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Abstract: This article presents an improvement of learning algorithm for an arti-
ficial neural network that makes the learning process more similar to a biological
neuron, but still simple enough to be easily programmed. This idea is based on au-
tonomous artificial neurons that are working together and at same time competing
for resources; every neuron is trying to be better than the others, but also needs the
feed back from other neurons. The proposed artificial neuron has similar forward
signal processing as the standard perceptron; the main difference is the learning
phase. The learning process is based on observing the weights of other neurons,
but only in biologically plausible way, no back propagation of error or ‘teacher’ is
allowed. The neuron is sending the signal in a forward direction into the higher
layer, while the information about its function is being propagated in the opposite
direction. This information does not have the form of energy, it is the observation
of how the neuron’s output is accepted by the others. The neurons are trying to
find such setting of their internal parameters that are optimal for the whole net-
work. For this algorithm, it is necessary that the neurons are organized in layers.
The tests proved the viability of this concept – the learning process is slower; but
has other advantages, such as resistance against catastrophic interference or higher
generalization.
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1. Introduction

Although the original inspiration for ANN was the biological neuron [1], currently
most of the artificial neural networks are very different from biological paradigm. A
typical example is the most common learning algorithm, back propagation, where
the error back-propagation is used for training, an idea that is not realistic in
biological network.

The presented research is aimed to the design of algorithm that is using princi-
ples similar to biological neuron.

The idea of bringing ANN back to nature is not new and in fact many updates of
NN algorithms are inspired by natural processes. For example, in [2] it is presented
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a brain based automata that is suggested for the development of hardware for
recognition systems. The main contribution is a study of selective system in neural
networks.

In [3] it is shown that the recognition capability can be simulated by large-scale
networks of spiking neurons. This simulation demonstrated how large networks
can respond to input patterns by generating autonomous neural activity.

There are several other examples of research that are applying the inspiration by
brain structures into the field of artificial intelligence, such as grey wolf optimization
[4], genetic feature selector [5], associative memory [6] or fuzzy neural network [7].
In many applications, the biological motivation for the paradigm of neural networks
is an advantage because the modeled processes are also of biological origin, such
as automated analysis of medical or physiological data [8, 9] or mental processes
modeling [10–12].

In [13] a process of simultaneous discharge of various neurons in a spiking neural
network is presented. This process is similar to what happens in biological neural
networks. A simple model consisting of only 2 equations of spiking neurons can be
found in [14]. With this simple model, it is possible to observe similar behavior in
terms of spiking, bursting and adaptation as in the biological mammalian network.

A neuronal network inspired by the cerebral cortex composed of 100 000 inter-
connected neurons presented in [15,16]. The model led to identification of receptive
and projective fields that are similar to those of vivo. This confirms the idea that
with relatively uncomplicated model it is possible to induce very complex processes.

Some projects go even further, such as those that are targeted on isomorphic
model of the whole biological neural network, such as the Blue Brain Project (BBP)
which attempts to create a detailed model of the human brain with the resolution
of particular molecules [17, 18]. The disadvantage of this approach is the lack of
knowledge about the brain organization and the fact that even with an exact copy
of the biological network, the desired processes such as self-learning, creativity or
problem solving may not emerge.

The motivation of this research is focused more on the theoretical possibilities
of the biologically plausible learning algorithms. The scope is not to try to copy
the learning process of the biological network, but to use the biological template to
design new learning rule that can be later used in many different areas of artificial
intelligence.

2. Methodology

2.1 Concept of learning

The basic requirement for the proposed algorithm is that the learning process
should be similar to a biological neuron. This goal is hard to achieve because of
the high complexity of the biological neuron; however, it is possible to simplify
the biological neuron by reducing its information channels (e. g. by leaving out
chemical transmitter and focusing only on action potentials).

The proposed neuron shall not use any information that is not present in the
biological network. The neuron is receiving the signal from other neurons and
observing what happens with the signal that it sends, but only within the neurons
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to which it is connected. It can not ’see’ behind the neurons in the upper layer.
No higher structure, error propagation etc. are allowed.

The topology of the neuron is based on a standard paradigm, which means every
neuron is connected to neighboring neurons by dendrites, synapses and axons. The
dendrites conduct the input to the neuron, the axon transmits its output towards
other neurons and the synapse is the interface between axon and dendrite. Every
neuron has only one axon, but the number of dendrites and synapses is not limited.

In further text, the term ‘output neuron’ will be used for any neuron that is
receiving signal from the reference neuron and the term ‘input neuron’ for any
neuron that is reading the signal of the reference neuron.

Analogically, the term input weight (wi) will be used for the weights that are
leading the signal into the reference neuron and output weights (wo) for weights
that are transmitting the signal from the reference neuron.

In this model, the input weight of an artificial neuron corresponds to the den-
drites and the output weight to an axon. The weights are shared - the output
weight of one neuron is input weight of the neuron in a higher layer. The neuron
can read both its input and output weight, but can modify only its input weight.

The biological neuron is significantly more complex and uses different types of
communication; however, even though this model is much more simple, it keeps
the most important principles of electrical pulses.

