems there will be crucial presence on some form of superposition of
results obtained by investigation of single distinguish generator influence. Because
it is possible to estimate, that composition of specific generators will be complicated
and non-linear, this problem will be subject of future research too. Tab. VI brings
example of superposition of generators and presented results gives chance that
presented analysis of independent NGs is applicable to real multi-number generator
evolutionary systems design.

The first two lines of this table presents situations when all NGs are rand()
functions and start with seed 0 except one, which seed magnitudes vary from 0
up to 1999. These initial seed magnitude vectors are applied to GPA mutation
and GPA operation control NGs. The next two lines replaces GPA mutation and
GPA operation control NGs with minstd or Lorenz z-axis based NG respectively.
The results produced by these generator vectors are better than in the first two
cases. The last two lines of Tab. VI present combination of both previous NG
vectors and when one seed magnitude vector is applied. The obtained numbers of
iteration cycles are smallest, thus they confirm the presence of constrained form of
superposition.

The above presented experiments points that there are only small differences
between many (p)RNGs. On the opposite side, e.g. in the case of number generator
used to generating of new additional individuals into ES population the best results
are in some cases produced by Lorenz attractor systems based number generators.

4. Conclusion

Presented study points that there are no significantly distinguishable differences
between standard (p)RNGs in the case of symbolic regression on linear or nearly
linear systems symbolic regression like x a y coordinate of Lorenz attractor. Z axis
based number generator produces more chaotic results.

The more significant information about importance of particular (p)RNG prop-
erties for evolutionary algorithms efficiency might be observed on non-standard
generators like Lorenz attractor system based ones or non-linear systems sym-
bolic regression. The problems of such system study are caused by computational
power consumption because both non-standard number generators and symbolic
regression of strongly non-linear systems symbolic regression require exhaustive
computations.

602

Brandejsky T.: Influence of (p)RNGs onto GPA-ES behaviors

Test case x y z

rand() generator for all positions and 2000 different seed
magnitudes for mutation one

22.78 205.60 32.10

rand() generator for all positions and 2000 different seed
magnitudes for GPA operation controll

22.24 204.48 31.35

rand() generator for all positions except mutation one,
where was minstd() tested for 2000 different seed mag-
nitudes

21.22 203.50 31.23

rand() generator for all positions except GPA operation
control, where was NG based on z axis of Lorenz attractor
tested for 2000 different seed magnitudes

13.75 173.61 28.36

rand() generator for all positions except mutation and
GPA operation control ones, where were NG based on z
axis of Lorenz attractor for GPA operation control and
minstd() (p)RNG for mutation tested for 2000 different
seed magnitudes

15.40 159.53 28.22

rand() generator for all positions except mutation and
GPA operation control ones, where were minstd() (p)RNG
for mutation and NG based on z axis of Lorenz attractor
for GPA operation control tested for 2000 different seed
magnitudes

14.52 161.32 28.15

Tab. VI comparison of numbers of needed iteration cycles for different sets of
NGs.

It is easier to analyse Evolutionary Strategy properties. For less complex ES
system it is possible to form suggestion about number generators influencing control
of ES intelligent crossover operator and addition of new individuals into ES popu-
lation. In the case of intelligent crossover operator true (hardware) random device,
subtract-with-carry pseudo-random generator of 24-bit numbers with accelerated
advancement and minimal standard generator gives better results than frequently
used rand() function. For regenerating of poor individuals in the population the
minimal standard generator and true random device are better (under conditions
of presented study) than standard rand() function of C++ stdlib function.

On the base of above presented results it is possible to conclude that the selec-
tion of (p)RNG (and other number generators) influence efficiency of evolutionary
system. The hypothesis that different evolutionary operators need distinct number
generator sets was confirmed too. From practical use viewpoint there is still prob-
lem that influence of particular number generator (e.g. of generator controlling
mutation) is affected by other generators and thus whole generator set for each
particular operation must be reasoned. It is not possible to simply find the best
(p)RNG e.g. for mutation operator without respecting (p)RNGs influencing other
evolutionary operators of the used evolutionary algorithm.

603

Neural Network World 6/2017, 593–605

Acknowledgement

This work was supported by The Ministry of Education, Youth and Sports from
the Large Infrastructures for Research, Experimental Development and Innovations
project “IT4Innovations National Supercomputing Center – LM2015070”, project
“Random number generators influence onto Evolutionary Algorithms behaviors”
in 6th Open Access call.

References

[1] Bastos-Filho C.J.A., Oliveira Junior M.A.C., Nascimento D.N.O., Ramos A. D. Impact of the
Random Number Generator Quality on Particle Swarm Optimization Algorithm Running on
Graphic Processor Units. Conference: 10th International Conference on Hybrid Intelligent
Systems (HIS 2010), Atlanta, GA, USA, August, 2010, 23-25, Curran Associates, Inc. ISBN
9781424473632, doi: 10.1109/HIS.2010.5601073.

[2] Brandejsky T. Limited randomness evolutionary strategy algorithm. In: Matousek R. (ed.):
Mendel 2015. Springer, 2015, pp. 53–62, ISBN 978-3-319-19824-8.

