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Abstract: This paper compares Fuzzy Inference System (FIS), Support Vector
Machine (SVM) and MultiLayer Feed-forward neural network (MLF) in modeling
a driver’s decision when making a discretionary lane changing move on a freeway.
The FIS model has been developed and published in an earlier work by the authors,
whereas the SVM and MLF models are newly developed in this research. The FIS,
SVM and MLF models use the same four inputs: the gap between the subject
vehicle and the leading vehicle in the original lane, the gap between the subject
vehicle and the leading vehicle in the destination lane, the gap between the subject
vehicle and the trailing vehicle in the destination lane, and the distance between the
preceding and trailing vehicles in the destination lane. The models give a binary
decision of “no, stay in the same lane” or “yes, move to the destination lane now”.
These models were trained and then tested with the Next Generation SIMulation
(NGSIM) vehicle trajectory data. The results have shown that the FIS has the
highest accuracies in making correct lane changing decisions. It recommends “yes,
move to the destination lane now” with 82.2 % accuracy, and “no, stay in the same
lane” with 99.5 % accuracy. The SVM model also outperformed the traditional gap
acceptance model which was used as the benchmark. However, the MLF model
was not as accurate as the gap acceptance model.
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1. Introduction

Lane change is one of the most frequently executed actions when driving on free-
ways. A driver performs his/her lane changing actions by first assessing the position
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of his/her vehicle (the subject vehicle) relative to the surrounding vehicles, deter-
mine if it is safe to move, followed by steering and accelerating/decelerating the
subject vehicle from the original lane to the destination lane.

Lane changes in freeways may be categorized into either mandatory or discre-
tionary. A driver makes a Mandatory Lane Change (MLC) when he/she is trying to
move his/her vehicle to the correct lane in anticipation of the next left or right-turn,
or to avoid a lane closure immediately downstream. The driver is said to execute
a Discretionary Lane Change (DLC) if he/she desires a faster speed, greater fol-
lowing distance, further line of sight, better ride quality, etc. in the destination
lane [4, 28]. This models tested in this paper deals only with DLC.

A lane change may be modeled as a four-step process: (1) motivation; (2) se-
lection of destination lane; (3) seeking for opportunity to initiate a move the from
the original lane to the destination lane; and (4) steer the vehicle from the original
lane to the destination lane. The four steps are separated by times t1, t2, t3, t4
and t5, respectively. At t1, the driver of the subject vehicle S (simply known as
the subject driver) begins to feel the need to move away from the original lane.
The subject driver starts looking for a destination lane (either the left lane or the
right lane of the original lane) at t2. Between t2 and t3, the driver decides which
destination lane he/she should move to. Actively, from t3 onwards, the driver waits
for an opportunity to move S to the destination lane. The driver starts to steer
the subject vehicle towards the destination lane at t4. The lane changing move
is completed at t5. Three models, namely Fuzzy Inference Systems (FIS), Sup-
port Vector Machines (SVM) and MultiLayer Feedforward neural network (MLF)
models have been developed to replicate human decisions between t3 and t4. The
models answer the question “Is it time to start moving to the destination lane?”
The answer is either “no, stay in the same lane” or “yes, move to the destination
lane now”.

In traffic flow theory, this lane changing decision problem has long been analyzed
as a gap acceptance problem [4]. In fact, this problem may also be viewed as a
binary pattern classification problem. That is, a pattern classifier classifies input
data (the relative positions between the S and the surrounding vehicles) into one
of the two classes: (“no, stay in the same lane” or “yes, move to the destination
lane now”).

The objective of this paper is to compare the performances of four lane changing
decision models: FIS, SVM, MLF, and Gap Acceptance Model (GAM) [4, 7]. The
FIS and GAM have been developed in earlier research [2, 7] while the SVM and
MLF models will be developed in present work. The model development and
comparative evaluation will be performed using the vehicle trajectory data from
the well-known Next Generation SIMulation (NGSIM) database [5, 6].

This paper is organized as follows. After this introduction, a brief review of
lane changing models is provided. The driving scenarios in which the lane changing
decision models are developed and applied are specified. The next section presents
the FIS, SVM, MLF and GAM approaches. This is followed by the description of
the data used and the model development processes. The results of the applications
of the FIS, SVM, MLF and GAM to a test data set are next presented, compared
and discussed, before making a conclusion.

362



Balal E., Cheu R.L.: Comparative evaluation of Fuzzy Inference System, Support. . .

