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Abstract: Neural network based on back-propagation (BP) algorithm is a widely
used prediction model. However, the nodes number of the first hidden layer, the
learning rate and momentum factor are usually determined manually, which af-
fects the forecast accuracy of network. Therefore, in this paper, to improve the
forecast accuracy, firstly, the nodes number of the first hidden layer is selected
adaptively based on minimizing mean square error (MSE). Secondly, improved
genetic algorithm (GA) is proposed to train the learning rate and momentum fac-
tor dynamically, which includes multi-point crossover and single point mutation.
Thirdly, we construct a new neural network model based on the adaptively selected
nodes number of the first hidden layer, the dynamically selected learning rate and
momentum factor, which is called HN-GA-BP neural network model. Finally, the
proposed neural network model is used to forecast the carbon dioxide contents in
China for fifty years. Experimental results demonstrate the effectiveness of the
proposed HN-GA-BP neural network model.
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1. Introduction

Carbon dioxide is the primary anthropogenic greenhouse gases in the earth’s at-
mosphere. With rapid progress of the industrialization and urbanization, carbon
dioxide emissions produced by human activities are considered as the main rea-
son of increase in atmospheric concentrations [1]. According to the annual survey
of China Meteorological Administration, the concentration of carbon dioxide had
reached the highest level in history [2]. Therefore, forecasting the carbon dioxide
contents accurately is important to human society and may help in making better
environmental strategies, even better for humans’ daily life. Generally, most of
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the traditional methods for forecasting the carbon dioxide contents are mathemat-
ical or manual calculation, which cannot forecast intelligently. Apparently, with
the gradual increasing data of carbon dioxide, these traditional methods will be
inadequate, even lead to inaccurate forecast results. Compared with traditional
methods, neural network is an effective mathematical calculation model, which can
accurately calculate like human brain’s neural system. Nowadays, neural networks
have been widely applied in many fields, such as energy forecasting, intelligent
computing and classification problems etc [3]. Especially, neural network models
have also been applied for predicting carbon dioxide contents. Moreover, neural
networks have capability of fast training and accurate forecasting, which can handle
many complex forecast problems effectively [4].

Generally, neural network contains three layers: the input layer, the hidden
layer and the output layer, which makes the input and output of a set of samples
into a nonlinear problem, using gradient descent algorithm optimization technique
to get the final forecast values [5]. JP Skon provided a Multilayer Perception
(MLP) neural network with back-propagation (BP) algorithm for forecasting in-
door air carbon dioxide [6]. Based on neural network model with single hidden
layer, Yan [7] summarized and provided the single hidden layer sigmoid feedforward
neural network model (SLENN), which has been widely used in many forecasting
fields. V. Bevilacqua [8] proposed a neural network model in order to forecast
carbon dioxide contents based on some input attributes. C. Gallo [9] proposed a
short term method for forecasting carbon dioxide contents with back-propagation
algorithm. The above mentioned neural network models were constructed based
on BP algorithm (BPNN). Usually, the topology structure and training parame-
ters are determined by manual setting or experience, which affects the forecasting
accuracy. So how to design the network structures and set parameters reasonably,
which is crucial for the prediction accuracy.

However, the network structures and parameters are difficult to determine,
which restricts the network performance [10]. For the network structures, the
hidden layers are the most important, and the number of hidden layers and the
number of hidden layer nodes will determine the overall structures of a network
and the way of information transmission. Generally, neural network with single
hidden layer has fast training speed [11,12], but it cannot deal with nonlinear
problems effectively. However, with the increase of layer number, the computa-
tional complexity of the network will increase at an exponential rate, which affects
the efficiency of network training [13]. Therefore, in practical applications, double
hidden layer is a good choice, which can deal with nonlinear problems more effec-
tively. Besides, the nodes number of hidden layer is crucial for network training
accuracy. However, existing neural network models often set the nodes number of
hidden layer depend on artificial or mathematical formulas [14-16], which is too
subjective and cannot adjust dynamically. In addition, learning rate and momen-
tum factor are two important parameters for training accuracy of neural network.
Usually, learning rate is small to maintain the convergence speed and stability of
neural network training [17]. On the contrary, if the learning rate is too large,
this may lead to instability of the network training. Similarly, setting momentum
factor appropriately can make the network weight update quickly, and avoid the
network falling in local minima [18-20]. However, in above models, the learning
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rate and momentum factor are set manually, which leads to imprecise training re-
sults. To improve the prediction performance of neural network, many researchers
use intelligence optimization algorithms to construct network structures and set
parameters. A. Jamali [21] combined the neural network and genetic algorithm to
forecast the emission of carbon dioxide with multi-object optimization method. S.
Yu [22] applied genetic algorithm neural network (GANN) to forecast carbon diox-
ide contents with recoded chromosome of training parameters. Moreover, based on
the swarm intelligence method and BP neural network, W. Sun [23] combined par-
ticle swarm optimization with BP neural network to construct (PSO-BP) model,
and applied the proposed model to forecast carbon dioxide contents.