[3] Brandejsky T. Multi-layered evolutionary system suitable to symbolic model regression. In:
Nikos Mastorakis, Metin Demiralp, and N. A. Baykara (Eds.) Proceedings of the 2nd interna-
tional conference on Applied informatics and computing theory (AICT’11). World Scientific
and Engineering Academy and Society (WSEAS), Stevens Point, Wisconsin, USA, 2011, pp.
222–225. ISBN 978-1-61804-034-3

[4] Brandejsky T. Evolutionary system to model structure and parameters regression, Neural
Network World. 2012, 22(2), pp. 181–194. ISSN 1210-0552, doi: 10.14311/NNW.2012.22.011.

[5] Brandejsky T. Analysis of Genetic Algorithm Behavior. In: Matousek R., ed. Mendel
2012. Mendel 2012 – 18th International Conference on Soft Computing. Brno, 27.06.2012
– 29.06.2012. Brno: VUT v Brně, Faculty of mechanical engineering, 2012, pp. 76–80. ISSN
1803-3814. ISBN 978-80-214-4540-6.

[6] Brandejsky T., Zelinka I. Specific behaviour of GPA-ES evolutionary system observed
in deterministic chaos regression. In: Nostradamus : Modern Methods of Prediction,
Modelling and Analysis of Nonlinear Systems. Heidelberg, Springer, 2013, pp. 73–81.
ISSN 2194-5357. ISBN 978-3-642-33226-5, https://link.springer.com/chapter/10.1007/

978-3-642-33227-2_10.

[7] Cantú-Paz E. On Random Numbers and the Performance of Genetic Algorithms. GECCO
2002: Proceedings of the Genetic and Evolutionary Computation Conference, New York,
USA, 2002, pp. 311–318, Morgan Kaufmann.

[8] Cárdenas-Montes M., Vega-Rodŕıguez M.A., Gómez-Iglesias A. Sensitiveness of Evolution-
ary Algorithms to the Random Number Generator. In: Dobnikar, A. Šter, U., Branko L.
Adaptive and Natural Computing Algorithms: 10th International Conference, ICANNGA
2011, Ljubljana, Slovenia, April 14–16, Proceedings, Part I, 2011, pp. 371–380, Springer,
Berlin, Heidelberg, ISBN 978-3-642-20282-7, doi: 10.1007/978-3-642-20282-7_38.

[9] James F. A review of pseudorandom number generators. Computer Physics Communications.
1990, 60, pp. 329–344, North-Holland.

[10] Koza J.R. Genetic Programming: On the Programming of Computers by Means of Natural
Selection, MIT Press, 1992. ISBN 0-262-11170-5

[11] Koza J.R., Bennett F.H., Andre D., Keane M.A. Genetic Programming III: Darwinian
Invention and Problem Solving, Morgan Kaufmann, 1999. ISBN 1-55860-543-6

[12] Krőmer P., Snášel V., Platoš J., Husek D. Genetic algorithms for the linear ordering problem,
Neural Network World. 2009, 19, pp. 65–80, CTU in Prague.

[13] Langdon W.B., Poli R. Foundations of Genetic Programming. Springer, New York, eidelberg,
Berlin, 1998. ISBN 978-3-662-04726-2

604

http://dx.doi.org/10.1109/HIS.2010.5601073
http://dx.doi.org/10.14311/NNW.2012.22.011
https://link.springer.com/chapter/10.1007/978-3-642-33227-2_10
https://link.springer.com/chapter/10.1007/978-3-642-33227-2_10
http://dx.doi.org/10.1007/978-3-642-20282-7_38

Brandejsky T.: Influence of (p)RNGs onto GPA-ES behaviors

[14] Poli R., Langdon W.B., McPhee N.F. A field guide to genetic programming, Lulu Enterprises,
UK Ltd (March 26, 2008), ISBN-13: 978-1409200734

[15] Senkerik R., Davendra D.D., Zelinka I., Pluhacek M., Kominkova-Oplatkova Z. Chaos Driven
Differential Evolution with Lozi Map in the Task of Chemical Reactor Optimization. Lecture
Notes in Computer Science. Volume 7895, Springer, 2013, pp. 56–66.

[16] Senkerik R., Davendra D.D., Zelinka I., Pluhacek M., Kominkova-Oplatkova Z.: On The Dif-
ferential Evolution Driven By Selected Discrete Chaotic Systems: Extended Study. Mendel
2013: 19th International Conference on Soft Computing : June 26-28, 2013, Brno, Czech
Republic, Brno University of Technology, 2013, pp. 137–144.

[17] Senkerik R., Pluhacek M., Davendra D.D., Zelinka I., Kominkova-Oplatkova Z.: Chaos
Driven Evolutionary Algorithm: a New Approach for Evolutionary Optimization. Recent
advances in systems, control and informatics: proceedings of the 2013 International con-
ference on systems, control and informatics (SCI 2013) : September 28–30, 2013, Venice,
Italy, WSEAS Press, 2013, pp. 117–122.

[18] Senkerik R., Pluhacek M., Kominkova-Oplatkova Z.: Simulation of time-continuous chaotic
systems for the generating of random numbers. Latest Trends on Systems – Volume II.
Proceedings of the 18th International Conference on Systems (part of CSCC ’14). Santorini
Island, Greece, July 17–21, 2014, pp. 557-561, ISSN: 1790-5117, ISBN: 978-1-61804-244-6.

[19] GPA benchmarks, http://www.gpbenchmarks.org/wiki/index.php?title$=$Problem_

Classification, accessed 21st July 2017.

605

http://www.gpbenchmarks.org/wiki/index.php?title$=$Problem_ Classification
http://www.gpbenchmarks.org/wiki/index.php?title$=$Problem_ Classification

