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Abstract: P300 brain-computer interfaces (BCIs) have been gaining attention in
recent years. To achieve good performance and accuracy, it is necessary to optimize
both feature extraction and classification algorithms. This article aims at verify-
ing whether supervised learning models based on self-organizing maps (SOM) or
adaptive resonance theory (ART) can be useful for this task. For feature extrac-
tion, the state-of-the-art Windowed means paradigm was used. For classification,
proposed classifiers were compared with state-of-the-art classifiers used in BCI
research, such as Bayesian Linear Discriminant Analysis, or shrinkage LDA. Pub-
licly available datasets from fifteen healthy subjects were used for the experiments.
The results indicated that SOM-based models yield better results than ART-based
models. The best performance was achieved by the LASSO model that was com-
parable to state-of-the-art BCI classifiers. Further possibilities for improvements
are discussed.
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1. Introduction

Brain-computer interfaces (BCIs) have been gaining popularity in recent years.
The main aim of BCIs is to recognize the intention of its user directly, typically
by processing electroencephalographic (EEG) signal. This has potential benefits
for both healthy and paralyzed people. For patients with locked-in syndrome that
cannot speak or make any intentional movement, BCIs may be the only option
for communication with the outside world. Many different BCI paradigms have
been described in the literature [26]. One of the most established BCI systems are
P300-based BCIs.
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The P300 is an event-related (ERP) component in EEG signal. It appears
in the signal during an odd-ball experimental paradigm. This paradigm is based
on a sequence of visual or auditory stimuli that are presented to the measured
participant. The stimuli can be categorized into rare (target) and common (non-
target). The participant is asked to silently count occurrences of target stimuli
that randomly appear among a series of non-target stimuli. Typically, the P300
waveform is measurable across the parieto-central area of the head [25]. Its latency
is usually between 300 ms and 450 ms, and its amplitude is much larger following
target stimuli. An example of the P300 waveform is depicted in Fig. 1 [25].

Since the P300 component depends on attention and stimulus category, it can
be used for BCI design. In 1988, Farwell and Donchin [9] introduced the P300
speller that displays letters arranged in rows and columns. The user chooses one
letter he or she wants to type. Subsequently, rows and columns randomly flash.
The P300 component should appear in the signal following the row and column
associated with that letter [9].
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Fig. 1 Comparison of averaged EEG responses to common (non-target) stimuli and
rare (target) stimuli. There is a clear P300 component following the target stimuli.

Since P300-based BCIs rely on the P300 detection, it is worth optimizing its
performance. With a reliable P300 classifier, different BCIs based on this principle
can be implemented easily. Unfortunately, the P300 waveform has a much lower
amplitude in comparison with background EEG signal. Consequently, accurate
detection of the P300 component remains challenging.

1.1 State of the Art

P300 BCI algorithms aim at the detection of the P300 component in ERP data. To
improve signal-to-noise ratio (SNR) of the P300 data, pre-processing is often used
as the first step. Because ERPs occur mostly in certain frequency bands (typically
between 0.1 and 30 Hz [25]), band-pass filtering can preserve the P300 and suppress
the noise. Moreover, since the P300 occurs regularly following the same types of
stimuli while background EEG is randomly distributed, it is possible to amplify the
P300 using averaging stimulus-locked trials [25]. However, averaging slows down
information transfer rate. As the next step, features are extracted from ERP trials.
Different considerations including size of the dataset, focus on time or frequency
domain should influence feature extraction choice. The P300 is mostly pronounced
in time domain, so discrete wavelet transform, window averaging and other related
methods are commonly applied. The final step is the decision about the presence
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of the P300 component based on classification. The first proposed classifier was
a step-wise discriminant analysis (SWDA) followed by peak picking and covari-
ance evaluation [9]. Linear classifiers have been commonly applied to the P300
detection including support vector machine (SVM) [32], and linear discriminant
analysis (LDA) [13]. In [21], it was demonstrated that SWDA and Fisher’s linear
discriminant analysis provided the best performance and implementation charac-
teristics for practical classification. Furthermore, Bayesian LDA (BLDA) was also
successfully applied to the P300 detection problem and is currently widely used in
this area [14]. However, relative simplicity of linear classifiers can be seen both as
advantage and disadvantage. When classes in the feature space are not linearly
separable (which is probably the case for P300 data), they are likely to perform
worse that nonlinear classifiers. Moreover, they commonly suffer from the curse of
dimensionality that limits their benefits for high-dimensional feature vectors [10].

