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Abstract: Cross-media semantic retrieval (CSR) and cross-modal semantic map-
ping are key problems of the multimedia search engine. The cognitive function and
neural structure for visual and auditory information process are an important ref-
erence for the study of brain-inspired CSR. In this paper, we analyze the hierarchy,
the functionality and the structure of visual and auditory in the brain. Considering
an idea from deep belief network and hierarchical temporal memory, we presented
a brain-inspired intelligent model, called cross-media semantic retrieval based on
neural computing of visual and auditory sensation (CSRNCVA). Algorithms based
on CSRNCVA were developed. It employs belief propagation algorithms of proba-
bilistic graphical model and hierarchical learning. The experiments show that our
model and algorithms can be effectively applied to the CSR. This work provides
an important significance for brain-inspired cross-media intelligence framework.
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1. Introduction

Cross-media semantic retrieval (CSR) is key technological issues of multimedia
search engine. The challenges to the cross-modal semantic computing are the
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semantic gap and the curse of dimensionality. Multimedia search engine and cross-
media intelligent engines utilize CSR technique. CSR is the new information re-
trieval technique that finds the mono-modal media which are semantic similarity
and the multi-modal media which are semantic correlation from the unstructured
information of multimedia by cross-media intelligent techniques. Essentially, CSR
concerns the multimedia computing issue. Multimedia computing of the main
objective is to research the methods and theories of information collection, rep-
resentation and analysis for vision, hearing, touch, taste, smell and other sensory
media. It establishes computational theory and information processing, semantic
analysis and target recognition algorithm for text, graphics, images, audio, MIDI,
video, animation, and other representation media.

The development of CSR undergoes the three stages: keyword-based text infor-
mation retrieval, mono-modal media retrieval based on content similarity, and CSR
based on semantic correlation. Cross-media analysis and reasoning would play the
important role in new-generation artificial intelligence [1]. CSR-related research
mostly concerned low-level information described for high-dimensional indexing,
high-level information semantic mining, and cross-modal and different dimensions
information correlation, as well as relevance feedback based on human-computer
interaction for retrieval results performance promotion. Recently, research mostly
has focused on deep learning and statistical learning in CSR semantic-based. Multi-
modal deep learning methods were proposed in order to achieve cross-modal audio-
video classification [2, 3]. Document [4] proposed an unsupervised method called
convolutional cross Autoencoder for cross-modality element-level feature learning,
which can capture the cross-modality correlations in element samples of social me-
dia datasets. The reference [5] proposed a multi-modality fusion framework and
a topic recovery approach to effectively detect topics from cross-media data. Ref-
erence [6] proposed a modality-dependent cross-media retrieval model, where two
couples of projections are learned for different CMR tasks instead of one a cou-
ple of projections. To fully understand users’ sentiment, literature [7] proposed a
cross-media public sentiment analysis system for short text and image of microblog.
Document [8] proposed an effective cross-media distance metric learning framework
based on sparse feature selection and multi-view matching. Moreover, cross-media
active learning algorithm also was used to reduce the effort on labeling images for
training [9].

The neurocognitive function and structure are an important reference for the
study of neural computing. It also has an important inspiration for multimedia
intelligence analysis and information retrieval. However, there is fundamentally
different in methods of research and realization between computer science and
neurocognitive science, which is due to CSR complexity. So it is an urgent and
important research issue that how to use knowledge of neurocognitive science to
model and realize efficient algorithms.

We now unveil a series of interlocking innovations in a set of two papers to
illuminate models and algorithms of multimedia search engine in the two ways:
Cross-modal Semantic Mapping based on Cognitive Computing of Visual and Au-
ditory sensation (CSMCCVA) based on Multimedia Neural Cognitive Computing
(MNCC) [10], and Cross-media Semantic Retrieval based on Neural Computing
of Visual and Auditory sensation (CSRNCVA) based on Cross-media Cognitive
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Neural Computing (CCNC). In order to address the key problem of CSR, neu-
rocognitive function and structure were researching into brain-inspired computing.
In this paper, we present a set of algorithms and models of CSRNCVA, which orig-
inally sprang from idea of Deep Belief Nets (DBN), Hierarchical Temporal Memory
(HTM) and Probabilistic Graphical Model (PGM).

