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Abstract: Autoencoder networks have been demonstrated to be efficient for un-
supervised learning of representation of images, documents and time series. Sparse
representation can improve the interpretability of the input data and the gener-
alization of a model by eliminating redundant features and extracting the latent
structure of data. In this paper, we use L1/2 regularization method to enforce
sparsity on the hidden representation of an autoencoder for achieving sparse rep-
resentation of data. The performance of our approach in terms of unsupervised
feature learning and supervised classification is assessed on the MNIST digit data
set, the ORL face database and the Reuters-21578 text corpus. The results demon-
strate that the proposed autoencoder can produce sparser representation and better
reconstruction performance than the Sparse Autoencoder and the L1 regulariza-
tion Autoencoder. The new representation is also illustrated to be useful for a deep
network to improve the classification performance.
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1. Introduction

Unsupervised feature learning can extract the hidden structure of data and learn
the representation that produces better performance. The autoencoder (AE) net-
work is one of the popular algorithms for unsupervised feature learning, which
is efficient for learning feature representation of the image, document and speech
data [1–4]. Various kinds of AEs [2,5–7] have been proposed by enforcing different
constraints on the network to achieve different representations [2, 6, 8].

AEs can also be used to construct a deep network working as a representation-
learning method. A deep network uses multi-level non-linear modules to transform
the representation from one level (beginning with the raw input) to a representa-
tion at a higher and more abstract level [9]. With the representation at enough
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high and abstract level, the highly nonlinear complex functions can be learned
compactly. Many recent theoretical and empirical researches on machine learning
have demonstrated that deep networks can produce good generalization perfor-
mance in detection, prediction or recognition tasks [10–14]. However, initially,
deep networks were trained in purely supervised mode, and the results were often
found to be worse than shallow networks. This is due to that the gradient-based
optimization starting from a random initialization frequently gets stuck near poor
solutions [1]. A greedy layer-wise learning algorithm was presented in [11] to choose
an appropriate initialization for the deep network.

To suitably initialize a deep AE network, the greedy layer-wise algorithm trains
the first AE to minimize the reconstruction error of the raw data in unsupervised
mode, followed by training subsequent AE with the hidden activations of previous
AE as input. Then, the last hidden activations are taken as input to train a
supervised layer. Finally, the algorithm fine-tunes all parameters of this deep
network with supervised mode for good performance [1, 11]. Each AE learns a
representation of its input (the raw data or the previous hidden activations) at
hidden layer. Therefore, an AE learning a more accurate representation can yield
a better initialization of corresponding parameters of the deep network.

Many useful constraints [2, 5–8] have been proposed for an AE to learn good
representation. One of the common constraints is the sparsity for a sparse represen-
tation. The sparsity has attracted more and more attention in machine learning,
especially for big data problem. Better sparsity can decrease the computational
complexity and improve the accuracy of pattern extracting. Sparse representation
in machine learning is inspired by the observation of the sparse representation in
the brain: Only around 1 %–4 % of the neurons are active at a given time [15]. In
machine learning, sparse representation means that only few modules of the model
are active at a given time. Sparse representation is frequently used to improve the
interpretability of the input data and the generalization of the model, by eliminat-
ing the useless features and extracting the latent structure of data [16, 17]. The
well-known sparse autoencoder (SAE) proposed in [6] employs the Kullback-Leibler
(KL) divergence function [18] to enforce the sparsity on the activations of hidden
nodes.

As a tool for sparsity, L0 regularization method can produce the sparsest re-
sult. But L0 regularization involves solving an NP-hard optimization problem.
Fortunately, it has been shown that L1 regularization (Lasso [19]) is a good ap-
proximation to L0 regularization [20, 21], while the convexity of L1 regularization
makes the corresponding optimization problem easy to solve. The Lasso method
and its variants [22–24] have made L1 regularization become a popular data anal-
ysis algorithm. Later on, an L1/2 regularization method was proposed in [25–27],
which has some promising properties. Fig. 1 illustrates the sparsification mecha-
nism of L1/2, L1 and L2 regularizers. As shown in Fig. 1, the sparsity solution is
the first place at which the contours touch the constraint region, and this will occur
at a corner corresponding to a zero coefficient. It is obvious that the solution of
L1/2 regularizer occurs at a corner with a higher possibility, implying that it leads
to sparser solution compared with L1 and L2 regularizers.