The search for a suitable classifier has inspired many researchers to propose or
even design alternative classification algorithms that may yield better performance
when compared to traditional algorithms. This paper focuses on self-organizing
maps and Adaptive Resonance Theory that have so far not been extensively used
for P300 BCIs. These neural networks learn representation of different features
that occur in the dataset. After unsupervised training, a labeling process can
follow that associates those representatives with the most likely class labels. Using
this procedure, these methods can be able to spot differences between target and
non-target even before supervised labeling and thus provide interesting results.

There have been only a few studies regarding self-organizing maps (SOMs) [20]
or Adaptive Resonance Theory (ART) [5] for the P300 detection. Self-organizing
maps were successfully applied to recognition of topographic patterns of EEG spec-
tra in [17]. Six classes were used, for continuous alpha activity, flat EEG, theta
activity, eye movements, muscle activity and bad electrodes contact. The authors
concluded that SOMs were able to recognize similar topographic patterns, even in
EEGs not used for the training of the map. According to [24], Learning Vector
Quantization (LVQ) – a supervised SOM-based classification model – was applied
to EEG classification tasks. In [23], supervised LVQ1 has successfully been applied
to the P300 data. This further supports the hypothesis that similar models may
be beneficial for P300 BCIs. Moreover, in [19], the authors proposed SOM-based
clustering of P300 feature vectors obtained by wavelet transform. However, the
authors did neither implement nor test their proposed system. In [28], another
SOM-based P300 detection system was proposed and evaluated. Its goal was to
detect start and end times of the children P300 components that were previously
estimated by experts.

In our previous work, it was proven that the ART 2 networks [36] and SOM
networks [37] were able to separate some ERP components from background noise.

1.2 Aims of this paper

The objective of this paper is to propose rare or novel P300 classification tech-
niques based on SOM or ART, and to compare them with traditional classification
approaches. The paper is organized as follows: Section 2 introduces methods based
on SOM and ART. Subsequently, the proposed experiment is described: in Sec-
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tion 3, details about the obtained data and experimental conditions are given.
Section 4 explains feature extraction and informs about parameters that were used
for classification. Results are given in Section 5 and discussed in Section 6.

2. Methods

This chapter provides description of the SOM and ART-based methods used – both
already existing in the literature (the LASSO model, both original and simplified
fuzzy ARTMAP) and authors’ SOM modifications that will be referred to as SOM1
and SOM2 methods.

2.1 SOM1

The SOM1 method was a simple procedure we have designed to turn an unsuper-
vised SOM into a supervised classifier. It was based on assigning the most likely
class label for each SOM neuron (codebook vector). The motivation to test this
method was an assumption that once the SOM training using self-organization is
finished, each SOM unit represents a distinct ERP pattern that may correspond
to both target and non-target labels. Such distinct patterns could maintain some
stability and thus provide reasonable estimation for testing data as well.

As the first step of the SOM1 method, the SOM network was trained using
self-organization in the standard way. The second process was performed to label
the SOM cluster units with the most likely outputs. A memory unit containing two
variables (t for number of targets, n for number of non-targets) was associated with
each SOM unit. One iteration of the labeling process was performed as follows (x
was the input vector, ωij was the weight between i-th input and j-th neuron):

1. In the same way like it would be performed for traditional SOM learning: for
each SOM unit j, compute distance D(j) from the input vector x:

D(j) =
∑
i

(ωij − xi)2. (1)

2. Find a cluster unit j such that D(j) is a minimum, and denote it J . (J is
the closest cluster unit.)

3. If the expected class of feature vector x is target, set JT ← JT+1. Otherwise,
set JN ← JN + 1.

Consequently, for each SOM unit, numbers of associated target and non-target
features were obtained.

Finally, to compensate for possible differences in numbers of targets and non-
targets, for each SOM unit J in the map, the following computation was performed:
JT ← JT/number of targets and JN ← JN/number of nontargets.