2. Related works

The relevant researches of cognitive science and neuroscience found that multisen-
sory neurons cognition of the environment is through the fusion of multiple sensory
organs in the brain. The human brain is one of the most complex systems in na-
ture. Brain-inspired computing is a simulation of the human brain in function and
structure. Overall, now brain science fails to achieve the breakthrough in cerebrum
advanced functions. No doubts, this causes tremendous challenge to the research of
brain-inspired computing in information science. But we believe that it is entirely
possible to create CCNC model based on brain-inspired intelligence, if cognitive
computing methods [11, 12] based on cognitive framework, and neural computing
methods based on neural processing mechanisms were used, such as formal concept
analysis for cognitive functions [13], deep learning features for CMR [14], heteroge-
neous similarity measure with nearest neighbors and cross-media correlation prop-
agation [15]. This will be beneficial for solving the problem of semantics-oriented
multimedia computing.

The neural computing’s main objective is to discover the mechanism of bio-
logical nervous systems, to mimic the mechanism of neural network structure. It
constructed the computational model and algorithms of the Artificial Neural Net-
work (ANN). Understanding the network structure of white matter communication
pathways is essential for unraveling the mysteries of the brain’s function, organi-
zation, and evolution. Macaque brain white matters of Long-Distance Pathways
(LDP) are successfully found and mapped [16]. By using diffusion spectrum imag-
ing, the article noninvasively mapped whole-brain structural connectivity network
of human cerebral pathways within 66 cortical regions and 998 regions of interest,
and found brain regions within the structural core share high degree, strength,
and betweenness centrality, and they constitute the connector hubs that link all
major structural modules [17]. Using noninvasive multi-modal neuroimaging tech-
niques, the reference [18] designed a connectivity-based parcellation framework that
identifies the subdivisions of the entire human brain with 210 cortical and 36 sub-
cortical subregions, revealing the in vivo connectivity architecture. The cognitive
computing framework - TrueNorth [19], and neural processing unit - Darwin [20],
the novel modular, non-von Neumann, ultra-low power, and compact architec-
ture was proposed. TrueNorth and consists of a scalable network of neurosynaptic
cores, with each core containing neurons, dendrites, synapses, and axons. The Se-
mantic Pointer Architecture Unified Network (SPAUN) was to perform brain-like
task by neural simulator of Nengo, which can simulate some brain functions such
as copy drawing, image recognition, reinforcement learning, serial working mem-
ory, counting, question answering, rapid variable creation and fluid reasoning [21].
In addition, the accelerator for large-scale algorithms of Convolution Neural Net-
works(CNNs) and other Deep Neural Networks(DNNs) was designed, such as the
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DianNao, ShiDianNao, PuDianNao and DaDianNao [22]. The CCNC’s main objec-
tive is to research the problems of semantic computing for unstructured, massive,
multi-modal, multi-temporal and spatial distribution of multimedia information
processing, to establish a new generation of the cross-media information processing
models and algorithms. The CCNC would mimic in two methods, which is the
functional behavior of the cognitive framework at macroscopic level, and physio-
logical mechanisms of the nervous system at the microscopic level. Currently, there
are two main aspects, which have attracted attention for brain-inspired comput-
ing. The first is to simulate cognitive function based on system behavior, and the
second is to research neural mechanisms based on structures of neurons, synapses,
or local networks. However, there is still lacking effective methods about how to
build an advanced system for complex function with the simple local neural net-
work. The researchers have made unremitting exploration in the mechanisms of
brain-inspired computing for a long time. The main research directions include
ANN, HTM, DBN, PGM and so on.

