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Abstract: Conscious decision making is one of the important functions of human
behavior. Episodic memory is the source of knowledge for conscious decision mak-
ing. The mechanism of how episodic memory affects conscious decision-making
is unclear. To investigate the brain mechanism of conscious decision making, we
investigated a biologically-based network model of spiking neurons for competition
between automatic response and conscious decision making. The proposed model
integrates episodic memory modular and brain decision-making modular, and uses
episodic memory output as the top-down input of decision making. In the decision
making, the network realizes the competition between decision patterns through
mutual inhibition, finally reaches the conscious decision making. The simulations
show that the proposed model can well implement multimodal coherent decision
making under sequential memory control. The proposed model can effectively ex-
plain the transmission mechanism of conscious decision information.
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1. Introduction

Brain decision making is one of the most important neural activities in human
beings. Automatic response and conscious decision making are two important rep-
resentations of brain decision-making [1,2]. Automatic response is a rapid decision-
making process, such as touching a hot object and retracting your hand quickly.
Conscious decision making is relatively slow, conscious decision-making mainly
uses the existing knowledge to guide decision-making, and episodic memory is the
source of knowledge for conscious decision-making [3–6]. The flexibility of behav-
ior activity is an important sign of human decision-making ability, which requires
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the brain to solve the conflict between automatic response and conscious decision
making [7, 8].

The brain is a complex autonomous system. It is necessary to establish a com-
plex network model to analyze the correlation between neural structures [9]. In
the past few years, a large number of experimental data related to brain decision-
making have been accumulated through experiments. In recent years, some re-
searchers have proposed models related to brain decision-making system by ana-
lyzing these experimental data. Wang [10] proposed a mutual inhibition network
model of visual discrimination decision, the model established two excitatory neu-
ron clusters, each neuron clusters represent a decision, the two excitatory neurons
compete with each other mediated by an inhibitory neurons cluster. Under the
combined action of external stimulus, one decision from two choices is done. This
model is considered to be one of the pioneering work in the research of brain
decision-making. Based on this work, Machens [11] proposed a working memory
information flexible inhibition control model. By comparing the stimulus and mem-
ory, the model controls the competition between decision neurons, and realizes the
simple memory decision association. In 2006, Deco [12] realized the expression of
decision making under Webb’s law by using the mutual inhibition network model.
Koster [13] realized the modeling of eye movement cortex control decision based
on mutual inhibition network structure, the directional (Top-down) control signals
are generated through the directional selectivity of visual neurons to guide eyelid
movement. Cain [14] used the neural dynamics model to analyze the parameters
required for the brain decision network in detail. Based on these models, some
scholars have also studied the influence of the Top-down control signal strength on
the decision speed and accuracy [15,16].

In recent years, researchers have paid more and more attention to the rela-
tionship between memory and decision making [17–23]. Hikosaka [18] used basal
ganglia striatal suppression mediated modeling to achieve a switch between auto-
matic response and conscious decision making. Fechner [19] constructed a computa-
tional model of neural dynamics through the Adaptive Control of Thought-Rational
(ACT-R) cognitive architecture, and realized the top-down control of memory for
decision making. Khader’s model [20] illustrated the role of automatic and con-
trolled activation of neural clusters in the balance between automatic response and
conscious decision making. This automatic and controlled activation is associated
with the activation of memory patterns in the prefrontal cortex network. Bogacz
and Wei’s works [21, 22] indicated that basal ganglia play an important role in
information transduction in conscious decision-making, and basal ganglia can be
used for decision making through the inhibitory effect of neural circuits. The study
of Chung [7] indicated that the decision making competition mechanism of the su-
perior colliculus is a key step in the implementation of conscious decision-making.

Up to now, people have made a macroscopic understanding of the structure and
function mechanism of brain decision-making system through the research of brain
decision biology experiments. Through the study of neural dynamics model, we
can understand the mechanism of neural cluster in different brain regions in brain
decision-making system from the point of view of mechanism modeling. These
studies have laid an advanced model structure for further understanding about
human brain decision-making processes. Machens [11] suggested that the final re-
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alization of the artificial brain must rely on accurate neural system modeling. A
large number of biological experiments show that episodic memory model can be
mapped into decision model space by synaptic plasticity learning. The competi-
tion mechanism between knowledge based decision making and stimulus response
is the way to realize conscious decision making. However, the current research
focuses on the expression of decision information, but rarely involves the transmis-
sion mechanism of conscious decision-making information. The rapid development
of biological experiments on the brain neural decision need the neural dynamics
mechanism model to explain the related phenomenon.

A model for mapping sequence memory into decision space is proposed in this
paper. The model integrates sequence memory model and brain decision-making
model, and uses sequence memory output as the top-down input of decision making.
At the same time, the external world stimulus decision neurons. In the process of
decision-making, there is competition between decision patterns, and the network
finally reaches the winner-take-all. Only one or several of these patterns wins
the competition by increasing its activity to a threshold, while the other patterns
are suppressed. This model effectively explains the transmission mechanism of
conscious decision information.