2.2 Forward phase of signal processing

In the proposed model, the forward phase is composed of two steps, as in the
perceptron model. In the first step, the neuron computes the weighted sum of its
inputs:

s =

n∑
j=1

xj · wij ,

where xj is the j-th input and wij is the j-th input weight In the second step, this
sum is used as an input to the transfer function. In our case, the sigmoid function
was always used

y =
1

1 + e−αs
.

The weights are limited to interval 〈−1; 1〉; this interval was chosen for the sake
of biological plausibility, therefore signal can not be gained, but can be reversed as
in the case of inhibitory neurons.

In the described realization, only the weights wi are subject to changes, the
slope α is considered constant.

Reason for this decision is the intention to focus on the learning algorithm by
simplifying the number of variables.

On the other hand, if the slope is also updated during the learning process, the
learning may be faster, which might be the goal of future research.

2.3 Learning phase

In biological neural network there does not exist any dedicated channel for error
back propagation, therefore this is also not used in the proposed model. Instead
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of the error propagation, the neurons are gathering information about their func-
tionality from other neurons only by observing their weights.

From the point of view of the reference neuron, the signal is being propagated
in only one direction, from the neurons in the lower (input) layer to neurons in
the higher (output) layer. The reference neuron is aware of how well its output
is accepted by the other neurons because it knows the weights of the neurons in
the higher layer. In other words, the reference neuron is setting the input weights
based on the output weights (opposite direction than in the forward phase).

2.4 Utility

The reference neuron needs to convert the output weights into one number that
describes how well its output is accepted by other neurons. This number, here
refered to as utility, is an additional value which helps the neuron to find the
optimal setting. It quantifies how well is the output of the neuron is accepted by
other neurons. Utility is calculated from the output weights. There are several
ways how to calculate the utility are possible, such as:

u =

n∑
i=1

wo, (1)

u = max(wo), (2)

u = med(wo), (3)

u = Qα(wo). (4)

The first option (utility is the sum of all output weights) gives the same impor-
tance to all output neurons. This option is the most biologically plausible because
the neuron is aware of which part of its output energy was accepted by other neu-
rons, without distinguishing particular output neurons. The disadvantage is that in
the case of highly connected networks (axon of biological neuron can be connected
to 10 000 synapses) the learning process will be very slow.

The second option uses the maximum of output weights as the value of utility.
In this situation, the reference neuron is ’working’ only for one neuron in the higher
layer. In the first step it finds the neuron with highest weight and in the next steps
it is trying to maximize this weight. The main disadvantage is that this concept is
not reflecting the real situation of biological neuron.

Between these two options are many compromise solutions that take into ac-
count a certain part of the output neurons, such as median (working for the half
of neurons with greatest absolute weights), quintile (working for a certain part of
the output neurons) or any weighted sum.

2.5 Updating the weights based on utility

The neuron uses one of the equations (1)–(4) to improve its weights. In two con-
secutive steps the utility should have an increasing trend, otherwise the last change
had a negative effect and should be revoked.
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The comparison of utility between two or more following steps means that the
neuron must be equipped with memory to store the previous values of utility and
the respective weights.

3. Realization

3.1 Problem of the highest layer

The described learning algorithm can be used for all neurons except for the highest
layer. The reason is that the output weights over the highest layer are not part of
the neural network, therefore there is no control about their values.

This problem is solvable in biological networks where all weights are part of a
closed loop and the outputs are connected back to the input.

It is possible to design network that is part of closed loop; however, this solution
will significantly increase the complexity of the network and will raise new problems
with stability. As the scope of this work is to study the behavior of a particular
neuron, the solution with a closed-loop network was rejected and the problem
of the highest layer was solved by applying a different learning algorithm - back
propagation – to this layer. This is a deviation from the original idea; however
it makes possible to observe in detail the learning process of the neurons in the
hidden layer.

3.2 Learning algorithm

The Fig. 1 represents the proposed learning rule that takes into account the problem
of the highest layer (step D), for which the learning rule is not applicable. In case
of closed loop, this algorithm would be used for all neurons.

3.3 Used data

The learning concept was tested on both artificial and real data. The artificially
generated data were calculated as the absolute value of sinusoidal function of four
input variables from interval 〈0;1〉:

s = sin |x1 + x2 + x3 + x4|.

Real data was used from the iris flower dataset, which contains 4 characteristics
of different species of iris flower. This dataset is often used for tests of machine
learning.

The datasets were enhanced by 2 columns with dummy values. These inputs
don’t carry any useful information (no relation between these inputs and the desired
output). This was done to test if the network is able to recogniye that these inputs
are noise and not to read them.

The dataset was divided into 2 subsets: the first contained 50 % of the data and
was used to measure the learning speed (how many iterations are needed to achieve
the desired MSE). The second part included also the remaining 50 % (is equal to the
whole dataset) and was used to measure the generalization and learning capacity.
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Fig. 1 Simplified algorithm of the proposed learning rule. The steps I and G are
in fact more complicated than simple confirmation or rejection of the last change,
but it based on the difference between qn and qn−1 the new weights are calculated.