Therefore, in this paper, to improve the forecast accuracy, we optimize the
neural network from two aspects. Firstly, according to the mean square error of
each iteration of network training, the nodes number of the first hidden layer is se-
lected adaptively, which can minimize the mean square error. Secondly, using mean
square error function to define the fitness function, improved genetic algorithm
(GA) is proposed to train the learning rate and momentum factor dynamically,
which includes multi-point crossover and single point mutation. On this basis, the
HN-GA-BP neural network model is proposed based on the adaptively selected
nodes number of the first hidden layer, the dynamically selected learning rate and
momentum factor. The proposed network model is applied to forecast the carbon
dioxide contents in China. Experimental results demonstrate the effectiveness of
the proposed HN-GA-BP neural network model.

The remainder of this paper is organized as follows. In Section 2, we give the
method to select the first hidden layer nodes number adaptively. In Section 3, we
give the method of training learning rate and momentum factor dynamically using
the improved genetic algorithm. Based on the adaptively selected nodes number
of the first hidden layer, the dynamically selected learning rate and momentum
factor, we construct HN-GA-BP neural network model. Some experimental results
are discussed in Section 4. In Section 5, we conclude this paper.

2. The method of selecting the first hidden layer
nodes number adaptively

Neural network is an effective mathematical model designed as the structure of
the nervous system. The model was presented for the first time by McCulloch
and Pitts [24] and involves a set of nodes, a set of weights and activation functions.
Neural networks simulate the human brain and consist of an interconnected network
of neurons and synapses. Neurons accept inputs from other neurons and produce
an output by firing their synapse. Neurons perform a weighted sum on all of
their inputs and then the result goes through an activation function to produce an
output. Neural network is organized into layers. There is an input layer, an output
layer and one or more hidden layers. The hidden layers are the fundament and
important component of the neural network that perform the actual computations.

Generally, the network performance is reflected by the mean square error of
the training results. If the mean square error is small, then the network topology
structure is reasonable. Hence, in this paper, we select the nodes number of the
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first hidden layer adaptively according to the mean square error of each iteration
of network training, which can avoid the blindness of manually setting the nodes
number. However, if we use the same method to set the nodes number of the second
hidden layer, the training time will increase significantly. In addition, the nodes
number of the second hidden layer depends on the number of input nodes. So in
this paper, we set the nodes number of the second hidden layer as (2m +1)/2 (m
is the nodes number of the input layer) according to Hecht-Nielsen’s method [25],
which is simple and effective.

The topology structure of back-propagation neural network with double hidden
layers is shown in Fig. 1.

The Input Layer The Hidden Layer The Output Layer

Fig. 1 The topology structure of back-propagation neural network with double hid-
den layers.

The back-propagation neural network is a supervised learning method that uses
a gradient descent method to minimize the error between the predicted output and
the target output. Repeat above calculation and modification of the weights and
thresholds until the mean square error function reaches a termination condition.
According to the way of information transmission in back-propagation neural net-
work with single hidden layer [5], the information transmission in back-propagation
neural network with double hidden layers is defined as follows.

m The input layer nodes number

n The first hidden layer nodes number

S The second hidden layer nodes number

N : The total number of sample

x? : The p-th sample input of j-th node in input layer (1 < p < N)

wi; : The weight between j-th node in input layer and i-th node in the first
hidden layer

wg; © The weight between i-th node in the first hidden layer and k-th node in the
second hidden layer

wqr :  The weight between k-th node in the second hidden layer and ¢-th node in
output layer
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b; : The threshold of i-th node in the first hidden layer

ag The threshold of k-th node in the second hidden layer
by The threshold of g-th node in output layer

@ () : The excitation function

Q: The output layer nodes number

OZ .