In this paper, we use L1/2 regularization to enforce sparsity on the activation
of hidden nodes for a sparse representation. To this end, we introduce an L1/2
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Fig. 1 Sparsification mechanism of (a) L1/2, (b) L1 and (c) L2 regularizers.

regularizer term into the reconstruction error function in the unsupervised learning
to drive some hidden activations to zero. The most closely related work to ours is
that of Jiang et al. on L1 regularization AE (L1-AE) [28], in which L1 regularization
is used to enforce sparsity on the hidden representation. Numerical experiments
have been performed on two standard image data sets (the MNIST data set [29]
and the ORL database [30]), and one text data set (the Reuters-21578 corpus),
to show the efficiency of the algorithm in terms of classification performance and
unsupervised feature learning, such as the feature filters, the sparsity of the weights
and the reconstruction performance.

The rest of this paper is organized as follows: In Section 2, the algorithm and
related notations are described. Supporting numerical experiments are presented
in Section 3. Relevant conclusions are given in Section 4.

2. Method

Consider an AE with I input nodes, K hidden nodes and I output nodes as shown
in Fig. 2(a). Let W(1) ∈ RK×I and W(2) ∈ RI×K be the encoder and decoder
weight matrix, respectively. Similarly, let b(1) ∈ RK×1 and b(2) ∈ RI×1 be the
encoder and decoder biases, respectively. g : R → R and f : R → R represent
the given activation functions of hidden layer and output layer, respectively. For
an input vector x ∈ RI×1, an AE network is aimed at learning to approximate the
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Fig. 2 Structures of an AE and a deep network.
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identity function
x̂ = Fθ(x) = x, (1)

where θ = {W(1),W(2),b(1),b(2)}. The AE reconstructs the input x in terms of
following neural network

h = g(W(1)x + b(1)), x̂ = f(W(2)h + b(2)), (2)

where h ∈ RK×1 is the hidden representation, and x̂ ∈ RI×1 is the output. For a

given training set
{
xm
}M
m=1

, the cost function of AE is the average reconstruction
error

JAE(θ) =
1

M

M∑
m=1

1

2
‖x̂m − xm‖2. (3)

As mentioned above, an AE can generate different representations from data
by enforcing different constraints on its parameters and network structure, such as
constraining the number K of the hidden nodes. Sparse representation is frequently
used to improve the interpretability of the input data and the generalization of the
model. It can be achieved by constraining the average hidden representation h
with the KL divergence function. Accordingly, the cost function of a SAE (see [6]
for more details) is

JSAE(θ) = JAE(θ)+β

K∑
k=1

(
ρ log

ρ

ĥk
+ (1− ρ) log

1− ρ
1− ĥk

)
+
α

2
(‖W(1)‖2+‖W(2)‖2),

(4)

where ρ is a small positive constant selected as a sparsity parameter, ĥk = 1
M

∑M
m=1

hmk is the average activation of hidden node k over all training samples, hmk is
the activation of hidden node k with respect to the input xm, β and α are the
parameters of the sparsity penalty term and the weight decay term, respectively.

In this paper, we use L1/2 regularization instead of KL divergence function to

enforce sparsity constraint on ĥk. Since logistic sigmoid function is used as the
hidden layer activation function, ĥk is positive. The L1/2 regularizer (L1/2R) of

ĥk is JL1/2R(θ) =
∑K
k=1(ĥk)1/2. A weight decay term as shown in Eq. (4) is used

to prevent over-fitting [31]. Therefore, the cost function of the L1/2 regularization
autoencoder (L1/2AE) is defined as

JL1/2AE(θ) = JAE(θ) + β

K∑
k=1

(ĥk)1/2 +
α

2
(‖W(1)‖2 + ‖W(2)‖2). (5)

We apply the batch gradient descent method [32–35] to solve the resulting opti-
mization problem. The parameters are updated by

θ = θ − η ∂
∂θ
JL1/2AE(θ), (6)

where η > 0 is the learning rate. The gradients of parameters are computed as
below.

