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Abstract: As an improved algorithm of standard extreme learning machine, online
sequential extreme learning machine achieves excellent classification and regression
performance. However, online sequential extreme learning machine gives the same
weight to the old and new training samples, and fails to highlight the importance
of the new training samples. At the same time, the algorithm updates the network
weights after obtaining the new training samples. This network weight updating
mode lacks flexibility and increases unnecessary computation. This paper proposes
an adaptive online sequential extreme learning machine with an effective sample
updating mechanism. The new and old samples are given different weights. The
effect of new training samples on the algorithm is further enhanced, which can fur-
ther improve the regression prediction ability of extreme learning machine. At the
same time, an improved artificial bee colony algorithm is proposed and used to op-
timize the parameters of the adaptive online sequential extreme learning machine.
The stability and convergence property of proposed prediction method are proved.
The actual collected short-term wind speed time series is used as the research ob-
ject and verify the prediction perfromance of the proposed method. Multi step
prediction simulation of short-term wind speed is performed out. Compared with
other prediction methods, the simulation results show that the proposed approach
has higher prediction accuracy and reliability performance, meanwhile improve the
performance indicators.

Key words: extreme learning machine, improved artificial bee colony algorithm,
adaptive online sequential, short-term wind speed, prediction

Received: September 1, 2016 DOI: 10.14311/NNW.2018.28.012

Revised and accepted: July 3, 2018

∗Zhongda Tian – Corresponding author; Gang Wang; Yi Ren; Shujiang Li; Yanhong Wang;
Shenyang University of Technology, School of Information Science and Engineering, Shenyang,
Liaoning, 110870, China, E-mail: tianzhongda@126.com, 1365812827@qq.com, 940261475@qq.com,
lisj2005@126.com, sshuang123456@163.com

c©CTU FTS 2018 191

mailto:tianzhongda@126.com
mailto:1365812827@qq.com
mailto:940261475@qq.com
mailto:lisj2005@126.com
mailto:sshuang123456@163.com


Neural Network World 3/2018, 191–212

1. Introduction

The traditional neural network learning algorithm uses the gradient descent method
to train the network. The learning speed of algorithm is slow, and all the parame-
ters of the network need to be adjusted iteratively. This problem seriously restricts
the development of forward neural network [31]. In 2006, Huang et al proposed
a new neural network - extreme learning machine extreme (ELM) algorithm [17].
The ELM algorithm uses the random mechanism to reduce the parameter setting
and choice. It is one kind of simple feasible fast learning algorithm. Compared
with other traditional neural network learning algorithms or support vector ma-
chine (SVM), least square support vector machine (LSSVM), etc, ELM algorithm
has the advantages of fast learning speed and strong generalization ability [7, 41].
The authors pointed out that computing time of ELM is usually several thousand
times faster than BP neural network or SVM [37]. Therefore, the ELM algorithm
is applied to many classification and regression prediction problems [32–34,47].

Based on standard ELM algorithm, the authors proposed an online sequential
extreme learning machine (OS-ELM) algorithm [26]. OS-ELM first calculates its
initial network weights in the initial training stage, and then the corresponding
network weights can be obtained on the basis of the initial network weights when
a new training sample is added to the training sample set. However, OS-ELM
and other improved ELM algorithms (I-ELM [18], EI-ELM [19], EM-ELM [11],
and etc) believe that the importance of new and old training samples is the same,
giving the same weight to old and new samples, and failing to highlight the role
of new training samples. Moreover, as long as new training samples are obtained,
OS-ELM updates the network weights recursively. This network weight updating
algorithm lacks flexibility to adjust parameters according to actual conditions, and
at the same time, it is easy to increase unnecessary computation time [28]. In
order to solve the problems existing in OS-ELM effectively, an improved OS-ELM
named as adaptive OS-ELM is proposed. This adaptive OS-ELM can overcome
the sample data updating disadvantages of OS-ELM.

On the other hand, how to determine the suitable parameters of the hidden
layer nodes in OS-ELM algorithm becomes important [48]. As a novel intelligent
optimization algorithm, artificial bee colony (ABC) algorithm can be introduced to
solve this problem. In order to overcome the disadvantages of adaptive OS-ELM,
this paper proposes an improved ABC algorithm to optimize the parameters of
the hidden layer nodes in adaptive OS-ELM. This improved ABC algorithm has
faster optimization speed and better performance. The proposed improved ABC
algorithm can improve the efficiency and performance of adaptive OS-ELM. The
convergence analysis of the proposed prediction approach is given. The actual
collected short-term wind speed is chosen as the simulation object. The effective
of proposed prediction method is verified. The simulation results show that the
proposed method has better prediction effect.