With the development of neural computing, some new ANN appears such as
neocognitron,spiking neural network, convolutional network, Hierarchical Model
and X (HMAX) model, Neural Turing Machines (NTM), recursive neural net-
works, recurrent neural networks, deep residual networks, Long Short-Term Mem-
ory (LSTM), attention-based neural network and memory-based neural network
etc. With fast deep learning algorithm was proposed by Hinton, deep learning
has achieved unprecedented results in many applications. Microsoft research found
that the relative algorithm can reduce the error to 33 % for large-vocabulary speech
recognition in Switchboard dataset [23], and Google Labs also found that the accu-
racy of recognizing object categories increased to 70 % than the current best result
in ImageNet dataset [24]. Document [25] presented a single model that yields good
results on a number of problems spanning multiple domains, which contain convo-
lutional layers, an attention mechanism, and sparsely-gated layers. Currently, deep
learning algorithm has achieved unprecedented results in image category, speech
recognition and natural language processing. The reference [26] proposes learning
a set of high-level face representations through deep convolutional networks, and
the accuracy of their algorithm achieves an impressive accuracy rate of 97.45 % on
the LFW benchmark. The reference [27] developed a deep Q-network agent with
theory of reinforcement to receiving only the pixels and the game score as inputs,
it was able to surpass the performance of all previous algorithms and achieve a
level comparable to that of a professional games tester across a set of 49 games.
Furthermore, the reference [28] designed algorithms by a new search algorithm that
combines Monte Carlo simulation with value and policy networks, and the program
AlphaGo achieved a 99.8 % winning rate against other Go programs.

It is often a very difficult task that we have attempted to find a general model
since the complexity of the central nervous system. We need to let the neural
network imitate not only brain’s function but also brain’s structure. Hawkins
and George have proposed the HTM model based on cortical micro-circuits in
2006. Bayesian belief propagation theory of HTM was proposed [29], and set
up cortical micro-circuits mathematical model for design of the brain’s cortical
functional column. Similar in structure design of Restricted Boltzmann Machine
(RBM), HTM also has double layers. The difference is that HTM nodes consider
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the property of spatial-temporal locality and hierarchical. The idea of HTM is
from approximate reasoning and belief propagation algorithm by Pearl’s Bayesian
belief network, but there are no effective learning algorithms.

In contrast, between Hinton’s deep learning algorithm for DBN and Hawkins’s
cortical algorithm for HTM, both can be classified by unsupervised learning, and
can be stacked to build up a feedback hierarchy structure. RBM doesn’t utilize
the spatial-temporal locality fully, but HTM more modular to use spatial-temporal
locality and hierarchical based on belief propagation algorithm of PGM [30]. Ref-
erence [31] proposed a data-driven approach for cross-media retrieval based on the
probabilistic topic model by automatically learning its underlying semantic vocab-
ulary. The reference [32] presents the concepts computational model by a Bayesian
criterion, and achieves human-level performance while outperforming while out-
performing recent deep learning approaches. In a few words, both DBN and HTM
can be seen as a special case in mathematical formalism.

3. Visual and auditory information integration of
cortical semantic classification

3.1 LDP of cerebrum

The human central nervous system has white matter, grey matter, substantia nigra
and other tissue. On the one hand, neocortex’s function in the grey matter is
structurally similar to the processing unit in linear analogue system and gate circuit
in nonlinear digital system. On the other hand, LDP in white matter constitutes
complex wiring diagram of a neural network for information processing.

Function and structure of the cerebrum are one of the most complex systems
in nature, it is generally thought that neocortex of the cerebrum is an important
part which processes logical intelligence. The thalamus is switching of selective
attention, which processes information from all the senses except smell and sends
it on to the cerebral cortex for more analyses. Hippocampus and the limbic system
are the controllers of memory and emotions. Now, various methods are used to
discover the brain mechanism. Neuroscience used white box and bottom-up meth-
ods to research neural information processing mechanism of cortical structures and
neural pathways. Cognitive science used methods of the black box and top-down to
analyze the function and phenomenon of cognitive. Then built brain model of in-
formation processing in theory, computer science implemented mathematical logic
operation on finite state machine based on the Turing machine. From MLP model
to HTM and DBN, people never stop to explore the use of cognitive processing
mechanisms of the nervous system to promote information computing. You can
think of the neural system and cognitive function as an isomorphic relationship.