The p-th sample target output of ¢-th node in output layer (1 < ¢ < Q)

The input of i-th node in the first hidden layer is defined as [26]
net? = iwijx;) +b;.
The output of i-th node in the first hidden layer is defined as
yr = p(netl) = Z wi Tk + b
The input of k-th node in the second hidden layer is defined as

n
P _ E : P
net; = WkiY; + Q-
i=1

The output of k-th node in the second hidden layer is defined as

Y, = p(nety) = (Z wriyt + ak>

The output of ¢g-th node in output layer is defined as

yh = p(neth) (Z WYy + b )

()

Combined with Egs. (1), (2), (3), (4), (5), the mean square error in output layer is

defined as
N Q

The mean absolute error is defined as

1 N Q
MAE = N@g; yq —0§|.

The mean absolute percentage error is define

3

D_.

as

MAPE =

I M@

ygop‘

2 \

(6)
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Algorithm 1 The method of selecting the nodes number of the first hidden layer
adaptively.
Input: Initial parameters and functions of back-propagation neural network.
Output: The nodes number of the first hidden layer.
Stepl: Set S as the maximum nodes number of the first hidden layer.
Step2: Initialize iteration number ¢ = 1, mean square error vector res (i) = 0.
Step3: Initialize the back-propagation neural network, set the nodes number of
the first hidden layer number, = i, set the nodes number of the second hidden
layer numberya = (2m 4+ 1)/2(m is the nodes number of the input layer), set
the activation function in the first hidden layer and the second hidden layer is
Sigmoid, set the activation function in output layer is Purelin, set the learning
function is Trainlm.
Step4: Train the back-propagation network, then according to formula (6),
calculates mean square error (MSE) of 4-th training results, res (i) = MSE.
Step5: Iteration number ¢ =i+ 1, when ¢ = S, jump to Step6; Otherwise repeat
Step3 ~Steps.
Step6: For 1 <14 < S, calculate the minimum value of res (i), then record i.
Step7: If i < (m+Q)/2,i=(m+Q)/2;if i > (2m+1), i = (2m + 1), where
Q@ is the nodes number of output layer.
Step8: Output 7, which is the selected nodes number of the first hidden layer.

According to the value of mean square error, the method of selecting the nodes
number of the first hidden layer adaptively is described as Algorithm 1.

Note that, in this paper, the nodes number of input layer (m) are more than
the nodes number of output layer (Q). Hence, we set [(m + Q)/2, (2m + 1)] as the
range of the nodes number of first hidden layer in Algorithm 1, which can maintain
the convergence of neural network [27, 28].

3. Improved genetic algorithm to train learning
rate and momentum factor

Genetic algorithm was proposed by J.H. Holland in 1975 inspired by species evo-
lution [29]. Genetic algorithm simulates the evolution process of biology in nature,
which means that survival of the fittest in natural selection. First, the genetic al-
gorithm initializes the population based on the chromosome coding and constructs
the fitness function according to the objective of problem solving. Second, each
individual in the population exchanges partial genes with other individual with a
specified probability, which is crossover operation. Then, some genes in this in-
dividual can mutation with a specified probability, which is mutation operation.
Finally, after crossover operation and mutation operation, each individual has been
evolved and has a new chromosome structure [30]. After many iterations of evolu-
tion, the genetic algorithm will get the best individual.