The main contents of each part are as follows. Section 2 gives the literature
review. Section 3 introduces the methodologies include adaptive OS-ELM and
improved ABC algorithm. Section 4 introduces the detailed implementation of the
proposed prediction method. Convergence analysis of prediction method is also
given. The simulation results are provided in Section 5, and the validity of the
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proposed prediction method is given. The conclusions and prospects of the paper
are summarized in Section 6.

2. Literature review

2.1 Review of OS-ELM

When a given training sample is used to get the ELM model, if a new sample is
produced, the training must be retrained, which leads to a great increase in the
training time of the ELM model [25]. In order to solve this problem, OS-ELM
algorithm uses the recursive idea to update the output weights online with new
samples. Through some Benchmark data sets, the author pointed out that OS-
ELM has achieved excellent performance in classification and regression [26]. At
the same time, many scholars have also improved the OS-ELM algorithm. The
authors combined OS-ELM with adaptive forgetting factor and bootstrap, the per-
formance is tested by Benchmark data sets [29]. In [20], the author proposed
an efficient parallel method for batched OS-ELM (BPOS-ELM), the experimen-
tal results show that the accuracy of BPOS-ELM has higher training efficiencies.
The authors presented an online sequential reduced kernel ELM (OS-RKELM).
Experimental results obtained indicate that they proposed OS-RKELM showcases
improved prediction accuracy and efficiency [5]. The authors proposed an ensemble
of OS-ELM (EOS-ELM) with binary Jaya. The application results on the IEEE
39-bus system and a real provincial system show that EOS-ELM has superior com-
putation speed and prediction accuracy [27]. The implementation of the OS-ELM
is described as follows.

For a given training set D = {(xi, ti) |xi ∈ Rn, ti ∈ Rm, i = 1, . . . , N}, activa-
tion function f (x), the number of hidden nodes L. ELM regression model can be
expressed as

L∑
i=1

βif (aix1 + bi) = t1

L∑
i=1

βif (aix2 + bi) = t2

...
L∑
i=1

βif (aixk + bi) = tk

, (1)

where ai, i = 1, . . . , L is the output weights, bi, i = 1, . . . , L is bias, k is the numbers
of the sample. Eq. (1) is rewritten as

Tk = Hkβk, (2)

where Hk is a neuron matrix and can be represented as

H
k

=


f(a1x1 + b1) · · · f(aLx1 + bL)
f(a1x2 + b1) · · · f(aLx2 + bL)

...
. . .

...
f(a1xk + b1) · · · f(aLxk + bL)

 . (3)
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βk is the output weights and can be expressed as

βk =
[
β1 β2 · · · βk

]T
. (4)

Tk is the output weights and can be expressed as

Tk =
[
t1 t2 · · · tk

]T
. (5)

The output weights can be obtained by solving Eq. (2).

βk =
(
HT
kHk

)−1
HT
kTk. (6)

Therefore, the prediction model based on ELM can be obtained after training

t =

L∑
i=1

βif (aix + bi). (7)

Based on ELM, OS-ELM calculates the initial output weight under the condition
of k ≥ L.

βk = PkH
T
kTk, (8)

where Pk = (HT
kHk)−1.

New training sample (xk+1, tk+1) is added into sample set, the current Pk+1

and βk+1 is calculated according to the following equations.

Pk+1 = Pk −
Pkh

T
k+1hk+1Pk

1 + hk+1PkhT
k+1

, (9)

βk+1 = βk + Pk+1h
T
k+1(tk+1 − hk+1βk). (10)

However, OS-ELM considers that the value of the new and old training samples
is equal, and the equal weight of the training sample fails to highlight the role of
the new training sample [3, 14]. Moreover, as soon as the new training samples
are obtained, ELM updates the weights of the network. In order to solve this
problem in ELM, this paper proposes an adaptive OS-ELM with more effective
sample updating mechanism. This paper considers that the new sample should be
added to the training set after the initial network weights are calculated, and the
corresponding network weights can be obtained on the basis of the initial network
weights. At the same time, the new and old samples are given different weights.
The effect of new training samples on the algorithm is further enhanced, which
can further improve the regression prediction ability of OS-ELM. The detailed
description of the proposed algorithm will be given in the Section 3.1.