Conjecture 1. By establishing related computational model M , it can build the
mapping between the neural structures (or processes) N and cognitive operations
(or functions) Ψ.

M : Ψ←→ N.

According to the macaque brain LDP database of CoCoMac processing [16],
a large number of neural pathways and circuits exist in between primary audi-
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tory cortex area (A1) and primary visual cortex area (V1), and the number of
interneuron is linearly related to the derivative of neural pathways and circuits.
The hierarchy of cortical function and structure of neural pathways and circuits
can provide significant evidences for the neurocognitive model. Neural circuits are
the important material of relevance feedback, stochastic resonance, even recurrence
iterative. Studies indicate the central nervous network is a scale-free and small-
world complex network. Fig. 1 illustrates the node degree and pathways connection
relationship in the eight parts of the cerebral cortex, where the amount of connec-
tions denoted by line size, and the amount of nodes and degree in areas denoted by
node size. There are the pathways number of all brain regions, but the pathways
amount and degree have a significant difference in each area.

Fig. 1 The simplify connection diagrams in 8 major areas of the whole-brain.

3.2 Cerebral cortex model

Cerebral cortex is grouped into three major types of area: paleocortex, olfactory
and neocortex. Paleocortex doesn’t have clear layers; olfactory has three layers,
and neocortex made up of six layers which account for 90 % of the area of cerebral
cortex. The neocortex is commonly described as comprising three parts: primary
sensory cortex, primary motor cortex and association cortex. The neocortex is the
outer layer of the cerebral hemispheres, and made up of six layers (Fig. 2). Each
layer of the neocortex has different functions. L4 receives incoming information;
L2 and L3 layers make up local neural circuitry to process information; L1 resolve
project information of convergence and inhabitation; the last information outputs
from L5 and L6.

Most studies suggest that neocortex of vision, audition and association are
similar in structure. Cortical columns are a base unit for information processing
in neocortex. Cortical columns have the phenomenon of hierarchical processing
and the mechanism of lateral inhibition of each other. Micro-columns consist of
local circuits in neocortex. Physical stimuli are perceived and programmed to
generate nerve impulse by visual-auditory sensory neurons, and function of micro-
column is feature detection. Macro-column or super-column consists of micro-
columns to process special information and generates some cognitive functions.
The spike active probability is propagating among micro-columns. Micro-columns
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L2/L3

L4

L5

L6

Fig. 2 The neocortex micro-column structure schematic.

converge information from lower neighbor micro-columns, and diverge information
from upper neighbor micro-columns. At the same time, it also receives feedback
information from LDP, and the receives the prediction information from upper
neighbor. Fig. 2 illustrates the structure of information propagation and processing
in micro-column.

In addition, there are a lot of connections in thalamo-cortical projection sys-
tem, the thalamic association nuclei which deal with selective attention of sensory
information, and the thalamic association nuclei which deal with cortical infor-
mation interchange. According to neurocognitive mechanism, Fig. 3 illustrates
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Fig. 3 Schematic of thalamo-cortical projection system of the visual-auditory neu-
rocognitive collaborative information processing pathway.
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neurocognitive pathway of visual-auditory information collaborative processing in
thalamo-cortical projection system which has 5 levels. The thalamus is the cen-
ter of information switching; Level 2 is visual-auditory feature detector such as
brightness, edge, tone and loudness. Level 3 constructs the super-column to mimic
primary visual-auditory sensory cortex. Level 4 imitates multi-modal sensory of
secondary visual-auditory cortex. Level 5 simulates association cortex.

3.3 Structure temporal-spatial node of micro-column

Conjecture 2. In view, that neocortex has the similar structure. We can make the
following hypothesis. Similar mechanisms can be used in all of cerebrum neocortex.
The visual-auditory information processing can be described by uniform neocortex
framework, and can be applied to learn, inference, prediction, and other issues.