In the testing phase, the algorithm was as follows:

1. The closest cluster unit J was found for an input x.
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2. The class label was assigned to the input x as a result of comparison between
the number of targets and non-targets previously associated with that cluster
unit during the training process. If JT was higher than JN, the input x was
classified as the target. Otherwise, it was classified as the non-target.

2.2 SOM2

The previous method was modified to the SOM2 method by adding k-means clus-
tering. The SOM network was trained using self-organization in the same way as
for the SOM1 method. Subsequently, k-means clustering was performed to create a
selected number of clusters from the SOM unit vectors. Instead of assigning statis-
tics to each SOM cluster unit, statistics were merged for each cluster. In other
words, for each labeling iteration:

1. The winner SOM unit J was found.

2. The cluster C was assigned if J ∈ C.

3. Based on the training feature vector label, CT or CN was incremented.

Finally, any possible differences between numbers of targets and non-targets were
compensated as for the SOM1 method.

This method allowed each SOM cluster to be associated with one prevailing
classification class label. In the testing phase, the cluster containing the winning
neuron made the decision about the classification class of that input pattern.

2.3 LASSO model

The LASSO model (Learning ASsociations by Self-Organization) [27] was designed
for supervised learning based on unsupervised SOM model. The main idea behind
this model is that output patterns can be presented to the SOM map for its orga-
nization simultaneously with input patterns. The principle of the LASSO model is
illustrated in Fig. 2. It consists of three layers: an input layer (nI dimensional), a
Kohonen (SOM) layer (represented by traditional SOM units), and an output layer
(nO dimensional). Each SOM cluster unit is connected to all the units of the two
other layers. The weights of connections from input units to SOM units are called
ωIK. Unlike the traditional SOM learning model, connections from SOM units to
output units are bidirectional: the weights from the SOM layer to output are called
ωKO while ωOK is used for the weights from the output to the SOM layer.

In the learning phase, the weights ωIK and ωOK are learned simultaneously
using self-organization. Weights are gradually adjusted using input and desired
output presented together at each learning step. At the end of the learning phase,
the weights ωOK are used for computing associated outputs: the weights ωKO are
set to ωOK.

After the learning phase, input and output layer are separated again. The
SOM map is then used to associate missing data (output pattern) with partial
information (input pattern).
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Fig. 2 The principle of the LASSO model. On the left, the training phase is
illustrated. Both original feature vector ωIK and known class label vector ωOK are
connected into one big feature vector that is used for the SOM training. In the
testing phase (on the right), only feature vector is used and the expected class label
vector ωKO is filled from the winning neuron [27].

An output pattern is associated with one input pattern in the following way:

1. An input pattern x is presented onto the input layer (nI dimensional)

2. Minimizing the Euclidian distance in the nI dimensional input space, the
nO other dimensions are ignored during the winning SOM cluster unit J
assignment. The achieved Euclidian distance in the nI dimensional input
space is called dI.

3. Selection of the activation group referring to all SOM-units that contribute
to setting up the system output. Unit j is selected if dD(j, J) < sD and
d2I (ω

IK
j ,x)−d2I (ω

IK
J ,x)

d2I (ω
IK
J ,x)

< pI where dD is Euclidian distance in the SOM unit

space (typically 2-dimensional for the grid layout of SOM units), sD is the
threshold and pI is the relative distance.

Activations of non-selected units are set to 0 while activations of selected
units are determined in proportion to their representativeness of the input
pattern:

Yj =
d2I (ωIK

J ,x)

d2I (ωIK
j ,x)

. (2)

4. The output pattern is calculated as a sum of output weight vectors in the
activation group (AG), weighted by the activation level given to the SOM
units:

y =
1∑

j∈AG Yj

∑
j∈AG

Yjω
KO
j . (3)
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2.4 Fuzzy ARTMAP

The Fuzzy ARTMAP model [4] is a model that was proposed by the authors of the
ART model. It is a generalization of an ARTMAP system [6] that was proposed
for supervised learning of binary feature vectors. In contrast, the Fuzzy ARTMAP
system is more general as it learns to classify real-valued inputs, more specifically
patterns of fuzzy membership values between 0 and 1 indicating the extent to
which each feature is present. Each fuzzy ARTMAP system contains a pair of
fuzzy adaptive resonance theory modules (ARTa and ARTb) that create stable
recognition categories in response to sequences of input patterns [4]. The first ART
module receives input feature vectors a while the second ART module typically
receives the associated class labels b. Both modules are connected by an associative
learning network and an internal controller that manages related system operation
in real time.