2.2 Review of ABC algorithm

The ABC algorithm is an intelligent optimization algorithm, which comes from the
behaviour of honey bees [22]. Compared with the genetic algorithm, the differential
evolution algorithm and the particle swarm optimization algorithm, the ABC algo-
rithm is very competitive [13,15]. The nectar source of ABC algorithm is abstracted
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as a point in the solution space. The quality of nectar source (i = 1, 2, . . . , SN) is
chosen as the fitness of the solution. Assuming the dimension of the problem to be
solved is D. For the t−th iterations, the location of nectar source can be expressed
as Xt

i = [xti1 xti2 xtiD], xiD ∈ (Ld, Ud). Where, Ld is the lower bound of the search
space, Ud is the upper bound of the search space. The location of nectar source is
randomly generated in the search space according to Eq. (11).

xid = Ld + rand(0, 1)(Ud − Ld). (11)

At the start of the search phase, a new nectar source around nectar source is
generated by employed foragers according to Eq. 12.

vid = xid + ϕid(xid − xjd), (12)

where j ∈ {1, 2, · · · , SN}, j 6= i. It represents a random selection of nectar source
which is different with i. ϕ ∈ [−1, 1]. When fitness of new nectar source is better
than Xi, greedy algorithm is used to carry out Vi replace Xi. Otherwise Xi is
remained. Then, onlooker bees share information according to nectar source of
scout bees. Following probability is as follows [10].

pi =
fiti

SN∑
i=1

fiti

. (13)

That is means onlooker bees generate a random number belong to [0, 1] and com-
pare it with pi. If this random number is smaller than pi, then generate a new
nectar source according to Eq. (12). In the searching process, the nectar source
Xi can not find a better new nectar source after several iterations, then Xi is
abandoned, the corresponding employed bees change to scout bees. A new nectar
source will be random generated according to Eq. (14).

xt+1
i =

{
Ld + rand(0, 1)(Ud − Ld), trail ≥ limit
xti, trail < limit

. (14)

However, ABC algorithm has some disadvantages [21]. In the Eq. (12), ϕid is a
random number, xjd is a random selection among the neighborhood individuals.
Therefore, the new global random search ability obtained by Eq. (12) is very
strong. But the solution may be a better solution or a worse solution, the local
search ability of the neighborhood in Eq. (12) is inadequate.

2.3 Review of short-term wind speed prediction

As a typical time series with nonlinearity, randomness and non-stationary, short-
term wind speed is often used to test the prediction performance of prediction
methods. Short-term wind speed prediction refers to the prediction of wind speed
in the next 1 to 48 hours [40]. Accurate short-term wind speed prediction has
important theoretical significance and practical application value for wind power
industry [43, 44]. At present, the prediction method of short-term wind speed is
mainly based on historical data. These prediction methods usually use historical
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data, through some linear models include autoregressive moving average model
(ARMA) [9, 34], autoregressive integrated moving average model (ARIMA) [2].
The nonlinear model include SVM [8,12], LSSVM [36,39], artificial neural network
(Elman neural network [44,45], echo state network [38], fuzzy neural network [6,30],
RBF neural network [4, 23], and etc to predict short-term wind speed.

The results of some related literatures indicate that the short-term wind speed
has strong nonlinearity [1, 24], so the nonlinear model is more suitable for short-
term wind speed prediction. But the key parameters of SVM and LSSVM have no
definite determination method. The inappropriate model parameters will greatly
affect the regression prediction performance of SVM and LSSVM. The artificial
neural network has some problems, such as the network structure is difficult to be
determined, and the algorithm is easy to fall into the local optimal value. Therefore,
how to improve the accuracy of short-term wind speed prediction is still a hot
research topic. In this paper, actual collected short-term wind speed is used as the
simulation object to verify the performance of the prediction method.

3. Methodology

3.1 Adaptive OS-ELM

The proposed adaptive OS-ELM algorithm can be described as follows. Suppose
that βk in Eq. (6) is calculated by sampling sample (x1, t1) , (x2, t2) , . . . , (xk, tk).
When new sample (xk+1, tk+1) is added into set, then βk+1 can be expressed as

βk+1 =

([
Hk

hk+1

] [
Hk

hk+1

])−1 [
Hk

hk+1

] [
Tk

tk+1

]
=

= (HT
kHk + hTk+1hk+1)−1(HT

kTk + hT
k+1tk+1), (15)

where hk+1 =
[
f(a1xk+1 + b1) f(a2xk+1 + b2) · · · f(aLxk+1 + bL)

]
.

HT
k and Hk are given weights, the above Eq. (15) can be rewritten as

βk+1 = (µHT
kHk + hk+1)−1(µHT

kTk + hT
k+1tk+1), (16)

where µ, 0 < µ < 1 is weight coefficient. Let

Pk+1 = (µHT
kHk + hT

k+1hk+1)−1. (17)

The inverse of Eq. (17) can be obtained

P−1k+1 = µP−1k + hT
k+1hk+1. (18)

Eq. (18) is substituted into Eq. (16), the next can be obtained.