∂

∂θ
JL1/2AE(θ) =

∂

∂θ
JAE(θ) + β

∂

∂θ
JL1/2R(θ) + α(W(1) + W(2)). (7)
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In [28], the L1-AE was proposed with the cost function as follows:

JL1−AE(θ) = JAE(θ) + β

K∑
k=1

ĥk +
α

2
‖θ‖2. (8)

In our paper, we use the greedy layer-wise training algorithm to construct a
deep L1/2AE network (see Fig. 2(b)) for classification. In this algorithm, the hid-
den representation of the last pre-trained L1/2AE are taken as input to train a
supervised layer. We choose the softmax regression classifier [36] as the supervised
layer. If the dimensionality of the last hidden representation is sL and the training
samples fall into C categories, let W ∈ RsL×C and b ∈ RC×1 be weights and biases
of softmax layer, respectively. The misclassification cost function of the softmax
regression classifier with a weight decay is defined as

J(W,b) = − 1

M

( M∑
m=1

C∑
c=1

1(ym = c) log
exp (WT

c h̃
m + bc)∑C

j=1 exp (WT
j h̃

m + bj)

)
+
γ

2
‖W‖2, (9)

where γ is the parameter of the weight decay term of softmax regression classifier,
and h̃m and ym represent the last hidden representation and the label corresponding
to xm, respectively.

The limited-memory BFGS (L-BFGS) quasi-Newton algorithm [37] is used to
minimize Eq. (4), Eq. (5), Eq. (8) and Eq. (9).

3. Numerical experiments

This section discusses the performance of our method in feature learning and predic-
tion learning with the MNIST data set, the ORL database and the Reuters-21578
corpus. L1/2AEs are trained on all three data sets to demonstrate the ability of
feature extraction. For comparison, the corresponding experiments of SAE and
L1-AE are also be performed. Deep L1/2AE networks are trained on the MNIST
data set and the Reuters-21578 corpus by using the greedy layer-wise algorithm
to investigate the classification performance, which is compared with deep net-
works builded with L1-AE, SAE, Denoising Autoencoder (DAE) [2], and Dropout
Autoencoder (DpAE) [38].

For the sake of easy comparison, we follow the setting in [28] for choosing the
parameters as in Tab. I. Similarly, we follow the setting in [12] such that the AEs
have 196, 100 and 15 hidden nodes for the MNIST data set, the ORL database
and the Reuters-21578 corpus, respectively. The maximum number of iterations
for training all networks is 400 when using the L-BFGS quasi-Newton method.

3.1 MNIST digit dataset

First, we train an L1/2AE on the MNIST data set which is a subset of a larger
data set NIST. There are 60,000 training and 10,000 testing images in this data set.
All images are black and white handwritten digits which are size normalized, and
centered in a fixed size image where the center of gravity of the intensity is at the
center of the 28×28 pixel box. All the image matrices are reshaped as vectors with
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Parameters SAE L1-AE L1/2AE

Sparsity penalty (β) 3 0.01 0.01
Sparsity Parameter (ρ) 0.1 - -
Weight decay penalty (α) 0.003 0.003 0.003
Weight decay penalty (γ) 0.0001 0.0001 0.0001

Tab. I Parameters of all algorithms.

784 components (pixels). The network contains 784 input nodes and 196 hidden
nodes. We use sigmoidal function as activation function for both the hidden and
output layer.

For visualization of the learned features of the images, the weight vectors con-
nected to hidden nodes (the rows of the encoder weight matrix W(1)) are reshaped
as a 28 × 28 matrix and shown in the form of images with 28×28 pixels named
receptive fields. Similarly, the columns of the decoder weight matrix W(2) are also
shown as images named decoder filters. We compare the receptive fields, decoder
filters and histogram of weights of L1/2AE on MNIST data set with those of SAE
and L1-AE in Fig. 3 and Fig. 4. In Fig. 3, it can be seen that the features learned
by SAE are whole blurred digits or parts of digits. And the receptive fields of L1-
AE and L1/2AE show that many features are compressed to smaller parts of digits
such as dots, and that more features of L1/2AE compressed as dots. Some other