2. Review of lane changing models

The lane changing models has been reviewed extensively by [15, 28]. Readers may
also find the authors’ review reports in [1,2]. The purpose of literature review, in the
context of this paper, is to select the best model as the benchmark of comparative
evaluation. Based on the literature review, the authors have identified several issues
when selecting the benchmarking model:

1. Types of lane change: Although most of the researchers classified lane changes
into MLC and DLC, some researchers did not make this distinction, or clas-
sified lane changes into more categories.

2. Lane changing process: Some authors do not discretize a lane changing event
into the sequential four-step process.

3. Input variables: Many variables have been used as inputs to the different lane
changing models. Only [2] conducted a stated preference survey on drivers
to find out what decision variables they always used in making lane changing
moves.

4. Model replication: The authors of many lane changing studies did not report
the drivers’ decision logic in sufficient detail, or provide the numerical values
of the model’s internal parameters. This has made the authors impossible to
implement such models with a new set of data for comparative evaluation.

The authors have found that only the GAM built into the TRANSLMODLER mi-
croscopic traffic simulation tool [4] met the requirement of and was implementable
in this research. The developer of the GAM has described the model’s logic and
parameters in [4] and [7]. Therefore, GAM is adopted as the benchmark.

3. Lane changing setting

Fig. 1 illustrates a typical lane changing scenario involving up to five vehicles. The
subject vehicle (S) is moving one lane to the right, from the original lane to the
destination lane. Vehicles LB, TB, LA and TA denote the leading vehicle before
lane change, trailing vehicle before lane change, leading vehicle after lane change
and trailing vehicle after lane change, respectively.
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Fig. 1 Lane changing scenario. 
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Fig. 1 Lane changing scenario.

Based on the outcome of a questionnaire (stated preference) survey on drivers,
[2] have identified four variables that were used most frequently by drivers in making
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decisions on discretionary lane changing moves on freeways. These four variables
are:

– GLB = Gap between vehicle S and vehicle LB (m),
– GLA = Gap between vehicle S and vehicle LA (m),
– GTA = Gap between vehicle S and vehicle TA (m),
– D = Distance between vehicle LA and vehicle TA (m).
The idea behind the lane changing decision models implemented in this paper

is derived from the “blind spot monitoring/warning system” which has been used
in many new vehicles. Such “passive” system relies on sensors instrumented at
the perimeters of the subject vehicle S to detect any vehicle present in the subject
driver’s blind spots, and warn the subject driver of the existence of this vehicle.
An improved and “active” version, which may be called “lane changing advisory
system”, uses sensors instrumented in the subject vehicle alone to measure GLB ,
GLA, GTA and D as inputs. The proposed system is a stand-alone system and is
technically deployable immediately. The new system will work as follows:

1. The system will be activated once the subject driver activates the turn indi-
cator;

2. The sensors start to continuously measure and calculate the values of GLB ,
GLA, GTA and D;

3. The lane changing decision model uses the four inputs to recommend “yes,
move to the destination lane now” or “no, stay in the same lane”;

4. The recommendation is then communicated visually (by an icon in the in-
strument panel) or acoustically (by voice or beeping sound) to the subject
driver;

5. As soon as the subject driver switches off the turn indicator (after the driver
has completed or abandoned the lane change), the system will stop function-
ing

The system may also be programmed to function as part of autonomous vehicles.

4. Modeling methodologies

Fuzzy logic, SVM and MLF have been applied to transportation engineering prob-
lems, see for examples [24, 25] and [12]. This section reviews these three method-
ologies in the context of making lane changing decisions.

4.1 Fuzzy Inference System

Fuzzy logic was first presented by [27] as a concept to manipulate imprecise infor-
mation. Fuzzy logic has been applied to solve a wide range of engineering problems
associated with estimation, control, pattern recognition and decision making with
uncertain data. Fuzzy Inference System (FIS) applies the fuzzy logic/reasoning
concept to model the human decision making process in four sequential stages:
(i) fuzzification; (ii) inference; (iii) composition; and (iv) defuzzification [10]. The
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fuzzification stage uses fuzzy sets and fuzzy membership functions to map crisp
inputs into fuzzy membership values. The inference stage feeds the fuzzified inputs
to IF-THEN fuzzy rules to generate fuzzified outputs. The outputs of multiple
rules are combined into one or a few fuzzified outputs in the composition stage.
Finally, the defuzzification stage converts the fuzzified outputs back to crisp val-
ues. Variants of FIS have been applied to model different aspects of lane changing
process [3, 8, 16], but with lesser degree of success compared to [2].