βk+1 = Pk+1(µHT
kTk + hT

k+1tk+1) = Pk+1(µP−1k βk + hT
k+1tk+1) =

= Pk+1((P−1k+1 − hT
k+1hk+1)βk + hT

k+1tk+1) =

= βk + Pk+1h
T
k+1(tk+1 − hk+1βk). (19)

When a new sample xk+1 is obtained, it is necessary to judge the change trend of
the error. When the error value is greater than a threshold value ε, Pk is updated,
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otherwise Pk remains unchanged. The update mechanism is shown in the following
formula.

Pk+1 =

{
(µHT

kHk + hT
k+1hk+1)−1 (EN > ε)

Pk (EN ≤ ε)
, (20)

where EN =

√
N∑
i=1

(xi − x̂i)2/N , x̂i is the predictive value of xi.

The unique updating mechanism of the proposed adaptive OS-ELM makes it
more suitable for the on-line prediction of time series for the speediness and accu-
racy of the prediction.

3.2 Improved ABC algorithm

This paper proposes an improved ABC algorithm to optimize optimal parameters
of hidden layers of adaptive OS-ELM. The adaptive OS-ELM prediction model is
constructed with the obtained optimal parameters. In order to improve the local
search ability of the algorithm, the random step size ϕid is improved, so that it
can be adjusted adaptively with the change of fitness. The new location update
method is as follows.

vid = xid +Rid(xid − xjd) + cid(xbestd − xid), (21)

Rid =

{
rid(1− fj−fi

fi−fbest ), fj 6= fbest
ϕid, fj = fbest

, (22)

cid = cmin + (cmax − cmin)[
2

1 + exp(−α( t
MCN )β)

− 1], (23)

where rid has a random value of +1 or −1. ϕid is a random number between
[−1, 1]. fi and fj are the objective function of the optimization problem. t is
the current iteration number. MCN is the maximum number of iterations. cmax,
cmin, α and β are constant value. xbestd is a d dimensional component of the
current optimal solution. Compared with the random step size ϕid, rid has a wider
range of values. The absolute value of Rid may be greater than 1. Thus, in the
early iterations, the larger step size is beneficial to enlarge the search space of the
algorithm. When fi is close to fbest, Rid is more close to 0. In this case, the
smaller step size helps the algorithm can quickly find the optimal solution in the
local search. Rid plays a guiding role in the search trend of the nectar source. In
the early phase of iterations, the parameter cid should be smaller, so as to reduce
the global optimum and improve the global searching ability. In the later phase
of iterations, cid should keep a larger value, so that the algorithm can converge
rapidly to the global optimum.

In order to verify the performance of the improved ABC algorithm, the Sphere
function is chosen as testing function and compared with the standard ABC algo-
rithm. The Sphere function is shown as in the following formula

f =

N∑
j=1

x2j , (24)

where xj ∈ [−50, 50], N = 4.
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The number of nectar source SN is 50, maximum number of iterations MCN
is 100, the maximum number of nectar source mining limit is 50, cmax is 1, cmin

is 0, α is 50, β is 5. To eliminate the influence of random, all the algorithms are
running for 20 times and the average value is chosen as the optimization results.
Fig. 1 is the average fitness curve of two algorithms. It can be seen from Fig. 1,
improved ABC algorithm has improved convergence accuracy, convergence speed
and optimization results compared with standard ABC algorithm. Tab. I gives the
comparison results of improved ABC and standard ABC, which includes the best
fitness value, the average fitness value, and standard deviation. As can be seen
from Tab. I, the best fitness, the success rate and standard deviation of improved
ABC algorithm are better than standard ABC algorithm.
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Fig. 1 Average fitness curve of ABC and improved ABC algorithm.

Algorithm Average fitness Best average Standard deviation

Improved ABC 1.3651 0.0871 0.0775
ABC 5.4237 2.5266 1.3657

Tab. I Simulation results of improved ABC and standard ABC algorithm.
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4. Adaptive OS-ELM based on improved ABC
algorithm

4.1 The proposed model

The hidden layer parameters a∗, b∗ in adaptive OS-ELM algorithm are chosen as
optimal parameters to be optimized. In order to maintain consistency with the
improved ABC algorithm, the next Eq. (25) is chosen as fitness function of adaptive
OS-ELM prediction model based on improved ABC algorithm.

fitk =
1

1 + fk
, (25)

where fk is network training error of adaptive OS-ELM. The network training error
Ek can be expressed as Eq. (26).

Ek = ‖Hkβk−Tk‖ . (26)

The implementation steps of hidden parameters of adaptive OS-ELM optimized by
improved ABC algorithm can be described as the follows.