In order to simplify the model design, at first, we merge 6 nodes micro-column
(Fig. 4) to triple nodes micro-column (Fig. 5) where middle layer 4 input informa-
tion, lower layer (L5 and L6) output information, and upper layer (L1, L2 and L3)
process information. In fact, cortex information processing has the temporal and

6

5

4

3

2

1

Fig. 4 The hierarchical structure model of the micro-column of 6 nodes.

 

1/2/3

4

5/6

   

  

Fig. 5 The hierarchical structure model of the micro-column of 3 nodes.
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T

S

Fig. 6 The hierarchical structure model of the micro-column of 2 nodes.

spatial property. Furthermore, we simplify the model with dual nodes structure
(Fig. 6). It is noted that this simplification does not lose the advantage of bionics;
in fact, HTM node, RBM node and SVM are using double structure. The function
of S mimicking from L1 to L4 to memory and process spatial patterns; the function
of T mimicking L5 and L6 to memory and process temporal patterns; both nodes
of S and T can memorize belief which comes from owner and other nodes.

3.4 Hierarchical network architecture of super-column

According to neurocognitive system hierarchical architecture and temporal-spatial
locality, super-column architecture also uses hierarchical, multi-level, and bidirec-
tional mapping structure. Super-column composed by a micro-column with prin-
ciples of “the same layer collaborative” and “hierarchical processing” (Fig. 7).

According to neurocognitive data, we design auditory process super-column
with 4 layers, the micro-column number of each layer is 8, 4, 2, and 1; and design
visual process super-column with 3 layers, the micro-column count of each layer
is 16, 4, and 1; design visual-auditory collaborative process super-column with 3
layers, the micro-column count of each layer is 3 (Fig. 8).

3.5 Information propagation algorithm of cortical columns

Fig. 9 shows belief flows that the information of cortical columns receives and
propagates. λYX is the belief from children layers and upward. πUX is the belief
from parent layers and downward belief from owner. Bel(X) is node owner certainty
information. λXU(X) is the belief to children layers and upward. πXY(X) is the
belief from parent layers and downward belief.

According to PGM algorithm ideas such as belief propagation algorithm of
directed graph, sum product algorithm of an undirected graph, and junction tree
algorithm etc., Fig. 10 illustrates information the cortical columns reception and
belief propagation. The algorithm of cortical columns information propagation as
follows:
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Fig. 7 The structure model of the super-column.

Fig. 8 Visual-auditory information propagation network architecture of cortical
micro-columns.
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Fig. 9 The cortical columns reception and belief propagation definition.

Ti,j-1

Si,j-1

Ti,j

Si,j

Ti-1,j

Si-1,j

Ti+1,j

Si+1,j

Ti,j+1

Si,j+1

πSi,j-1(Si,j)

πSi,j(Ti-1,j)

λTi-1,j(Si,j)

λSi+1,j(Ti,j)

πTi,j(Si+1,j)

λTi+1,j(Ti,j)

λSi-1,j(Si,j)

λSi,j+1(Si,j)

λTi,j-1(Ti,j)

λSi,j(Ti-1,j)

πTi-1,j(Si,j)

πTi-1,j(Ti,j)

πSi+1,j(Ti,j)

λTi,j(Si+1,j)

πSi+1,j(Si,j)

πTi,j+1(Ti,j)

πSi,j(Ti,j)

πSi,j(Si,j+1)

πS(Si-1,j)

λSi,j(Si,j-1)

λSi,j(Si+1,j)

πTi,j(Ti,j-1)

πTi,j(Ti+1,j)

λTi,j(Ti,j+1)

λTi,j(Ti-1,j)

Bs

Bt

λTi,j(Si,j)

Fig. 10 Receiving and propagation information computing in the triple-tier struc-
ture of cortical columns.