A fuzzy set is a set of several linguistic values that a variable may take on. For
example, we may use G̃TA = (Close, Medium, Far) to denote that variable GTA

may take on linguistic value of close, medium or far. We say that G̃TA = (Close,
Medium, Far) is a fuzzy set of three (linguistic values). Similarly, a fuzzy set of
three for D may be D̃ = (Close, Medium, Far) while a fuzzy set of two for C (which
denotes change lane) may be C̃ = (No, Yes). Each linguistic value in a fuzzy set
has its unique fuzzy membership function. The purpose of these functions is to
convert crisp input data values into fuzzy membership values (also known as the
degrees of membership) between 0 and 1. The fuzzy membership functions for G̃TA

and D̃ may be defined as in Fig. 2(a) and Fig. 2(b) respectively.
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Fig. 2 Fuzzy membership functions.

Fuzzy inference rules are usually written in the IF-THEN format. If the an-
tecedent of a rule has multiple fuzzified variables, the fuzzified variables may be
combined with the “AND” and/or “OR” operator. A simple example is

IF [(G̃FA is Close) AND (D̃ is Close)] THEN (C̃ is No)

The above rule combines fuzzified inputs of GFA and D to infer a fuzzified output
of C. Internally, the logical operator AND combines the membership values of
(G̃FA is Close) and (D̃ is Close), and assign a membership value to (C̃ is No).

365



Neural Network World 4/2018, 361–378

In a FIS, there can be many rules. The number of rules depends on the number
of fuzzified variables in the antecedent of the rules, and the possible combinations
of linguistic values of these variables. In the above example, the two antecedent
variables each has a fuzzy set of three, i.e., G̃TA = (Close, Medium, Far) and
D̃ = (Close, Medium, Far). Therefore, there are nine possible combinations of
the two fuzzified inputs, resulting in nine rules. The collection of rules in a FIS
is called “rule base”. In the composition stage, the fuzzified outputs of all the
rules are combined, so that each linguistic value of the fuzzified output variable
has a single membership value. Finally, the defuzzification stage combines multiple
memberships of the different linguistic values, and “defuzzzified” into a single, crisp
number. More descriptions of FIS operations and its variants can be found in [10].

4.2 Support Vector Machine

Support Vector Machine (SVM) is a binary pattern classifier based on the statistical
learning technique. Since its introduction by [22], SVM has been used in several
transportation applications [11], beginning with [26].

A binary SVM classifier places an input vector into one of two classes, using a
decision boundary that has been determined to minimize the classification errors.
For data that can be separated into two distinct classes by a plane in the SVM’s
dimensional space, the SVM’s learning algorithm calculates an optimal plane that
separates the two classes of training vectors by the maximum margin (see Fig. 3).
Consider the problem of lane changing decision where Xi is the i-th input vector
with n dimension Xi = {xi1, . . . , xin} (in our case n = 4, for four input variables).
The SVM’s operates by using a vector W= {w1, . . . , wn} and a scalar b, such that

f (Xi) = sign (W ·Xi + b) .

The lane changing advisory system may use positive f(Xi) value to represent “yes,
move to the destination lane now” while negative f(Xi) value as “no, stay in the
Balal and Cheu 7
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Fig. 3 Two-dimensional SVM binary classification.
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same lane”. As shown in Fig. 3, the optimal hyperplane that separates positive
and negative values of f(Xi) is defined by the linear equation

W ·Xi + b = 0. (1)

The objective of SVM learning, which is supervised, is to obtain W and b. Consider
a set of training data which has l vectors denoted by (Xi, yi), where i = 1, ·, l;
yiε{+1,−1}, the hyperplane equation may be rewritten as

yj (W ·Xi + b) ≥ 1.

It can be shown that the margin, ρ, defined as the distance between the closest
training vectors on both sides of (1), is given by ρ = ‖W‖ /2 (Schlkoph et al.,
2002). The solution that minimizes ρ which has the objective function

max

 l∑
j=1

αj −
1

2

l∑
k=1

l∑
j=1

αjαkyjyk (Xj ·Xk)

 . (2)

In the solution, the training vectors that have αj > 0 are termed support vectors.
Then,