In comparison with SOM-based models, the advantage of the Fuzzy ARTMAP
is that the neurons representing distinct patterns in the inputs are dynamically
created during run time and their number can be controlled using the vigilance
parameter.

2.5 Simplified Fuzzy ARTMAP

The Simplified Fuzzy ARTMAP (SFAM) [33] deals with a significant drawback of
the original fuzzy ARTMAP model – its authors introduced complicated architec-
tures for their networks instead of presenting them as simple algorithms. Moreover,
the original model could generally associate any pairs of feature vectors which cre-
ates too much complexity for classification tasks if the output vectors are simple
class labels. As a solution, redundancies are removed. Thus this model more
resembles multi-layer perceptron. [33]

The main idea of the SFAM model is as follows [33]:

1. Find the nearest subclass prototype J that resonates with the input pattern x

(winner). To resonate, the following condition had to be fulfilled: |x∧ωJ |
|x| > ρ

(see Fig. 3 and its description for context).

2. If the labels of that subclass prototype and the input pattern match, move
the prototype closer to the input pattern.

3. If not, reset the winner, temporarily increase the resonance threshold (ρ) and
try the next winner.

4. If the winner is uncommitted (unlabeled and with its weights set to 1), assign
x to be its prototype and label it using the known input class label.

The algorithm is illustrated in Fig. 3.

3. Conducted experiments

To compare different neural network-based classifiers, our publicly available P300
data were used. These datasets are described in more detail in [34]. Supporting
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Fig. 3 Simplified Fuzzy ARTMAP training algorithm for one feature pattern. Tj,

calculated as Tj(x) =
|x∧ωj |
α+|ωj | is activity of the j-th neuron in the second layer, x

is the input vector, ωj is the weight vector of the j-th neuron in the second layer,
∧ is the fuzzy AND operator, α represents a choice parameter, the norm |.| is L1
norm [33].

datasets and related metadata for this paper can be downloaded from the Giga-
Science database, GigaDB [35]. 15 healthy university students, aged between 20
and 26, participated in the experiments.

3.1 Recording of the data

The EEG/ERP laboratory at the University of West Bohemia, Czech Republic was
used to perform the experiments. The data were recorded in an electrically and
acoustically shielded cabin with a BrainVision amplifier. Standard EEG caps with
19 electrodes were placed according to a 10-20 system. The BrainVision Recorder
1.2 was used [3] for recording the EEG/ERP data. The data were recorded with
1 kHz sampling rate and recording low-pass filter with the cut-off frequency of
250 Hz.

3.2 Stimulation protocol

Three high-power Light-Emitting Diodes (LEDs): red, green and yellow were used
for stimulation. This configuration is suitable for modified odd-ball paradigm ex-
periments (also referred to as three stimulus paradigm [8]). In addition to target
and non-target stimuli, the third diode flash can be used as the distractor stimulus.
The distractor can elicit the subcomponent of the P300 – P3a [31].
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The following stimulation protocol was followed: each diode flashed once a sec-
ond and duration of each flash was 500 ms. The probabilities of the red, green
and yellow diodes flashing were 83 %, 13.5 % and 3.5 %, respectively. Therefore,
the green diode was the target stimulus and the red diode the non-target stimulus.
The yellow diode was the distractor stimulus, and was ignored in the subsequent
processing. The subjects were sitting 1 m from the stimulation device for 20 min-
utes. They were instructed to pay attention to the stimulation and not to perform
any other task-relevant cognitive or behavioral activity.

4. Development of the P300 detection algorithms

4.1 Preprocessing and Feature Extraction

For feature extraction, the Windowed means paradigm [2] was used. The method
is based on averaging epoch time windows that contain the components of interest
(e.g. the P300 component). The following steps were taken:

1. Each dataset was split into epochs (trials) using stimuli markers of target
events – the green diodes flashing (S 2) and non-target events – the red
diodes flashing (S 4). Each trial started 500 ms before the stimulus to
perform baseline correction (i.e. subtracting the average of this part of the
signal from the whole trial), and ended 1000 ms after the stimulus.