(a) SAE

(b) L1-AE

(c) L1/2AE

Fig. 3 Visualization of 196 receptive fields (W(1)) and weight histogram of (a)
SAE, (b) L1-AE and (c) L1/2AE for the MNIST data set. Black pixels and white
pixels mean negative and positive weights, respectively.
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(a) SAE

(b) L1-AE

(c) L1/2AE

Fig. 4 Visualization of 196 decoder filters (W(2)) and weight histogram of (a) SAE,
(b) L1-AE and (c) L1/2AE for the MNIST data set.

features are split into several small pieces. The weight histograms of the encoder
weights of SAE, L1-AE and L1/2AE show that L1/2AE forces more weights near
zero. In Fig. 4, the decoder filters and the weight histograms have similar char-
acteristic. To further evaluate the sparsity of weights of L1/2AE, we compute the

sparseness proposed in [39] of the receptive fields W(1) and decoder filters W(2)

by using the formula

sparseness(x) =

√
n− (

∑n
i=1 |xi|)/(

√∑n
i=1 x

2
i )√

n− 1
, (10)

where x is a vector and n is the dimension of x. The bigger sparseness(x) is, the
sparser x is. Especially, sparseness(x) = 1 means that only one component of
x is non-zero, while sparseness(x) = 0 means all components of x are equal (up
to signs). We compute the sparseness degrees of the 196 receptive fields and the
196 decoder filters, and display them in the histograms in Fig. 5. From Fig. 5,
we can see that the sparseness degrees of the receptive fields and decoder filters of
L1/2AE are bigger, on average, than those of L1-AE. For the comparison between
SAE and L1/2AE, in general, some receptive fields and decoder filters of L1/2AE
have sparseness degree larger than the largest one of SAE. In particular, for the
receptive fields, the largest sparseness degree of SAE and L1/2AE is 0.6698 and
0.8222, respectively, and there are 84 out of 196 L1/2AE’s receptive fields with
sparseness degree larger than 0.6698. For the decoder filters, the largest sparseness
degree of SAE and L1/2AE is 0.6302 and 0.7670, respectively, and there are 79 out of
196 L1/2AE’s decoder filters with sparseness degree larger than 0.6302. Therefore,
the L1/2AE improves the sparsity of weights of the AE.
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Fig. 5 Spareness histogram computed by Eq. (10) on (a) 196 receptive fields W(1)

and (b) 196 decoder filters W(2) from MNIST data set.

To investigate the reconstruction performance of L1/2AE, we test the digit re-
construction with ten chosen digits and compute the reconstruction errors over all
testing digits by using L1/2AE with different numbers of hidden nodes. A compar-
ison of L1/2AE, L1-AE and SAE is given in Fig. 6. In Fig. 6(a), the original digits
and the digits reconstructed by SAE, L1-AE and L1/2AE are displayed in the first,
second, third and fourth row, respectively. It can be seen that the digits (especially
for digits 2, 4, 5 and 7) reconstructed by L1-AE and L1/2AE are clearer and more
similar to the original digits than those reconstructed by SAE. L1/2AE achieves
the smallest reconstruction error over these ten digits than other two methods.
Fig. 6(b) shows that L1/2AE induces lower reconstruction errors (computed by
Eq. (3)) than SAE and L1-AE for different numbers of hidden nodes. Therefore,
L1/2AE has better reconstruction performance.