W =

l∑
j=1

αjXjyj ,

b can subsequent be obtained. The linear SVM classifier becomes

f (Xi) = sign (W ·Xi + b) = sign

 ∑
∀j, αj>0

yjαj (Xi·Xj) + b

 .
For non-linearly separable data, the SVM uses the “kernel method” to map

the training data from the original dimensional space Xi ∈ Rn into a higher di-
mensional space Φ : Rn −→ H. An optimal hyperplane can then be drawn in H,
to separate the two classes, using the training data in the form of Φ (Xj) instead
of Xj . However, to avoid the relatively long computation time of Φ (Xj) ·Φ (Xk)
that replaces (Xj ·Xk) in (2), it is simpler to replace (Xj ·Xk) with a kernel func-
tion K (Xj ·Xk). With the use of kernel function, the non-linear SVM classifier
becomes

f (Xi) = sign

 ∑
∀j, αj>0

yjαjK (Xi·Xj) + b

 .
To achieve the best classification results, the designer of SVM needs to experiment
with linear and non-linear SVM and in the case of non-linear SVM the various
kernel functions.

4.3 Multilayer Feed-Forward Neural Network

MultiLayer Feed-forward neural network (MLF) is an Artificial Neural Network
(ANN) pattern classifier. ANNs are modeled after the physical architecture of the
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human brain and have been used in many transportation applications [11]. Among
the many types of ANN, the MLF is most frequently used.

The structure of a typical MLF is shown in Fig. 4. This MLF has three layers:
namely the input, hidden and output layers. The neurons in the input, hidden and
output layers are referred to as the input, hidden and output neurons respectively.
Pairs of neurons between two adjacent layers are connected. The n input neurons
receive the i-th input vector Xi = {xi1, xi2, . . . , xin} (in our case n = 4). Each
hidden neuron, say neuron j, has a weight vector Wj =

{
w1j , . . . , wij , . . . , wnj

}
.

Each component of Wj is the weight of the connection between an input neuron
i and the hidden neuron j. At hidden neuron j, the dot product of Xi and Wj

is computed. A bias term θj that is related to this hidden neuron j is added to
the dot product, resulting in Xi ·Wj + θj . The outcome is then passed through a
transfer function to produce an output f (Xi ·Wj + θj) of hidden neuron j.
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Fig. 4 Architecture of MLF for lane changing decisions.

Two commonly used transfer functions are the sigmoid or logsig function

f (Xi ·Wj + θj) =
1

1 + exp [− (Xi ·Wj + θj)]
,

and the tansig function

f (Xi ·Wj + θj) =
2

1 + exp [−2 (Xi ·Wj + θj)]
− 1.

The tansig function is an approximation of tanh function but with improved compu-
tational efficiency. When a MLF receives an input vector Xi, the above operations
are performed for all the hidden neurons. Once this is completed, similar opera-
tions are repeated using the outputs of the hidden neurons as inputs to the next
layer. For the lane changing decision model, the MLF has only one output neuron
that produces a value between 0 and +1 (if the logsig transfer function is used),
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or between −1 and +1 (if the tansig transfer function is used). This continuous
output value is then mapped into a binary value indicating the recommendation of
“yes, move to the destination lane now” or “no, stay in the same lane”.

The training of MLF is to determine the weights and bias of the hidden neu-
rons and the output neuron, using the training vectors. The common iterative
algorithm used in the determination is the backpropagation algorithm [9]. To op-
timize the classification accuracy, the designers usually trains several MLFs, each
with a different number of hidden neurons, and pick the MLF that has the highest
accuracy.

4.4 Gap Acceptance Model

The Gap Acceptance Model (GAM) is the lane changing decision model in the
TRANSMODELER microscopic traffic simulation tool [4]. GAM recommends “no,
stay in the same lane” or “yes, move to the destination lane now” by comparingGTA,
and GLA against their respective critical gaps, Gmin

TA and Gmin
LA [7]. The decision

rule is:

IF [(GLA≥ Gmin
TA ) AND (GLA≥ Gmin

LA )] THEN (“yes, move to the destination

lane now”) ELSE (“no, stay in the same lane”)

The critical gap equations are

Gmin
LA = exp [b0,LA + b1,LA ·max (0, VLA − V ) + b2,LA ·min (0, V − VPA) +

+b3,LAVLA + αLAυ + εLA] ,

Gmin
TA = exp [b0,TA + b1,TA ·max (0, VTA − V ) + b2,TAVTA − αTAυ + εTA]

in which VTA and VLA are the speed of vehicles TA and LA, respectively. Subject
driver’s inter-driver heterogeneity is accounted for by the εLA and εFA terms,
which were assumed to follow normal distributions, i.e., εLA ∼ N

(
0, σ2

LA

)
, εTA ∼

N
(
0, σ2

TA

)
. The υ term, which accounts for intra-diver heterogeneity, follows a

truncated standard normal distribution υ ∼ N(0, 1), -3≤ υ ≤3. The rest of the
terms {b0,LA, b1,LA, b2,LA, b3,LA, αLA, b0,TA, b1,TA, b2,TA, αTA}are coefficients
which were calibrated by the model developer, also with the NGSIM data [4].