Step 1 The parameters of adaptive OS-ELM are initialized. These parameters
include maximum number of hidden layer nodes L, activation function f (x), em-
bedding dimension of samples m, weight coefficient µ, error threshold ε, and etc.

Step 2 The initial N sample data is x1, x2, · · ·xN is transformed into training

sample set (x1, t1) , (x2, t2) , · · · (xk, tk). xi =
[
xi xi+1 · · · xi+m−1

]T
is cho-

sen as input, ti = xi+m is chosen as output. Where k = N −m > L.

Step 3 The output weight is calculated according to Eq. (19).

Step 4 Training error Ek of adaptive OS-ELM network is calculated according
to Eq. (26).

Step 5 Input weight vector ak and bias bk of hidden layer node parameters are
optimized by improved ABC algorithm.

1. Parameters are initialized. That includes the number of nectar source – SN,
the maximum number of iterations - MCN, the maximum number of nectar
source mining – limit, cmax, cmin, α, β, etc. The values of the parameters to
be optimized are given. Suppose that number of iterations, t = 1.

2. An employed forager is assigned for nectar source. The searching process is
begun according to Eq. (12). A new nectar source Vi will be generated.

3. The fitness value Ek is calculated by samples data. The nectar source will
be retained according to greedy algorithm.
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4. The probability of nectar source be followed is calculated by Eq. (13). The
onlooker bees search and retain the nectar source according to greedy algo-
rithm.

5. The algorithm determines whether the nectar source should be discarded. If
true, the onlooker bees are changed into scout bees. Otherwise, go to Step 5.7.

6. The scout bees will generate a new nectar source according to Eqs. (21)
to (23).

7. Let t = t + 1. If the maximum numbers of iterations are satisfied, optimal
parameters are output. Otherwise, go to Step 5.2 and continue to execution.

Step 6 xk+1 =
[
xk−m+1 xk−m+2 · · · xk

]T
is chosen as input, input vector

hk+1 is calculated. Then, one step prediction value of xk+1 is obtained.

x̂k+1 = hk+1βk. (27)

Step 7 If the maximum prediction step is achieved, the prediction process ends.
Otherwise, the matrix Pk is updated according to Eq. (17). Then, βk is updated
according to Eq. (19). Let k = k+1, N = N+1. Go to Step 2.

4.2 Convergence analysis of the prediction model

The following two lemmas are introduced.

Lemma 1 Given arbitrary ε > 0 and activation function. For q discrete samples
(xi, ti), x ∈ Rn, t ∈ Rm, there is q hidden layer neurons and meets

||H(a, b,x)β̂ − t|| < ε, (28)

where a = [a1, a2, · · · , aq], b = [b1, b2, · · · , bq], β̂ = PHTT.

Lemma 2 Given any bounded continuous or piecewise continuous activation func-
tion, for any continuous objective function, if

β̂L = PLH
T
LTL, (29)

then there are arbitrary output matrix H and SLFNs makes the following Eq. (30)
to be satisfied. At the same time, network error ||EL|| decreases monotonically
with the decrease of the number of neurons.

lim
L→+∞

||EL|| = lim
L→+∞

||HLβ̂L − t|| = 0. (30)

Theorem 1 Given discrete sample (xi, ti), x ∈ Rn, t ∈ Rm, for arbitrary ε > 0.
If the parameters of adaptive OS-ELM neural network are optimized by improved
ABC algorithm, there must be a SLFNs that has q neurons make ||Hqβ̂q − t|| < ε
be satisfied.
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Proof. (1) If the current hidden layer node does not exceed the maximum al-
lowable number of neurons. Suppose that the maximum number of iterations of
the improved ABC algorithm is MCN , the number of hidden layer nodes in the
network is L. If L = 0 and k = 0, the corresponding output error ||EL(Hk)|| > ε.
It is assumed that the improved ABC algorithm is iterated K times, then the cor-
responding output error ||EL(Hk)|| ≤ ||EL(H0)||. At this time, the hidden layer
node is increased and L = 1, there is ||E1(H0)|| ≤ ||E0(HK)|| according to [18].
Therefore, when L = N and k = K, there is

||EN (HK)|| ≤ ||EN (H0)|| ≤ · · · ≤ ||E1(H0)|| ≤ ||E0(HK)|| ≤ ||E0(H0)||. (31)

According to [17], if exist
q∑

L=1

L > N and Hq is invertible, there is

||E0(H0)|| ≥ · · · ≥ ||Eq(HK)|| = 0, (32)