Algorithm 1 Micro-column information propagation algorithm (MIPA).
MIPA calculates belief of micro-column node.
Step 1: initialization

Receive belief of media temporal-spatial pattern λYX, πUX, P (Ti,j |u), and
P (Si,j |u). According to Fig. 8, set numbers of auditory super-column to 4 layers,
and a total of 15 micro-columns.

Set numbers of visual super-column to 3 layers, and a total of 9 micro-columns.

Set numbers of collaborative super-column to 3 layers, and a total of 9 micro-
columns.
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Set λSi−1,j
, λTi−1,j

, πSi−1,j
, and πTi−1,j

equal 0 on the top layers, and let
λSi+1,j

, λTi+1,j
, πSi+1,j

, and πTi+1,j
equal 0 on the bottom layers.

Step 2: the spatial micro-column node information which is from input of chil-
dren and neighboring to be calculated is λ(S), as the following equation shows:

λ(Si,j) =
∏

y=Si−1,j ,Si,j+1,Ti−1,j ,Ti,j

λy(Si,j).

Step 3: the spatial micro-column node information which is from input of parent
and neighboring to be calculated is π(S), as the following equation shows:

π(Si,j) =
∑

u=Si,j−1,Si+1,j ,Ti−1,j

P (Si,j |u)
∏

u=Si,j−1,Si+1,j ,Ti−1,j

πu(Si,j).

Step 4: calculate information Bel(S ) of spatial micro-column node as follows:

Bel(Si,j) = αλ(Si,j)π(Si,j).

Step 5: check whether spatial patterns are existing in the node. Update spatial
patterns weight to make it attenuate with time if spatial patterns exists in the
node, and the new spatial patterns be inserted if it does not exist on the node.

At the same time, send information λS(u) and πS(y) to neighboring nodes. The
output information propagation steps are as follows:
Step 6: calculate information λ(u) of spatial micro-column node which is sent
to parents and neighboring output information as follows:

λSi,j
(u) =

∑
y=Si−1,j ,Si,j+1,Ti−1,j ,Ti,j

λy(Si,j)
∑

v∈U,v 6=u

P (Si,j |v)
∏

v∈U,v 6=u

πv(Si,j),

where u = {Si,j−1, Si+1,j , Ti−1,j}.
Step 7: calculate information π(y) of spatial micro-column node which sends to
children and neighboring output information as follows:

πSi,j (y) = απ(Si,j)
∏
k 6=y

λk(Si,j),

where y = {Si−1,j , Si,j+1, Ti−1,j , Ti,j}.
Similarly, related information about temporal micro-column node was com-

puted as follows step.
Step 8: temporal micro-column node information which is from input of children
and neighboring to be calculated is λ(T ), as the following equation shows:

λ(Ti,j) =
∏

y=Ti,j−1,Ti+1,j ,Si+1,j

λy(Ti,j).

Step 9: temporal micro-column node information which is from input of parent
and neighboring to be calculated is π(T ), as the following equation shows:

π(Ti,j) =
∑

u=Si,j ,Si+1,j ,Ti,j+1,Ti−1,j

P (Ti,j |u)
∏

u=Si,j ,Si+1,j ,Ti,j+1,Ti−1,j

πu(Ti,j).
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Step 10: calculate information Bel(T ) of temporal micro-column node as follows:

Bel(Ti,j) = βλ(Ti,j)π(Ti,j).

Step 11: check whether temporal patterns are existing in the node. Update
temporal patterns weight to make it attenuate with time if temporal patterns
exist in the node, and the new temporal patterns be inserted if temporal patterns
do not exist on the node.
At the same time, the node sends information λT (u) and πT (y) to neighboring
nodes. The output information propagation methods are as follows:
Step 12: calculate information λ(u) of temporal micro-column node which sent
to the parent and neighboring output information as follows:

λTi,j
(u) =

∑
y=Ti,j−1,Ti+1,j ,Si+1,j

λy(Ti,j)
∑

v∈U,v 6=u

P (Ti,j |v)
∏

v∈U,v 6=u

πv(Ti,j),

where u = {Si,j , Si+1,j , Ti,j+1, Ti−1,j}.
Step 13: calculate information π(y) of temporal micro-column node which sent
children and neighboring output information as follows:

πTi,j
(y) = απ(Ti,j)

∏
k 6=y

λk(Ti,j),

where y = {Ti,j−1, Ti+1,j , Si+1,j}.
Step 14: calculate information Bel(N) of temporal-spatial micro-column node
as follows:

Bel(Ni,j) = γ (Bel(Si,j) + Bel(Ti,j)) .