3.4 Topology of the network

The neurons of the proposed network are organized into layers, which corresponds
to the structure of the neocortex. No lateral (in the same layer) or circular (pair
of neurons connected by 2 weights in opposite direction) connections are allowed.

The topology is not identical to the biological network where the presence of
lateral or circular weights can be observed, but these are not too frequent.
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There is no standard way how to set the topology of the neural network, there-
fore equation from [21] was used to estimate the optimal number of hidden nodes:

h = 2 · n+ 1,

where n is the number of inputs. The topology [6 13 1] was used because the test
dataset contained 6 inputs (Fig. 2).

Fig. 2 Topology of the network used for testing.

3.5 Criteria for evaluation

The purpose of the testing is twofold: to prove the viability of this idea and to
compare it with some reference method. As a reference method, the back propaga-
tion algorithm in batch mode was chosen. The topology of the tested and reference
network was always the same.

The evaluation was based on 3 criteria: speed, generalization and capacity of
learning.

The speed of learning is calculated as the number of learning epochs that are
needed to achieve the requested MSE (in this case 0.01).

The generalization is the resistance to over fitting, which is a typical problem
of artificial neural networks. The network can learn to model the training dataset
very accurately, but fails with new data. The reason is that the network was trained
to the concrete data with noise rather than to the real process.

Practically, the generalization was evaluated by feeding the network with testing
dataset immediately after the network was trained with the training dataset. The
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relation of MSE with testing and training dataset then describes the generalization
abilities – the closer these numbers are, the better is the generalization ability.

The continuity of learning is an important property of neural networks which
ensures resistance to phenomena of catastrophic interference [22,23]. The biological
neural networks are able to continue learning even when the environment changes.
A simple test was done to evaluate the continuity of learning.

The network was trained with training dataset until the satisfactory MSE was
reached. Then testing dataset was presented. After that learning continued until
the satisfactory MSE was again reached with the testing dataset. The capacity was
then evaluated as the number of learning epochs with the testing dataset.

To avoid the influence of random error, every measurement was repeated 10
times.

These characteristics are illustrated on Fig. 3.
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Fig. 3 Example of learning process with artificial data. The criteria used for eval-
uation are the learning speed, generalization and continuity of learning.

4. Results

The calculations were performed in MATLAB 2013.
In terms of speed, the back propagation algorithm performed better than any

of the tested types of homeostatic learning. This applies for both training and
testing dataset, so that in the categories learning speed and continuity, the back
propagation algorithm was always the winner.
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With respect to the generalization, all the variants of the homeostatic network
provided better results in case of artificial data, but not in the case of the iris flower
dataset.

If we take into account only the networks with homeostatic learning process,
the best results were achieved when the maximum utility rule according to Eq. (2)
was used. With this rule, the learning was significantly faster for both training and
testing dataset. The generalization was similar for all equations. The probable
reason is the small size of the tested network.

One interesting finding is that the learning process with the homeostatic net-
work is more stable, the results with the back propagation algorithm had much
higher variability.

The results are shown in Tabs. I and II.
It is important to keep in mind that these results are valid only for the given

dataset and network topology.
The most important conclusion is however the confirmation of the learning

ability of the proposed algorithm.

Network Utility Speed Generalization Capacity
Type rule [epochs] [%] [epochs]

HN
∑

(wo) 109 62 295
HN med(wo) 100 62 297
HN max(wo) 74 64 16

MLP n.a. 50 72 15

Tab. I Comparison of back propagation and homeostatic learning algorithm with
artificial data.

Network Utility Speed Generalization Capacity
Type rule [epochs] [%] [epochs]

HN
∑

(wo) 99 55 183
HN med(wo) 174 90 184
HN max(wo) 158 60 152

MLP n.a. 64 48 77

Tab. II Comparison of back propagation and homeostatic learning algorithm with
iris flower dataset.

5. Conclusions

The test results proved the viability of the described learning rule in terms of
generalization and learning capacity. The speed of learning was slower than in case
of back-propagation, but this criterion is not always the most important.
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The proposed network is working in a biologically plausibile way. the neuron
is working only with the inputs that are present in a biological neural network.
In many tasks the biological neural networks perform better than the artifiial net-
works; decision making or creativity are two of many examples. Therefore, adapting
the principles of biological neural networks into an artificial environment is a good
way to increase the possibilities of neural networks.

The learning idea was tested on both artificial and real world data. In both
cases, the network was converging. For the purpose of test, a part of the network
was trained with the back propagation algorithm. This is a deviation from the
original idea; however it makes it possible to observe the homeostatic learning in
the rest of the network.

The speed of learning is slower than in the case of the reference algorithm. This
is expected result, because the proposed algorithm has the disadvantage that it is
not using all the inputs that the standard artificial neural networks.

The main advantage of the proposed method is the generalization. This is
an important conclusion, because problems like falling into local minima are a
significant limitation of the gradient algorithm.

The continuation of this research will be the amplification of the test data to
find the suitable tasks for this type of network.
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