2. The following time windows relative to the stimuli onsets were averaged for
each epoch:

• 200 ms – 250 ms

• 250 ms – 300 ms

• 300 ms – 350 ms

• 350 ms – 375 ms

• 375 ms – 400 ms

• 400 ms – 425 ms

• 425 ms – 450 ms

• 450 ms – 500 ms

• 500 ms – 550 ms

The selection of exact time intervals was based on [2] and further adjusted
after empirical tuning. The amplitude of the P300 component is largest over
central and parietal brain areas [31]. Consequently, these nine time windows
averages were extracted from three EEG channels (Fz, Cz, and Pz). The
process of selecting features from a single EEG channel is depicted in Fig. 4.

3. Averages from all selected channels were concatenated. As a result, each
feature vector had dimensionality of 27.

The process of optimizing P300 feature extraction process using the Windowed
means paradigm is described in detail in [38].
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Fig. 4 Feature extraction from the averaged Pz channel. The related part of the
feature vector is depicted in bars.

4.2 Classification

The classification models described above were compared based on supervised clas-
sification. The SOM toolbox [19] was used for the implementation of all SOM-based
methods. In summary, the following methods described in Section 2 were compared:

• SOM1 method.

• SOM2 method.

• LASSO model [27].

• Fuzzy ARTMAP model [4]. Matlab library [11] was used for implementa-
tion. [4, 6]

• SFAM model [33]. Matlab implementation [1] was used.

• Traditionally used algorithms for comparison. To evaluate possible benefits of
using unsupervised neural networks, two traditionally used classifiers for the
P300 detection were also implemented: Linear Discriminant Analysis (LDA)
with shrinkage regularization [2] and BLDA. The BCILAB [7] implementation
of LDA was used. For BLDA, implementation from [14] was used.

5. Results

The training set contained 732 feature vectors that were concatenated from the
data from four subjects (with experimental IDs 88, 90, 100, and 104, respectively).
Randomly, 25 % of the training set was split for validation. The validation set was
then used to find optimal settings of parameters for each method.

In the testing phase, the data from each experiment were evaluated separately.
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The features vectors were extracted as described in Section 4.1. For each classi-
fication model, training and testing phase were repeated twice and the classification
results were averaged.

The parameters of different classification models were empirically optimized to
find the parameters that yielded the best classification results on validation set. For
all SOM-based models, training used batch algorithm with automatically optimized
learning parameters. The following parameters (in most cases selected empirically)
were used:

• For the SOM1 method, the size of the SOM network was set to 9× 9.

• For the SOM2 method, the size of the SOM network was set to 12× 12. The
number of clusters was set to 4.

• For the LASSO model, the size of the SOM network was set to 20× 20. sD
was set to 8 and pI was set to 0.4.

• The Fuzzy ARTMAP model was trained in 200 epochs. The maximum num-
ber of categories was set to 30, alpha was set to 0.001 as proposed in [33],
epsilon to 0.001 [33], beta to 0.5 [33] and vigilance to 0.1.

• The SFAM model was trained in 100 epochs. The maximum number of
categories was also set to 35, alpha was set to 1, epsilon to 0.001 [33], beta
to 0.5 [33], and vigilance to 0.1.

For evaluation, accuracy, precision and recall were computed. Let us denote tp
– number of targets classified as targets, tn – number of non-targets classified as
non-targets, fp – number of non-targets classified as targets, and fn – number of
targets classified as non-targets. The following metrics were calculated:

ACCURACY =
tp + tn

tp + tn + fp + fn
, (4)

PRECISION =
tp

tp + fp
, (5)

RECALL =
tp

tp + fn
. (6)

First, the results were evaluated for each testing dataset and each classification
model. Fig. 5, 6 and Fig. 7 depict accuracies, precisions, and recalls, respectively.
Tab. I depicts accuracy averages for each training model across all subjects.

Furthermore, for each training model, training and testing times were evaluated
(Intel Core i7, 64 GB RAM, SSD hard drive). The results are shown in Tab. II.