In this paper, we use the improved genetic algorithm to train the learning rate
and momentum factor dynamically, which can avoid the blindness of manually
setting. We define the learning rate as Lr, and the momentum factor as Mec. In
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general, L7 is set small to maintain the convergence speed and stability of network
training [17]. However, if Mc is too small, the network weights will be updated
slowly [18]. Usually the value of Lr should be smaller than Me. For example,
Wang [18] set Mec in the rage of 0.0 to 1.0 and set Lr to be 0.01. Masood [19]
set the value of Lr to be 0.1 to maintain the convergence speed and stability
of the network training. Narayanan [20] indicated that the value of Lr should
be limited and cannot be larger. In improved genetic algorithm, we use binary
representation to denote the chromosome. We suppose the accuracy of solution
(training results) are three decimal. Binary representation of chromosome should
satisfy Len = L/A, where Len is the length of binary representation of solution; L
is the interval length of solution domain; A is the accuracy of solution [29]. In order
to ensure accuracy and make the binary representation as short as possible, we set
the solution domain of Lr in [0.05,0.1] and the solution domain of Mec in [0.6,
1.0] by experience and many times experiments. Using binary representation and
to ensure accuracy, the interval [0.05, 0.1] should be divided into 50 equal parts at
least. As 32 = 2% < 50 < 2% = 64, the chromosome of leaning rate Lr requires 6
binary bits. Similarly, the interval [0.6,1.0] should be divided into 400 equal parts
at least. As 256 = 28 < 400 < 2° = 512, the chromosome of momentum factor Mc
requires 9 binary bits. Apparently, the genetic representation of one individual has
15 binary bits. The genetic representation of learning rate and momentum factor
is shown in Fig. 2.

~ ~
Lr 6hits Me 9bits

Fig. 2 The genetic representation of learning rate and momentum factor.

In genetic algorithm, the individual fitness determines the probability that an
individual is selected [17]. In this paper, the fitness function is defined as:

11K, e
f:MSE:ﬁ@ZZ(yqfoqw (9)

p=1g=1

In the process of dynamically selecting learning rate and momentum factor, we
use multi-point crossover as the crossover operation, which crosses arbitrary gene
fragments of two chromosomes randomly with a probability between [0,1]. Note
that, the length of gene fragment is no more than the maximum length of chro-
mosome. We use single point mutation as the mutation operation, which selects
arbitrary point in individual chromosome randomly to mutation with a probabil-
ity between [0,1]. Then, we use fitness function to calculate individual fitness of
new chromosome and select the individual with the minimum fitness to next gen-
eration. Repeat above process until we obtain the best individual with minimum
fitness, which includes learning rate and momentum factor. The method of training
learning rate and momentum factor by improved genetic algorithm is described in
Algorithm 2.
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Algorithm 2 The method of training learning rate and momentum factor by
improved genetic algorithm.

Input: Initial parameters and fitness function of improved genetic algorithm.
Output: The learning rate and momentum factor.
Stepl: Set N;; as the maximum evolution number, set Ng;,. as the maximum
population number, set current evolution number 7 = 1, set the genetic represen-
tation of learning rate and momentum factor as Fig. 2, set the fitness function
is MSE as formula (6).
Step2: Calculate initial fitness of all individuals, and record the minimum fit-
ness.
Step3: If current evolution number ¢ < N;; and individuals meet crossover
rate or mutation rate, individuals perform multi-point crossover or single point
mutation respectively.
Step4: Calculate individual fitness of new chromosome and select the individual
with the minimum fitness to next generation.
Step5: i =i+ 1. If i > N, jump to Step6; otherwise return to Step3.
Step6: Output the learning rate and momentum factor.

In the following, based on the adaptively selected nodes number of the first
hidden layer, the dynamically selected learning rate and momentum factor, we
construct a novel neural network model named HN-GA-BP neural network. We
suppose the HN-GA-BP neural network model has double hidden layers and ap-
ply the proposed neural network model to forecast the carbon dioxide contents.
When the proposed model training process is completed, we output the typical re-
sults MSE, MAE, MAPE and the predicted carbon dioxide contents. The training
process of HN-GA-BP neural network model is described as Algorithm 3.

Algorithm 3 The training process of HN-GA-BP neural network model.

Input: Carbon dioxide dataset.