Therefore, there exists q < N make ||Hqβ̂q − f || < ε to be satisfied.
(2) If the current hidden layer node is greater than or equal to the maximum

allowable number of neurons. Suppose that the maximum number of neurons is
Lmax. The number of iterations is k = 1, the corresponding network output error
is ||ELmax

(H1)|| > ε. If improved ABC algorithm is iterated to K, there is

||ELmax(HK)|| ≤ ||ELmax(HK−1)|| ≤ · · · ≤ ||ELmax(H1)||. (33)

According to Lemma 1, there is a constant q, Lmax < q < N make the correspond-
ing network error ||Eq(H1)|| ≤ ε. At the same time, the number of iterations is
increased to k = K, there is

||Eq(H1)|| ≥ ||Eq(H2)|| ≥ · · · ≥ ||Eq(HK)||, (34)

Therefore, there exists q < N make ||Hqβ̂q − f || < ε to be satisfied.
From the above proof process can be obtained, the proposed adaptive OS-ELM

based on improved ABC algorithm is stable and convergent.

5. Simulation

In order to verify the predictive performance of the proposed prediction approach,
the short-term wind speed data is used to validate the predictive ability. The 500
groups of short-term wind speed data were collected from 6 O’clock on April 1,
2017 to 24 O’clock on April 21, 2017, which were measured from a power plant
located in Liaoning Province, China. The sampling period is 1 hour. The first 452
groups of data are used to train the model, and the latter 48 groups of data are
used as the test set to verify the accuracy of the prediction model. The short-term
wind speed data of the 500 groups are shown in Fig. 2.

The proposed adaptive OS-ELM based on improved ABC algorithm is com-
pared with OS-ELM [26], EI-ELM [19], EM-ELM [11], and standard ELM [17].
The parameters of the proposed adaptive OS-ELM are as the follows: the data
embedding dimension m is determined as 48, the number of neurons in the hidden
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Fig. 2 Short-term wind speed time series.

layer L is set to 100. The weight coefficient µ is set as 0.95. The threshold value
ε is chosen as 0.2. The parameters of improved ABC algorithm are as the follows:
the number of nectar source SN is 20, maximum number of iterations MCN is
100, the maximum number of nectar source mining limit is 30, cmax is 1, cmin is
0. The parameters of OS-ELM are as the follows: the data embedding dimension
m is determined as 48, the number of neurons in the hidden layer L is set to 100.
The hidden layer of EI-ELM and standard ELM are chosen as 100. In EM-ELM,
the initial hidden layer node is 1, each adding 4 hidden nodes, the node limit is
set to 100. The activation functions of all ELM algorithms are Sigmoid functions
with λ is 1. The range of input weights and bias values are [−1, 1]. All inputs
and outputs are normalized to [−1, 1]. Program operating environment are CPU
(i7-4770, 3.4 GHz), memory (8 GB), simulation software is Matlab 2010b. 20 sim-
ulation experiments are carried out under the same conditions. The average value
of training time, prediction time (48 steps), training error, and test error in 10
experiments are chosen as evaluation indexes. The training error and test error
are judged by the root mean square error between the actual value and prediction
value. Tab. II shows the operating results of several prediction models.

It can be observed from Tab. II, after the initial training stage, ELM, EM-
ELM, and EI-ELM does not use the new training samples to update the prediction
model, so with the increase of the prediction steps, the sample used for training
is gradually far away from the current time, thus the ability to track the dynamic
change characteristics of the short-term wind speed time series is gradually weak-
ened, the accuracy of the prediction will also be gradually reduced. Because of
the continuous use of the new training samples containing the current time infor-
mation, the prediction errors of adaptive OS-ELM and OS-ELM are all smaller
than the prediction errors of ELM, EM-ELM, and EI-ELM. In addition, since the
new training sample is closest to the current time, it is more valuable than the old
training sample, which is closer to the real short-term wind speed time series of the
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Prediction Training Prediction Training Test
models time(s) time (s) error (m/s) error (m/s)

Adaptive OS-ELM
based on improved 1.2284 0.1341 1.8827 0.2308

ABC algorithm
OS-ELM 1.6851 0.1825 2.0247 0.2762
EM-ELM 2.1547 0.2435 2.6874 0.3124
EI-ELM 2.8235 0.2998 2.7728 0.3566

ELM 3.4425 0.3751 3.4015 0.4495

Tab. II The simulation results of several ELM algorithms.

current time. Compared with the fairness principle of OS-ELM algorithm treate
new and old samples, adaptive OS-ELM pays more attention to the contribution of
new training samples, so that the updated prediction model has more information
from new training samples. Therefore, adaptive OS-ELM is closer to the current
real short-term wind speed time series than OS-ELM, and its prediction error is
obviously less than OS-ELM. On the other hand, the improved ABC algorithm is
introduced to optimize the hidden parameters of adaptive OS-ELM. The optimized
parameters further improve the prediction performance of the adaptive OS-ELM.