Return: temporal-spatial pattern belief of micro-column Bel(Ti,j) and Bel(Si,j),
and output temporal-spatial pattern belief λXU(X) and πXY(X).

3.6 CSR algorithm of auditory-visual information

Algorithm 2 Cross-media semantic retrieval algorithm (CSRA). CSRA solves
CSR processing from multi-media by cross-modal semantic mapping algorithm
(CSMA) algorithm [10].

Step 1: initialization auditory media A, visual media V , and cross-modal se-
mantic mapping (CSM) parameters [10].

It includes visual temporal-spatial patterns probability VGN, auditory temporal-
spatial patterns probability AGN, auditory cortex belief ATS, visual cortex be-
lief VTS, concept of visual-auditory integration belief CTS, visual object emo-
tional control value VRP, auditory object emotional control values ARP, visual-
auditory object emotional control value ERP, visual object temporal memory
value VM, auditory object temporal memory value AM, visual-auditory object
temporal memory value CM, and so on.
Step 2: if input media is audio A then

Similar audio A′, correlation video V ′, and correlation concept of visual-
auditory integration CTS′ can be calculated as follows:
Step 2.1: auditory cortex belief ATS was calculated by audio A.
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Step 2.2: search similar audio A′ which meets the condition that auditory
object temporal memory value AM ≈ 0.
Step 2.3: set visual cortex belief VTS ≈ 0, and calculate CTS of visual-

auditory integration concept to find correlation concept CTS′.
Step 2.4: according to the concept of visual-auditory integration CTS, corre-

lation video V ′ is found which meets the condition that visual object temporal
memory value VM ≈ 0.
end if
Step 3: if input media is video V then

Similar video V ′, correlation audio A′ , and correlation concept of visual-
auditory integration CTS′ can be calculated as follows:
Step 3.1: visual cortex belief VTS was calculated by video V .
Step 3.2: search similar video V ′ which meets the condition that visual object

temporal memory value VM ≈ 0.
Step 3.3: set auditory cortex belief ATS ≈ 0, and calculate CTS of visual-

auditory integration concept to find correlation concept CTS′.
Step 3.4: according to the concept of visual-auditory integration CTS, corre-

lation audio A′ is found, which meets the condition that visual object temporal
memory value AM ≈ 0.
Step 4: if input is concept of visual-auditory integration CTS then

Similar concept of visual-auditory integration CTS′, correlation audio A′ and
video V ′ can be calculated as follows:

Step 4.1: find the similar concept of visual-auditory integration CTS′ which
meets the condition that CM ≈ 0 for the concept of visual-auditory integration
CTS.
Step 4.2: search correlation video V ′ which meets the condition that visual

object temporal memory value VM ≈ 0.
Step 4.3: search correlation audio A′ which meets the condition that auditory

object temporal memory value AM ≈ 0.
end if
Return: similar media or correlation media (such as auditory media A′, visual
media V ′, and concept of visual-auditory integration CTS′, and so on.)

4. Experiments and analysis

4.1 Test data

Due to the nature of audio and video information have a lot of noises, in order
to take the quantitative and qualitative analysis and evaluation to the modal, we
adopt 26 letters in the English alphabet as training media, that are the concept of
26 English letters, pronunciation of Microsoft TTS Anna of 26 English letters, and
image of Chinese Kai font of 26 English uppercase letters.