5. Data

The well-known NGSIM data were used in this comparative evaluation. The data
collected at two freeway sites were used: one for calibrating/training the models
and one for testing the models. The characteristics of the data are described in
Tab. I. The data, consisted of the x-y coordinates of vehicles at 0.1 second intervals,
were processed, and the steps are briefly described as follows:

– Only passenger cars originally travelled in the through lanes that changed
lane once were considered as subject vehicle S. This condition is to filter out
vehicles that may not make DLCs, and other type of vehicles that may have
different lane changing behavior.
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– For each identified S, the time t4, the onset of a lane changing move, was
identified as the instance when the front center of S first reached or exceeded
lateral velocity of 0.2 m/s. This lateral velocity criterion was from [23].

– At t4, vehicles LB, TB, LA, TA, were identified.

– The four input variables were calculated at 0.5 second increment, before and
after t4. The procedure of averaging vehicle coordinates and deriving the
input variables at 0.5 second intervals followed the steps recommended by [18]
and was consistent with [21].

– The processed input variables at the same time interval were assembled to
form a vector {GLB, GLA, GTA, D}. For each S, the Observed Maneuver
(OM) was set to OM = 1 at t4, and OM = 0 at all other time intervals.
OM= {0, 1}were used as the “ground truth” in the “supervised” training of
FIS, SVM and MLF, and in the calculation of classification accuracies of FIS,
SVM, MLF and GA.

More details of data processing are documented in [1, 2]. Although the NGSIM
data is not as comprehensive and high resolution as the data acquired in and in-
laboratory diver simulator [17], it was collected in the real driving environment
involving a relatively larger sample.

Name of data set Dataset A Dataset B

Site, date and time
Name of highway I-80 Freeway U.S. Highway 101
City, state Emeryville, California Los Angeles, California
Length of site 1,650 ft (503 m) 2,100 ft (640 m)
Traffic flow direction northbound southbound
Upstream interchange Powell Street Ventura Boulevard
Downstream interchange Ashby Street Cahuenga Boulevard
Total no. of lanes 6 6
Date of video recording April 13, 2005 June 15, 2005
Time of video recording 4:00-4:15 p.m. 7:50-8:05 a.m.
Reference (Cambridge, 2005) (Cambridge, 2005)

No. of subject vehicles
Discretionary lane change 163 171
No lane change 3,202 2,612
Total 3,365 2,783

No. of vectors in data file
Discretionary lane change 163 171
No lane change 232,493 209,681
Total 232,656 209,852

Tab. I Characteristics of data used.
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6. Model development

The development and calibration of FIS (which has been reported in [2]), the
learning of SVMs, and the training of MLFs are described in this section. All these
models have four input variables: GLB, GLA, GTA and D and one binary output
variable C.

6.1 Fuzzy Inference System

The development of the FIS can be traced back to 2014 when [1] first studied the
statistical properties and correlations of 10 discretionary lane changing parameters.
Subsequently, [2] used the findings of four of the 10 parameters to design the FIS. [2]
presented the development, calibration and test of the FIS. Vechione et al. (2018)
performed hypothesis tests that proved that the properties of three out of the four
lane changing parameters (used as inputs to the FIS) were not significantly different
between discretionary and mandatory lane changes.

MATLAB’s Fuzzy Logic Designer App [14] was used to implement the FIS [2].
There were four input variables to the FIS. Each variable had a fuzzy set of three,
i.e., (Close, Medium, Far). The FIS has only one output variable C (which denoted
“change lane”). It has a fuzzy set of two, i.e., C̃ = {Yes, No}. The membership
functions for GLB, GLA and GTA are shown in Fig. 2(a) while the membership
functions for D are shown in Fig. 2(b). These membership functions were selected
based on engineering judgement, after examining the probability distributions of
the parameters [2]. The antecedent of each rule consisted of the fuzzified values of
the four input variables, while the output of each rule was the fuzzified value of C̃.
For examples:

IF [(G̃TA is Close) AND (G̃LA is Close) AND (D̃ is Close) AND (G̃LB is Close)]

THEN (C̃ is No)

IF [(G̃TA is Close) AND (G̃LA is Far) AND (D̃ is Far) AND (G̃LB is Close)]

THEN (C̃ is Yes)

The rule base had up to 81 rules. However, certain combinations of linguistic values
were infeasible. After removing the 30 rules which had infeasible combinations of
linguistic values, the rule base was left with 51 rules. The Mamdani max-min
method [19] was adopted to infer a fuzzified output value among the 51 rules.
This composition method is described as follows. First, for each rule, the four
membership values in the antecedent were obtained from the respective membership
functions. Then, the minimum of the four membership values in the antecedent
was taken as the output C of that rule. Finally, the maximum C value among the
51 rules was assigned to C∗.

Next, the defuzzification stage converted C∗ε [0, 1] to either “yes, move to the
destination lane now” or “no, stay in the same lane” by comparing C∗ against
a threshold value τ , to come out with a FIS’s Recommendation, denoted by
FR:s 9/4/2018

FR =

{
1 for “yes, change lane” if C∗ ≥ τ

0 for “no, do not change lane” if C∗ < τ
.
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The fuzzy rules and the process of calibrating τ = 0.5 with Dataset A has been
described in [2].

6.2 Support Vector Machine

Several SVMs were implemented in MATLAB’s Pattern Classification Learner App.
The following six SVMs were trained using Dataset A. The differences between
these SVMs lie in their kernel functions. The σ values in the Gaussian kernel
functions have been built into the MATLAB’s Pattern Classification Learner App.
The default values were used for the SVMs with Gaussian kernel.

Linear SVM:
K (Xi,Xj) = Xi ·Xj .

Quadratic SVM:
K (Xi,Xj) = (Xi ·Xj + 1)

2
.

Cubic SVM:
K (Xi,Xj) = (Xi ·Xj + 1)

3
.

Course Gaussian SVM:

K (Xi,Xj) = exp

[
−
(
‖Xi −Xj‖

2σ2

)]
Xi ·Xj with σ =

√
2

4
.

Medium Gaussian SVM:

K (Xi,Xj) = exp

[
−
(
‖Xi −Xj‖

2σ2

)]
Xi ·Xj with σ =

√
2.

Fine Gaussian SVM:

K (Xi,Xj) = exp

[
−
(
‖Xi −Xj‖

2σ2

)]
Xi ·Xj with σ = 4

√
2.

The training of these SVMs using MATLAB’s Pattern Classification Learner App
was straight forward. The program automatically gives a “confusion matrix” sim-
ilar to the classification matrix in [16], when a trained SVM is applied to a data
set.

6.3 Multilayer Feed-Forward Neural Network

Eleven MLFs were trained with MATLAB’s Neural Net Pattern Recognition App
[14]. Because Dataset A has many more vectors with OM = 0 compared to OM = 1,
the vectors with OM = 1 were replicated multiple times such that both classes in
the MLF training data set had approximately the same number of vectors. The 11
MLFs trained each has a different number of hidden neurons, from 5 to 15. Each
MLF was trained with the Levenberg-Marquardt algorithm for up to 1000 iterations
with mean-squared-error set as the stopping criterion. That is, training was stopped
when the mean-squared-error started to increase after reaching a minimum value.
For each MLF, different combinations of logsig and tansig transfer functions were
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used for the hidden layer and the output layer. Note that, when the logsig transfer
function was used for the output neuron, the MLF output was in the range of
C = (0, 1). Therefore, the desired outputs in the training vectors were set to 0 and
1 for OM = 0 and OM = 1 respectively. Similarly, during classification, output
values of less than 0.5 are mapped into “no, stay in the same lane”, while values
of at least 0.5 are mapped into “yes, move to the destination lane now”. On the
other hand, when the tansig transfer function was used for the output neuron, the
MLF’s output was in the range of C = (−1, 1), and the desired outputs during
training were set to (−1, 1). It followed that negative MLF’s classification outputs
were mapped into “no, stay in the same lane”, while positive classification outputs
were mapped into “yes, move to the destination lane now”. It was found that,
for all the MLFs with a fixed number of hidden neurons, using the tansig transfer
function in the hidden neurons and the logsig transfer function in the output neuron
produced the highest classification accuracy. Therefore, the test results of MLFs
with tansig transfer function in the hidden neurons and the logsig transfer function
in the output neuron were reported subsequently.