Fig. 3 is the comparison of the predictive values and the actual values of the 48
groups short-term wind speed in test set in one simulation by using 5 ELM models.
From this graph, we can observe that the proposed method is superior to other 4
kinds of ELM algorithms. The proposed prediction method has better regression
prediction ability for short-term wind speed time series.
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Fig. 3 Comparison of short-term wind speed prediction and actual value of five
ELM models.
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In order to further compare the predictive effects, the proposed prediction
method is compared with ARIMA [2], SVM [12], LSSVM [36], and RBF neural
network [23], the simulation results are shown in Fig. 4. Fig. 5 is the predictive er-
ror histogram distribution of the prediction models mentioned in this paper. Fig. 6
is the absolute predictive error of the prediction models mentioned in this paper.
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Fig. 4 Comparison of the short-term wind speed prediction and actual value of
other prediction models.
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From the results of Fig. 3 to Fig. 6, we can see that the proposed prediction model
is better than other models in prediction accuracy and prediction error. Therefore,
the prediction value of short-term wind speed of proposed prediction method can
reflect the actual value of network traffic more accurately.
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Fig. 6 Absolute error distribution of prediction models.

In this paper, we introduce the following four kinds of performance indicators
to measure the prediction accuracy of the prediction model.

1. RMSE (root mean square error)

RMSE =

√√√√ 1

N

N∑
k=1

(w(k)− ŵ(k))2, (35)

2. MAE (mean absolute error)

MAE =
1

N

N∑
k=1

|w(k)− ŵ(k)|, (36)

3. MAPE (mean absolute percentage error)

MAPE =
1

N

N∑
k=1

|w(k)− ŵ(k)| × 100/w(k), (37)
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4. Reliability

R(1−a) = [
ξ(1−a)

N
− (1− a)]× 100%, (38)

where N is the number of samples, w(k) is actual value of wind speed, ŵ(k) is
predictive value of wind speed, ξ(1−a) is the numbers of confidence intervals
in which the actual value falls under the confidence level 1− α.

Tab. III shows the comparison of RMSE, MAE and MAPE performance in-
dicators of these prediction models. The results in Tab. III also show that the
prediction model in this paper is superior to other prediction models in the perfor-
mance indicators.

Method RMSE MAE MAPE

Proposed method 0.3549 0.3041 0.1592
OS-ELM 0.4838 0.4262 0.1993
EM-ELM 0.4685 0.4242 0.2816
EI-ELM 0.4662 0.4557 0.2978

ELM 0.5095 0.4091 0.2719
ARIMA 0.6093 0.5368 0.2987

SVM 0.5698 0.5071 0.2852
LSSVM 0.5678 0.4885 0.2740

RBF neural network 0.5942 0.4773 0.3297

Tab. III Comparison of performance indicators.

Fig. 7 is the reliability and confidence distribution of the prediction models
mentioned in this paper. It can be seen from this graph that the prediction model
in this paper has higher reliability under the same confidence level. It can be known
that the reliability of the proposed prediction model is better than other prediction
models.
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Fig. 7 Reliability and confidence distribution of prediction models.
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In order to test the statistically significant of the prediction model, Wilcoxon
Sign-Rank [16] test and Ranksum test [35] is introduced. Tab. IV gives the
Wilcoxon Sign-Rank and Ranksum test results between predictive value of each
prediction model and actual value with significant level is 0.05.

Method
P-value (Wilcoxon P-value (Wilcoxon

Sign-Rank test) Ranksum test)

Proposed method 0.8939 0.9737
OS-ELM 0.8696 0.8574
EM-ELM 0.6518 0.8002
EI-ELM 0.6574 0.8804

ELM 0.6522 0.7496
ARIMA 0.5267 0.7330

SVM 0.5741 0.6256
LSSVM 0.6117 0.6357

RBF neural network 0.5627 0.4884

Tab. IV The Wilcoxon Sign-Rank and Ranksum test results.

It can be observed from Tab. IV, the P-value of Wilcoxon Sign-Rank test of the
proposed method is bigger than the other methods. It means that compared with
other prediction methods, the median difference between the short-term wind speed
prediction value and the actual value is even less significant. At the same time,
the P-value of Wilcoxon Ranksum test of the proposed method is also bigger than
the other methods. It means that compared with other prediction methods, the
probability of the average value of the predicted value and the actual value of the
proposed method is even greater. Therefore, the predictive value of the proposed
prediction method is more consistent with the trend of short-term wind speed time
series. In summary, the two test results in Tab. IV show that the statistically
significant difference between the predicted value of the prediction model and the
actual value of the short-term wind speed series is not obvious, and it has a better
prediction performance.