Original

SAE

L
1
-AE

L
1/2

AE

(a) original and reconstruction digits (b) reconstruction error

Fig. 6 Reconstruction performance, (a) reconstruction of ten digits of SAE (er-
ror=7.6006), L1-AE (error=4.8418) and L1/2AE (error=4.6792), (b) reconstruc-
tion errors computed on all testing digits.
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The hidden structure of data is helpful for improving the interpretability of data.
A good AE should be able to extract the hidden structure of data. The t-distributed
Stochastic Neighbor Embedding (t-SNE) technique [40] is employed to visualize the
hidden representation of 10,000 testing digit images in two-dimensional space in
Fig. 7 for SAE, L1-AE and L1/2AE. From the comparison, the manifolds of digits
8, 5, 3 in L1/2AE are more linear than in SAE and L1-AE, and the manifolds of 7,
9, 4 in L1/2AE are more linear than in SAE. The separation between the manifolds
of digits 7 and 9 in L1/2AE is bigger than that in SAE. The manifold of digit 2
in L1/2AE is farther away from the other manifolds than in SAE and L1-AE. In
addition, the characteristics of the manifolds of 0, 1, and 6 in SAE, L1-AE and
L1/2AE are similar. Therefore, L1/2AE can learn a better hidden structure.

(a) SAE (b) L1-AE

(c) L1/2AE

Fig. 7 Visualization of testing handwritten digits representation: (a) SAE, (b)
L1-AE and (c) L1/2AE.

To investigate the classification performance on the MNIST, a deep L1/2AE
network is trained by using the greedy layer-wise algorithm. We stack two layers of
pre-trained L1/2AE with 196, 20 hidden nodes, respectively, and a layer of softmax
classifier, which are trained by using the hidden activations of the previous network
as input for the next network. Then we fine-tune the resulting deep network to
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achieve better prediction performance. The final structure of deep network is 784-
196-20-10 (input layer with 784 nodes, first hidden layer with 196 nodes, second
hidden layer with 20 nodes and output layer with 10 nodes). The results of deep
L1/2AE are compared with deep L1-AE, deep SAE, deep DAE, and deep DpAE
in Tab. II. The accuracy results have been averaged over 10 experiments to reduce
the influence of random initialization. It can be seen that, before and after fine-
tuning, the results of the deep L1/2AE are significantly better than the other four
deep networks. This is likely due to the sparser representation of L1/2AE. As is
well-known, sparsity is helpful for automatic feature selection and reducing the
interference of the useless features on the classification performance.

Before fine-tuning After fine-tuning

Deep networks Mean± SD p-value Mean± SD p-value

Deep L1/2AE 86.47± 0.1898 97.66± 0.1035
Deep L1-AE 86.01± 0.1426 0.0091 97.42± 0.0848 0.0179
Deep SAE 80.21± 0.1370 <0.0001 97.36± 0.1137 0.0248
Deep DAE 83.00± 0.4499 <0.0001 97.03± 0.1543 0.0022
Deep DpAE 75.60± 0.4079 <0.0001 96.43± 0.1430 <0.0001

Tab. II Classification performance of deep networks with structure 784-196-20-10
on the MNIST data set in supervised learning mode.

3.2 ORL face data set

This experiment aims at evaluating the performance of L1/2AE on extracting the
facial feature, which is more challenging than extracting the digit feature. The
Cambridge ORL (Olivetti Research Lab) face database is used in this experiment.
This database consists of 40 distinct individuals, each containing 10 different face
images, involving high degree of variation in facial expression, pose, lighting and
facial details. Each image is normalized to a resolution of 92×112 pixels with 0
to 255 gray levels. All images are resized to 46×56 pixels to simplify the network
structure. Therefore, the network contains 2,576 input nodes and 100 hidden nodes.
The sigmoidal activation function is used for both the hidden and output layer.

The receptive fields of SAE, L1-AE and L1/2AE on the ORL data set are shown
in Fig. 8. The features learned by SAE have the shape of holistic faces consisted
of facial organs, such as eyes, mouth, nose and hair. Parts of features learned by
L1-AE are compressed smaller than those of SAE, while other features are unclear.
In the features learned by L1/2AE these facial organs are compressed smaller than
those of L1-AE in a blurred form. This demonstrates that L1/2AE produces sparser
face features. The sparseness histograms of weights are compared among SAE, L1-
AE and L1/2AE in Fig. 9. It can be seen that the weights of L1/2AE are sparser.