Output: MSE, MAE, MAPE and predicted carbon dioxide contents.
Stepl: Load dataset and normalize the dataset into [—1, 1].
Step2: Use Algorithm 1 to determine the nodes number of first hidden layer.
Step3: Use Algorithm 2 to train learning rate and momentum factor dynami-
cally.
Step4: Based on the adaptively selected nodes number of the first hidden layer,
learning rate and momentum factor, we construct the HN-GA-BP neural network
model.
Step5: Use the HN-GA-BP neural network model to forecast the carbon dioxide
contents.
Step6: Renormalize the forecasting results from [—1,1].
Step7: Output MSE, MAE, MAPE and the predicted carbon dioxide contents.
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4. Experiments and analyses

In this section, to demonstrate the effectiveness of the proposed neural network
model, we use the HN-GA-BP neural network model, the single hidden layer sig-
moid feedforward neural network model (SLENN) [7], the back-propagation neural
network model (BPNN) [6, 9], the PSO-BP neural network model [23] and the
genetic algorithm neural network model (GANN) [21,22] to predict the Chinese
carbon dioxide contents of 50 years (1961 to 2010) [2] and compare the average
mean square error, average mean absolute error and average mean absolute per-
centage error of the four neural network models. The experiments are performed on
MATLAB 2010b. The data set is divided into two subsets, the training set (1961
to 1990) and the test set (1991 to 2010) respectively. The input features include
gaseous fuel consumption, liquid fuel consumption, solid fuel consumption, CO9
emissions (Kg per GDP) and COs emissions (metric tons per capita). The outputs
are the prediction values of carbon dioxide contents. The learning function is LM
and the goal is le-4.

Therefore, the HN-GA-BP neural network model has 5 input nodes and one
output node. To calculate conveniently, we normalize the datasets into [—1,1].
Firstly, we initialize the HN-GA-BP neural network weights of the first hidden layer,
the second hidden layer and the output layer is [—1, 1] randomly. The thresholds
of the first hidden layer, the second hidden layer and the output layer is [—1,1]
randomly. The maximum nodes number of the first hidden layer is 20. The nodes
number of the second hidden layer is 6 according to the formula (2m + 1)/2 (mis
the nodes number of the input layer). The activation function in the first hidden
layer and the second hidden layer is Sigmoid. The activation function in output
layer is Purelin. Secondly, we use Algorithm 1 to get the nodes number of the first
hidden layer adaptively and determine the topology of the whole network. Then
we use Algorithm 2 to train the learning rate and momentum factor dynamically.
The size of population is 20, the maximum evolution number is 100, the crossover
factor is 0.8, and the mutation factor is 0.2. Finally, based on the adaptively
selected nodes number of the first hidden layer, the dynamically selected learning
rate and the momentum factor, we construct the HN-GA-BP neural network and
apply this model to forecast the carbon dioxide contents.

For comparing, we set the learning rate is 0.05 and momentum factor is 0.8 for
SLFNN, BPNN, PSO-BP neural network models. In SLENN neural network model
with single hidden layer, we set the nodes number of hidden layer is 5. In BPNN
neural network model with double hidden layers, we set the nodes number of each
hidden layer as 5, and set the activation function in first hidden layer and second
hidden layer is Sigmoid, the activation function in output layer is Purelin, set
the learning function is LM. In PSO-BP neural network model, we set the nodes
number of hidden layer is 7, the size of particles is 20, the maximum iteration
number is 100, the space range is [—3, 3], the velocity range is [—1, 1], the random
parameters is in [0, 1], the cognitive factor and the social factor are 1.5 and 2.5
respectively. In GANN neural network model, we set the nodes number of hidden
layer is 7, the size of population is 20, the maximum evolution number is 100, the
crossover factor is 0.8, and the mutation factor is 0.2.
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We run each neural network model 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 times
and calculate the average MSE, average MAE and average MAPE, which are used
as the final results. The training results of HN-GA-BP neural network are shown
in Tab. I. The training results of SLENN neural network are shown in Tab. II.
The training results of BPNN neural network are shown in Tab. III. The training
results of PSO-BP neural network are shown in Tab. IV. The training results of
GANN neural network are shown in Tab. V.