6. Discussion

The aim of the paper was to investigate unsupervised neural networks in the P300
component detection. The results seem to indicate that SOM-based models perform
better than ART-based models. LASSO models yields the best accuracy (approx-
imately 64.09 % on average). This algorithm and the SOM1 algorithm were the
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Classifier Average accuracy

LDA 63.01
BLDA 63.94
SOM1 62.10
SOM2 58.58
LASSO 64.09
SFAM 53.88

ARTMAP 55.78

Tab. I Average accuracies for different classifiers.

Classifier Training calculation time (ms) Testing calculation time (ms)

LDA 40 18
BLDA 4 1
SOM1 61 1
SOM2 588 1
LASSO 48 250
SFAM 6732 38

ARTMAP 412 19

Tab. II Average calculation speed for different classifiers.

only ones that matched the state-of-the-art BLDA. The accuracies in general may
appear fairly low but it should be taken into account that the P300 component
was detected in single trials while typically, BCI systems average many subsequent
trials to limit the background noise.

Despite the importance of classification accuracy, only BCIs capable of running
on-line with sufficient information transfer rate are comfortable to use for disabled
users. Therefore, all used methods were compared based on the average time needed
to evaluate all feature vectors from one subject in the testing phase (average time
was measured from the acceptance of all feature vectors from one subject until
the decision about their classification class). Fortunately, once the BCI system
is trained, classifying a single feature vector is usually not very time consuming.
According to our experience, to be comfortable to use, inter-stimulus intervals
should be at least 200 ms. Consequently, any system that evaluates a single ERP
trial faster may be used. As Tab. II clearly shows, all algorithms can be used in an
on-line BCI system.

Training times are usually less crucial for the usability of a BCI systems. When
the BCI system is trained on various subjects to be universal, training has to be
performed only once. If a more personalized system is requested, the training pro-
cess can be repeated for each new user. Tab. II depicts that all training algorithms
except for SFAM were trained fast enough. The SFAM model did not yield high
accuracy anyway.

There is an ongoing discussion whether linear or non-linear classification meth-
ods are preferable for BCIs. In [12], it is speculated that high-dimensional and
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noisy nature of EEG may limit the advantage of non-linear classification methods
over linear ones. However, tests revealed that non-linear classifiers perform slightly
better. In [29], the authors claim that in some applications, non-linear classifiers
can provide better results, particularly with complex and/or other very large data
sets. This paper reveals that both approaches yield comparable results, although
only BLDA and not LDA was able to match the accuracy of the LASSO classifier.

For the future work, the benefits of using pre-selected training data could be
verified. Furthermore, the algorithms described will be applied to implement a real
on-line BCI for both healthy and paralyzed subjects. Specifically, the LASSO algo-
rithm yielding the best results will be further explored. Perhaps its modifications
are possible that will boost its classification accuracy. Furthermore, since the aim
of this paper was to compare classification algorithms, feature extraction can also
be improved in the future. This includes using different intervals or different EEG
channels.

Although classification algorithms are important for the performance of P300-
based BCIs, there are also other ways to improve these systems. For example,
in [16], mismatch negativity paradigm was used instead of classic oddball paradigm.
The authors claim that this modification increases amplitudes of the ERP compo-
nents (such as P300 and N200) and boost the accuracy and bit-rate of P300 BCIs.
Furthermore, in [18] and in [15], face flashing paradigm based on flashing char-
acters with superimposed pictures of well-known faces significantly outperformed
the commonly used character flashing paradigm. Alternatively, in [22], multimodal
BCIs were proposed that significantly outperform classic P300 BCIs. Moreover, as
reported in [30], the reliability of P300-based BCIs depends on the environment
during the experiment: the noisy everyday environment slightly lowers the accu-
racy of P300 BCI. Health state of the participant affected the accuracy even more.
Participants with neuromuscular disorders who need BCI the most, achieved the
lowest accuracy. This problem, however, can be partially solved by tuning the BCI
parameters, such as using longer inter-stimulus intervals [30]. In the future work,
the state-of-the-art approaches for BCIs may be integrated to further improve bit-
rate and accuracy, especially when applied to paralyzed subjects.
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