Fig. 11 shows all media of training and testing: spectral distribution of English
letters fonts (I and III rows in Fig. 11), spectral distribution of English letters pro-
nunciation (II and IV rows in Fig. 11); training media time-frequency distribution
of all speech (V row and α column in Fig. 11); test media time-frequency distribu-
tion of all speech with Gaussian white noise (V row and β column in Fig. 11); train
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media space-frequency distribution of all fonts (V row and γ column in Fig. 11);
test media space-frequency distribution of all fonts with Gaussian white noise (V
row and σ column in Fig. 11).

Fig. 11 Time-frequency and space-frequency distribution of the training media.

All media of training and testing were transformed features with 333 dimensions
after processing. The image features have frequency-domain with 25 dimensions
and time-domain with 50 dimensions, and audio features have frequency-domain
with 111 dimensions and time-domain with 222 dimensions.

4.2 CSRNCVA result analysis

Fig. 12 shows the simulation result that information propagation characteristic of
the visual-auditory cortical columns neurocognitive by Algorithm 1 (MIPA). Let six
inputs of cortical columns denoted by sets 0, 0.5, 1, Fig. 12 (a) shows the distribu-
tion of input information. When setting eight I/O parameters (P (Ti,j |u), P (Si,j |u))
values are 1, Fig. 12 (c) shows the distribution of output information. Fig. 12 (b) is
the simulation result of temporal-spatial information Bel(T ) and Bel(S) of cortical
columns for different I/O information. Based on the simulation results, we can find
that cortical column can generate responsive only to specific input patterns.
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Fig. 12 Characteristics of information propagation of the visual-auditory cortical
columns neurocognitive.

To validate the model’s effectiveness, the MIR Flickr-25000 dataset was used in
our experiments [33]. The dataset consists of 1 million images retrieved from the
social photography website Flickr along with their user assigned tags. Among the
1 million images, 25,000 have been annotated for 38 topics including object cat-
egories. It is high-quality dataset for multimedia information semantic retrieval.
Without loss of generality and efficiency, 80 samples were randomly selected for
each topic as training data in 36 topics. Then 40 samples were randomly selected
for each topic as test data. Image features were extracted by pyramid histogram
of words based on SIFT, Gist features, MPEG-7 descriptors, total 3857 dimen-
sions. Similar simulation experiment, training and testing image were transformed
frequency-domain with 25 dimensions and time-domain (context of text and image
by sequence and attention) with 50 dimensions, a total of 75 dimensions.

Tab. I shows the results of the mean average precision (MAP) and the Top-20
precision (Precision@20) by CSRNCVA model, and with methods of multimodal
LDA, SVM, DBN, DBM [2, 3, 33] , the results which can be seen in CSRNCVA
model of CSR Precision@20 is slightly better than the other models, but MAP
slightly lower than the multi-modal DBN and DBM.

Models
Multi-modal

LDA
Multi-modal

SVM
Multi-modal

DBN
Multi-modal

DBM
CSRNCVA

modal

MAP 0.499 0.476 0.591 0.607 0.587
Precision@20 0.764 0.758 0.868 0.865 0.888

Tab. I CMR results of mean average precision (MAP) and Precision@20 obtained
by different models.

The experiments results show that the MIPA algorithm has the function of
cross-media feature extraction in our CSRNCVA model. CSRA algorithm can
effectively compute semantic similarity measure of homogeneous media and cross-
media semantic correlation of heterogeneous media.
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5. Conclusion

In this paper, we presented a CSRNCVA model with mechanism neurocognitive
visual-auditory cortex of the central nervous system. Then we give the CSR al-
gorithms which take into account the idea of DBN, HTM, PGM and hierarchical
learning theory. Simulation results show that CSRNCVA model is robust and effec-
tive. We only do a preliminary exploration with CCNC. The most model’s param-
eters only learn from physiological data, which due to neurocognitive mechanisms
of the brain’s complexity. Looking into the future, the models need to be combined
with a new theory of deep learning, probability learning and modern neuroscience
findings improve the relevancy algorithms. The model improvement would be dis-
cussed in another article [34]. Furthermore, cross-media semantic search engine
based on CCNC would be built for target classification and recognition of high
resolution remote-sensing image [35].
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