7. Results

This section presents the results of the applications of the four lane changing de-
cision models when applied to Dataset B. The FIS and SVM were calibrated or
trained with Dataset A, while the MLFs were trained with the modified Dataset A
(with increased number of OM = 1 vectors). The GAM was calibrated earlier with
the NGSIM data as reported in [4]. The results of each model, when tested with
the vectors in Dataset B, are presented in the form of classification matrix [16]. Be-
cause there are relatively many more vectors in Dataset B with OM = 0 compared
to OM = 1, the decision accuracy for these two classes of data were computed sep-
arately. Tab. II(a) shows the classification matrix obtained from FIS with τ = 0.5.
The FIS achieves accuracies of 82.5 % for OM = 1 and 5 % for OM = 0.

Fig. 5(a) plots the rates of correct decision of the SVM with the six different
kernel functions. Bars of OM = 1 and OM = 0, along with the percent correct
decisions are plotted for each kernel function. None of the kernel functions has
the highest rates of correct decisions for both OM = 1 and OM = 0. While the
cubic polynomial kernel function has the highest accuracy for OM = 1, the fine
Gaussian kernel function has the highest accuracy for OM = 0. There are two
types of errors in the classification matrix. Type I error occurs when the SVM’s
Recommendation (SR) is “yes, move to the destination lane now” but there was
no observed maneuver in Dataset B, i.e., SR = 1|OM = 0. If the subject driver
or vehicle follows the SVM’s recommendation and move into the destination lane,
he/she may create an unsafe maneuver or even a collision. Type II error occurs
when the SVM recommends “no, stay in the same lane” but in Dataset B there was
an observed maneuver, i.e., SR = 0|OM = 1. If the driver of the subject vehicle
follows the SVM’s recommendation and stay in the original lane, he/she simply
gives up a lane changing opportunity, and wait until the next SR = 1. The negative
consequence of the Type I error is worse than the Type II error. Therefore, priority
is given to the model with the highest accuracy for classifying vectors with OM = 0.
With this criterion, the SVM with fine Gaussian kernel function (denoted as SVM-
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(a) FIS FIS Recommendation, FR

Yes, move into
the destination
lane now
FR = 1

No, stay in the
same lane
FR = 0

Total Accuracy (%)

Observed Changed lane
141 30 171 82.5%

OM = 1
Maneuver Did not change lane

1,020 208,661 209,681 99.5%
OM OM = 0

Total 1,161 208,691 209,852

(b) SVM-FG SVM-FG Recommendation, SR

Yes, move into
the destination
lane now
SR = 1

No, stay in the
same lane
SR = 0

Total Accuracy (%)

Observed Changed lane
107 64 171 62.6%

OM = 1
Maneuver Did not change lane

15,045 194,636 209,681 92.8%
OM OM = 0

Total 16,206 194,700 209,852

(c) MLF-6 MLF-6 Recommendation, MR

Yes, move into
the destination
lane now
MR = 1

No, stay in the
same lane
MR = 0

Total Accuracy (%)

Observed Changed lane
92 79 171 52.6%

OM = 1
Maneuver Did not change lane

121,425 88,256 209,681 42.0%
OM OM = 0

Total 125,717 88,335 209,852

(d) GAM GAM Recommendation, GR

Yes, move into
the destination
lane now
GR = 1

No, stay in the
same lane
GR = 0

Total Accuracy (%)

Observed Changed lane
100 71 171 58.5%

OM = 1
Maneuver Did not change lane

69,810 139,871 209,681 66.7%
OM OM = 0

Total 69,910 139,942 209,852

Tab. II Classification matrix for Dataset B.
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FG) was selected to represent the best SVM trained. The classification matrix for
SVM-FG is shown in Tab. II(b). This SVM-FG achieves correct classification rates
of 62.6 % for OM = 1 and 92.8 % for OM = 0, respectively.

Balal and Cheu 16

 

(a) SVM 
 

 
(b) MLF 

 

Fig. 5  Classification accuracies of SVMs and MLFs with Dataset B. 
 
 

Fig. 5 Classification accuracies of SVMs and MLFs with Dataset B.