Number Training times MSE (AVG) MAE (AVG) MAPE (AVG)

1 ) 0.00000120 0.00078362 0.0018
2 10 0.00000116 0.00069538 0.0018
3 15 0.00000113 0.00070941 0.0018
4 20 0.00000118 0.00073379 0.0018
) 25 0.00000117 0.00073697 0.0018
6 30 0.00000115 0.00073776 0.0017
7 35 0.00000116 0.00073589 0.0017
8 40 0.00000116 0.00073793 0.0017
9 45 0.00000116 0.00074130 0.0017
10 50 0.00000115 0.00073699 0.0017

Tab. I The training results of HN-GA-BP neural network model.

Number Training times MSE (AVG) MAE (AVG) MAPE (AVG)

1 5 4.3061 2.0626 6.4544
2 10 4.2800 2.0327 6.3828
3 15 5.4293 2.2833 7.1464
4 20 3.9401 1.9131 6.0417
) 25 4.4293 2.0632 6.4666
6 30 4.7477 2.1212 6.6227
7 35 4.7940 2.1422 6.6865
8 40 4.7408 2.1432 6.7077
9 45 4.7607 2.1256 6.6754
10 50 4.7656 2.1284 6.6530

Tab. II The training results of SLFNN neural network model.

From Tab. I to Tab. V, we can conclude that the performance of SLENN neural
network model and BPNN neural network model are not very good and cannot
reach the preset goal. Obviously, the performance of HN-GA-BP neural network
model, PSO-BP neural network model and GANN neural network model are sig-
nificantly better than SLFNN and BPNN, which can reach the preset goal in many
cases.

Fig. 3 to Fig. 5 plots the logarithmic values of average MSE, MAE and MAPE
of the five neural network models.
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Fig. 3 The logarithmic values of average MSE of the five neural network models.
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Fig. 4 The logarithmic values of average MAE of the five neural network models.
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Fig. 5 The logarithmic values of average MAPE of the five neural network models.
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Number Training times MSE (AVG) MAE (AVG) MAPE (AVG)

1 5 0.1117 0.1146 0.1579
2 10 0.0877 0.0142 0.0426
3 15 0.0538 0.0784 0.1587
4 20 0.0523 0.0679 0.1246
) 25 0.0237 0.0374 0.0721
6 30 0.0946 0.1010 0.1411
7 35 0.0324 0.0422 0.0735
8 40 0.0422 0.0507 0.0804
9 45 0.0639 0.0763 0.1229
10 50 0.0466 0.0593 0.0969

Tab. III The training results of BPNN neural network model.

Number Training times MSE (AVG) MAE (AVG) MAPE (AVG)

1 ) 0.00000838 0.0023 0.0043
2 10 0.00000773 0.0021 0.0043
3 15 0.00000658 0.0020 0.0041
4 20 0.00000614 0.0020 0.0041
) 25 0.00000632 0.0020 0.0041
6 30 0.00000588 0.0019 0.0041
7 35 0.00000562 0.0019 0.0041
8 40 0.00000559 0.0019 0.0040
9 45 0.00000574 0.0019 0.0041
10 50 0.00000573 0.0019 0.0041

Tab. IV The training results of PSO-BP neural network model.

Number Training times MSE (AVG) MAE (AVG) MAPE (AVG)

1 5 0.00000677 0.0020 0.0040
2 10 0.00000673 0.0020 0.0040
3 15 0.00000538 0.0015 0.0037
4 20 0.00000514 0.0012 0.0035
) 25 0.00000512 0.0012 0.0033
6 30 0.00000518 0.0013 0.0035
7 35 0.00000517 0.0013 0.0035
8 40 0.00000512 0.0012 0.0033
9 45 0.00000512 0.0011 0.0033
10 50 0.00000510 0.0011 0.0029

Tab. V The training results of GANN neural network model.

356



Xu Y., He M.: Improved artificial neural network based on intelligent. ..