To prove the prediction performance, the Pearson’s test [42] is used to test
prediction accuracy from the statistical perspective. Pearson’s test can measure the
association strength between the actual value and the prediction value. The results
of association strength based on Pearson’s test are performed out to further verify
the superiority of the proposed prediction model compared with other models.
If Pearson’s correlation coefficient is equal to 1, it indicates that the actual value
and the prediction value have a linear relationship. On the other hand, if Pearson’s
correlation coefficient is equal to 0, there is no relationship between actual value and
prediction value. The results of Pearson’s test are given in Tab. V. From Tab. V,
it can be observed that the results of Pearson’s test of the proposed prediction
method are higher than those of the other prediction models. The results show
that the association strength between the actual value and the prediction value of
the proposed prediction method is stronger than the other methods.
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Method Pearson’s correlation coefficient

Proposed method 0.9928
OS-ELM 0.9879
EM-ELM 0.9773
EI-ELM 0.9677

ELM 0.9545
ARIMA 0.9476

SVM 0.9315
LSSVM 0.9324

RBF neural network 0.9017

Tab. V Results for the Pearson’s test.

In summary, from the point of view of the above modeling training results, curve
fitting, predictive error distribution, performance indicators, reliability, Wilcoxon
Sign-Rank test and Ranksum test, and Pearson’s test, adaptive OS-ELM method
based on improved ABC algorithm for short-term wind speed prediction has better
prediction effect. The first main reason for the improvement of prediction perfor-
mance is that adaptive OS-ELM highlights the role of the new training samples
and updates the output weights selectively according to their generalization abil-
ity. The prediction performance of proposed adaptive OS-ELM is improved. The
second main reason is that an improved ABC algorithm is used to optimize the
parameters of adaptive OS-ELM. The adaptive OS-ELM constructed with the op-
timal parameters further improves the performance indicators.

6. Conclusion

1. The traditional ELM training algorithm is only suitable for off-line training.
Once a new training sample is added to the training sample which is inde-
pendent of the training sample, it is necessary to repeat the network training
process. Although OS-ELM solves the online training problem of ELM, it
considers that the value of the new and old training samples is equal, giv-
ing the same weight to the old and new samples, and failing to highlight
the role of the new training samples. And, as long as OS-ELM gets new
training samples, the network weights are recursively updated. This mechan-
ical network weight updating model lacks flexibility according to the actual
situation, and increases the unnecessary amount of calculation. This paper
proposes an adaptive OS-ELM with more effective sample updating mech-
anism. The proposed approach considers that the new sample should be
added to the training set after the initial network weights are calculated, and
the corresponding network weights can be obtained on the basis of the ini-
tial network weights. At the same time, the new and old samples are given
different weights. The effect of new training samples on the algorithm is fur-
ther enhanced, which can further improve the regression prediction ability of
OS-ELM.
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2. On the other hand, how to determine the suitable parameters of the hidden
layer nodes in OS-ELM algorithm becomes important. This paper proposes
an improved ABC algorithm to optimize the parameters of the hidden layer
nodes in adaptive OS-ELM. This improved ABC algorithm has faster opti-
mization speed and better performance. The proposed improved ABC algo-
rithm can improve the efficiency and performance of adaptive OS-ELM. The
convergence analysis of the proposed prediction approach is given.

3. As a typical time series with nonlinearity, randomness and non-stationary,
short-term wind speed is often used to test the prediction performance of
prediction methods. The actual collected short-term wind speed time series
is used as the research object and verify the prediction performance of the
proposed method. The simulation results show that the proposed approach
has higher prediction accuracy and reliability performance, meanwhile im-
prove the performance indicators.

4. The number of nodes in the hidden layer of adaptive OS-ELM network is
constant. Many neurons in the adaptive OS-ELM algorithm have little effect
on the final output. Meanwhile, these useless neurons greatly increase the
number of iterations of algorithm, and reduce the efficiency of the algorithm.
The future work will take into account the structure of the OS-ELM, which
will consider the hidden layer nodes not always fixed, and will eliminate some
nodes that join the network but have little contribution to the network. At the
same time, the short-term wind speed time series is used as the simulation
object. In fact, the proposed prediction approach can also be used in the
prediction of any time series such as sunspot number, river runoff, stock
price, network traffic, wind power and etc. The future research of this paper
is also to apply the prediction model to other time series, and further improve
the prediction accuracy of the prediction method.
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