Fig. 5(b) plots the rates of correct decisions, for the test vectors in Dataset B,
for the MLFs with different number of hidden neurons. None of the MLFs has
the highest accuracies for vectors that belong to OM = 0 and OM = 1 classes,
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respectively. In general, the vectors for OM = 1 have a better accuracy (46.8 %
to 71.3 %) than the vectors for OM= 2 (17.6 % to 42.1 %). One may argue that
the higher accuracies for the OM = 1 vectors are because in the training data
file, the OM = 1 vectors were replicated such that there were approximately equal
number of OM = 1 and OM = 0 vectors. Because of the MLF’s training algorithm,
such replication is necessary. Otherwise the MLFs will be trained to bias towards
OM = 0 vectors. The FIS and SVMs do not face such an issue. Following the
approach that selected SVM-FG, the rate of correct decisions for OM = 0 is more
critical than OM = 1. The MLF with six hidden neurons has the best rate of
correct decisions for OM = 0 vectors, at 42.1 %. It has a rate of correct decisions
of 52.6 % for OM = 1 vectors. The training of this MLF was stopped after 13
iterations, with a mean-squared-error of 0.00805. This MLF, denoted as MLF-6,
was selected for comparison of performance with FIS, SVM-FG and GAM. The
classification matrix for MLF-6 is shown in Tab. II(c).

The GAM has a simple decision rule:

IF [(GTA≥ Gmin
TA ) AND (GLA≥ Gmin

LA )] THEN (GR = 1) ELSE (GR = 0),

where GR denotes GAM’s Recommendation, GR= {0, 1}, which corresponds to
{“no, stay in the same lane”, “yes, move to the destination lane now”}. The
equations for the critical gaps are:

Gmin
LA = exp [1 + 1.541 ·max (0, VLA − V ) + 0.621 ·min (0, V − VPA) +

+0.130VLA − 0.008υ + εLA] (3)

Gmin
TA = exp [1.5 + 1.426 ·max (0, VTA − V ) + 0.640VTA − 0.205υ + εTA] , (4)

and
εLA ∼ N (0, 0.854) , εTA ∼ N (0, 0.954) .

Since GAM had been calibrated with NGSIM data, it was directly applied to
Dataset B, and the resulting GR are used to compare against the performances of
FIS, SVM and MLF. In (3) and (4), the coefficients were taken from [7]. Tab. II(d)
shows the classification matrix obtained by applying GAM to Dataset B. The GAM
achieved accuracies of 58.5 % for OM = 1 and 66.7 % for OM = 0.

Comparing the accuracies of FIS, SVM-FG, MLF-6 and GAM in classifying
vectors in Dataset B with OM = 1 and OM = 0 respectively in the rightmost
column in Tab. II, the FIS has the highest rates of correct decisions for vectors
that belong to OM = 1 and OM = 0 , among the four models. The rate of correct
decisions of FIS for OM = 1 is 82.5 % which is 19.9 % higher than the second place
model, SVM-FG. The FIS also achieves the high accuracy of 99.5 % for the OM = 0
vectors, among the four models tested. The overall accuracies of SVM-FG, MLF-6
and GAM are not as satisfactory.

The good performance of the FIS may be attributed to its approach; that is,
representing the human reasoning process through fuzzy sets, fuzzy membership
functions, and fuzzy rules. The FIS’s decision making process can easily be under-
stood by the users (drivers). The approaches used by MLFs and SVMs are data
driven. The SVM learning algorithm constructs the hyperplane that separates the
OM = 1 and OM = 0 vectors in the four dimensional space, or the kernel space.
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The MLF backpropagation training algorithm adjusts the weight vectors and the
bias values to map the four input values of each training vector with its desired
output value. There is no clear explanation of the human reasoning logic that
relates the input values to the output values in the SVMs and MLFs.

8. Conclusion

This research has developed, using the NGSIM vehicle trajectory data, a SVM
(denoted by SVM-FG), and a MLF (denoted by MLF-6), for making discretionary
lane changing decisions on freeways. This research has also implemented the ex-
isting FIS and TRANSMODELER’s GAM, which was calibrated by their original
developers using NGSIM data, for making decisions on lane changing move. The
rates of correct decisions for “yes, move to the destination lane now” and “no, stay
in the same lane” obtained by implementing the FIS, SVM-FG, MLF-6 and GAM,
from an independent NGSIM test data set were compared. The results show that
the FIS has a highest rates of correct decisions for both “yes, move to the destina-
tion lane now” at 82.5 % and “no, stay in the same lane” at 99.5 %. The SVM-FG
has the next highest rates of correct decisions for both “yes, move to the destina-
tion lane now” and “no, stay in the same lane”, at 62.6 % and 92.8 % respectively.
Among the four modeling techniques tested, the FIS is hence recommended to
model discretionary lane changing decisions on freeways.
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