From Fig. 3 to Fig. 5, it is clear that the performance of HN-GA-BP neural
network model is better than that of SLFNN, BPNN, PSO-BP and GANN neu-
ral network models. For instance, the HN-GA-BP neural network model exhibits
79.69% decrease in minimum average MSE compared with PSO-BP neural net-
work model. The HN-GA-BP neural network model exhibits 95.10 % and 63.40 %
decrease in minimum average MAE compared with BPNN neural network model
and PSO-BP neural network model respectively. The HN-GA-BP neural network
model exhibits 96.00 % and 57.50 % decrease in minimum average MAPE compared
with BPNN neural network model and PSO-BP neural network model respectively.
Moreover, compared with GANN neural network model, the HN-GA-BP neural
network model exhibits 77.42% , 36.78 % and 41.37 % decrease in minimum av-
erage MSE, MAE and MAPE respectively. With the increase of training times,
the average MSE, average MAE and average MAPE of HN-GA-BP neural network
model are tend to be more stable than that of other four neural network models.

In order to further compare the performance of these five neural network models,
we calculate the average predicted carbon dioxide contents. The average predicted
carbon dioxide contents (Kt) of these five network models are shown in Tab. VI.

Year

Target

SLFNN

BPNN

PSO-BP

GANN

HN-GA-BP

1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010

2584538.270
2695982.067
2878694.009
3058241.330
3320285.150
3463089.131
3469510.048
3324344.519
3318055.614
3405179.867
3487566.356
3694242.143
4525177.009
5288166.032
5790016.984
6414463.080
6791804.714
7035443.861
7692210.895
8286891.952

10570488.470
10526241.630
10691628.820
10799000.070
11072107.180
11222792.650
11192271.130
11002788.440
11031249.060
11213820.210
11331202.780
11618271.820
12397660.600
13492707.130
14052627.820
14799219.800
15272112.470
15590620.390
16025488.340
16520456.800

2559196.197
2685261.873
2871678.897
3117647.199
3368471.127
3525228.314
3503893.695
3380094.241
3343026.427
3405723.435
3502944.039
3711284.474
4571354.160
5333459.729
5893055.317
6399139.935
6735613.951
7058239.351
7857719.091
8189845.538

2584291.196
2692181.631
2874013.611
3059074.593
3311534.082
3465358.357
3481577.633
3337319.241
3320163.977
3408408.583
3482949.692
3689988.348
4521839.201
5286132.356
5777714.901
6411296.737
6790257.101
7033249.757
7691157.492
8286174.172

2583290.096
2690187.617
2874413.801
3059271.513
3314534.482
3465158.367
3481177.683
3341319.291
3310063.877
3409418.681
3482049.682
3699918.308
4525839.271
5286932.656
5770714.901
6411096.719
6807257.101
7034249.757
7691257.491
8276470.682

2580440.026
2687515.110
2877579.974
3059476.027
3316431.238
3465573.547
3470983.662
3328390.913
3315222.547
3407767.187
3480648.472
3697861.810
4527851.845
5289761.489
5801152.070
6414575.224
6792529.298
7034992.465
7691526.129
8285953.085

Tab. VI The average predicted
els.

carbon diozide contents (Kt) of four network mod-

Apparently, with the increase of training times, the predicted carbon dioxide
contents of HN-GA-BP neural network model are tend to be more accuracy than
that of other four neural network models. In summary, the HN-GA-BP neural net-
work model has better performance in forecasting carbon dioxide contents, which
demonstrates the effectiveness of the proposed neural network model.
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5. Conclusions

Neural networks have been applied in many applications. The network structures
and parameters are crucial for forecast accuracy and difficult to determine. There-
fore, in this paper, to improve the forecast accuracy, we improve the neural network
from two aspects. First, according to mean square error of each iteration of net-
work training, the nodes number of the first hidden layer are selected adaptively,
which can minimize the mean square error. Then, improved genetic algorithm is
proposed to train the learning rate and momentum factor dynamically. On this
basis, the HN-GA-BP neural network model is proposed based on the adaptively
selected nodes number of the first hidden layer, the dynamically selected learning
rate and momentum factor. We apply the proposed model to forecast the carbon
dioxide contents in China. Experimental results demonstrate the effectiveness of
the proposed neural network model. In the future, we will investigate other intel-
ligent optimization algorithms to learn other parameters of neural network model,
which may further optimize neural network performance.
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