We choose ten face images to show the reconstruction performance for the ORL
data set as shown in Fig. 10, and we achieve similar conclusion to that for MNIST
data set. It can be seen that L1/2AE achieves the smallest reconstruction error,
and L1-AE and L1/2AE achieve better reconstructed faces than SAE.
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(a) SAE

(b) L1-AE

(c) L1/2AE

Fig. 8 Visualization of 100 receptive fields of (a) SAE, (b) L1-AE and (c) L1/2AE
for the ORL face database.
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Fig. 9 Spareness histogram computed by Eq. (10) on (a) 100 receptive fields W(1)

and (b) 100 decoding filters W(2) from the ORL face database.

3.3 Reuters-21578 text corpus

The Reuters-21578 text corpus is used to test the capability of L1/2AE on semantic
feature extraction. The Reuters-21578 corpus contains 21,578 news reported in the
Reuters newswire in 1987. We focus on a processed Modified Apte (ModApte)
Split of Reuters-21578 corpus available at http://people.kyb.tuebingen.mpg.

de/pgehler/rap/. This processed ModApte Split is composed of 11,413 training
and 4,024 testing documents with 12,317 words or dimensions. The techniques
described in [12] are applied for the dimensionality reduction and the selection of
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Fig. 10 Reconstruction performance of ten face images of SAE (error=6.0573),
L1-AE (error=4.8120) and L1/2AE (error=4.4084).

most uncorrelated and representative words in documents. In this experiment, we
use the most uncorrelated and representative 200 words to represent each document
and choose the documents of the most frequent 10 categories in the processed
ModApte Split to train the networks. The L1/2AE network for this data set has
200 input nodes and 15 hidden nodes. The sigmoidal activation function is used
for the hidden layer, and the linear function for output layer.

To investigate the semantic features extracted by L1/2AE, the distributed rep-
resentation of testing documents in hidden layer is visualized by using t-SNE pro-
jection and compared with that of SAE in Fig. 11. In Fig. 11(a) for SAE, all
documents except those of acq category are very much overlapping each other,
while in Fig. 11(b) for L1/2AE, all documents belong to each category are more
concentrated, and much less overlapping each other. Therefore, L1/2AE produces
a better semantic representation of documents.
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Fig. 11 Visualization of Reuters-21578 documents: (a) SAE and (b) L1/2AE.

To further test the semantic representation, a softmax classifier is trained by
using the hidden representation of L1/2AE as input. Then, we fine-tune the stacked
layers of L1/2AE and the softmax classifier, that is, we construct a shallow L1/2AE
network by using the greedy layer-wise algorithm for classification of the Reuters-
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21578 corpus. The classification results of the shallow L1/2AE, L1-AE, SAE, DAE,
and DpAE are displayed in Tab. III. It shows that, after fine-tuning, the shallow
L1/2AE produces a significantly better result than the other four networks.

Before fine-tuning After fine-tuning

Shallow networks Mean± SD p-value Mean± SD p-value

Shallow L1/2AE 72.37± 0.1373 82.92± 0.2604
Shallow L1-AE 72.33± 0.2010 0.8463 82.04± 0.1650 0.0003
Shallow SAE 57.42± 0.2721 <0.0001 81.97± 0.2064 0.0010
Shallow DAE 68.83± 0.6253 0.0002 81.45± 0.4158 0.0054
Shallow DpAE 50.99± 0.5390 <0.0001 82.27± 0.1664 0.0029

Tab. III Classification performance of shallow networks with structure 200-15-10
on the Reuters-21578 corpus.

4. Summary

In this paper, an L1/2AE is proposed for learning sparse representation of data and
improving the classification capability. This has been achieved by using L1/2 regu-
larization method as a sparsity constraint on the average hidden activations. The
performance of L1/2AE for feature extraction and classification is compared with
other popular AEs such as L1-AE, SAE, DAE, and DpAE. Numerical experiments
have been conducted on the MNIST data set, the ORL database and the Reuters-
21578 corpus. The results in terms of reconstruction performance and sparseness
of weights in unsupervised learning mode demonstrate that the L1/2 regularization
as a constraint on the hidden activations helps L1/2AE achieve a sparser represen-
tation of data and smaller reconstruction error than SAE. It is also shown that
a deep L1/2AE network achieves better classification accuracy than deep L1-AE,
deep SAE, deep DAE and deep DpAE, due to the better representation learned by
L1/2AE.
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