In this work, the main contribution is to associate brain sequential memory
with brain decision-making, to establish conscious decision-making model, that is,
to propose a new neural network decision-making structure based on current bi-
ological conclusions. Based on the model, the output of the sequential memory
model is used as top-down input of the decision model, and sensory stimuli is input
from the outside, above two signals make the decision patterns compete with each
other. Decision-making patterns associated with memory patterns win the compe-
tition by increasing their own firing rates, while other decision-making patterns are
suppressed. Different from the existing decision-making models, which mainly focus
on eye-jump stimulation decision-making of simple tasks, the brain memory model
in this paper can guide decision-making and achieve multi-task decision-making. In
this model, the effects of both external stimulus (unconscious) and memory pattern
(active consciousness) on decision-making are considered simultaneously.

2. Materials and methods

2.1 Neural architecture

The hypothetical premises of the neural network structure and the neuron model
in this paper are based on the existing biological experimental conclusions. In the
proposed network, the full neural circuit includes two brain areas: the prefrontal
cortex for memory, and the superior colliculus for decision making. The memory
is the up-down control signal for decision making. The conceptual overview of the
network model is shown in Fig. 1. In this work, the integrate-and-fire framework
introduced by Brunel [24] is used to realize the neural spiking dynamics. The
parameters of neurons in this paper are obtained from biological experiments [25].
The computational model of the memory was described by Deco previously [26,27].
The network model used different specific pools for memory patterns. As shown
in Fig. 1, the specific pools are labeled by P1, P2, . . . , Pn, each pool represents a
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Fig. 1 The structure of model.

pattern, and the specific pools are activated sequentially. In the memory model,
different specific pools represent different items of sequence memory (e.g., a simple
motor action, visual identification, etc.). The experimental results [28] indicate
that competitive firing in hippocampus is the physiological basis of sequence mem-
ory. In the neural system that generates sequence memory, excitatory synapses
and inhibitory synapses coexist. For example, in hippocampus and many areas of
cerebral cortex, sequence memory is produced by the interaction of excitatory and
inhibitory neuronal clusters through synaptic connections. In the sequence memory
model, the excitatory pool is divided into two parts: specific pool and nonspecific
pool. The specific pool is used for memory coding, and the nonspecific pool is used
to introduce some noise into the network [29]. The shunting inhibition is used in
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the model for maintaining stability of the network, leading to the low firing rate of
the network [24]. In the memory model, the adaptation mechanism is applied in
neural pool when it is activated, and then it will create the global inhibition signal
to shut down the previous activate specific pool, leading to the emergence of the
next pattern. Thus, when a short sequence of stimuli injected into the network,
the network will remember them in order.

In the sequence memory part, the network includes NE excitatory pyramidal
neurons and NI inhibitory interneurons. Biological experiments indicate that the
pattern of sequence memory is stored in excitatory neuron clusters, and different
patterns are stored in different excitatory neuron clusters. The ratio of excita-
tory and inhibitory neurons is 8:2, according to the physiologically observation by
Abeles [30]. There are fNE neurons for each specific pool, where f is the fraction
of the specific neurons, and it is set as f = 10%. Thus, the remaining NE−n ·fNE

specific neurons are in the nonspecific pool. In order to make the proposed model
closer to the mechanism of real situational memory, the noise induced by non-coding
neurons firing appears Poisson distribution. The inhibitory pool in the network is
applied to create the global competition throughout the memory network, that
the sequence can be achieved. In the simulation, the number of the pyramidal
neurons and inhibitory interneurons is NE = 800 and NI = 200 respectively. In
the sequence memory processing, the synaptic connection strength between two
neurons follows the Hebbian learning rule, which can realize the transformation
from short-term memory to long-term memory [31]. Thus, the correlated activity
will increase the coupling strength between the neurons. Following this rule, the
coupling weight between the neurons in the specific pool is set as Ws = 3.2. The
coupling strength between two neurons from different specific pools is weaker than
that in same specific pools, and it is given by Ww = 1 − f(Ws − 1)(1 − f). The
feed-forward synaptic weight from specific excitatory pool to nonselective pool is
given by W = 1, while the weight for feedback synaptic connection is Ww. The
coupling weight between the interneurons is W = 1, and the interneurons connect
all specific neurons with same weight W = 1. In the neural system, a large number
of neurons form neural circuits through synaptic connections. The coding neu-
rons are connected by NMDA receptors and AMPA receptors. Inhibitory neurons
globally inhibit coding and non-coding neurons through GABA receptors. Non-
coding neurons and coding neurons are connected by excitatory receptors NMDA
and AMPA.

The network structure of brain decision-making is also derived from existing
biological experiments. Shadlen’s results [32] show that brain decision-making
is based on existing memory patterns, and memory is the Top-down signal for
decision-making. Khader’s experiments [20] show that the activation and con-
trol sequence of neuronal regions associated with decision-making options can be
tracked in material-specific brain regions. This indicates that the brain decision-
making model is stored in different neuron regions, which is the empirical basis
of the brain decision-making network model in this paper. The neural circuit for
decision making draws on previous works [33]. The network for decision mak-
ing consists three neural populations: excitatory coding pools Ei, i = 1, 2, . . . ,m
selective for choice alternatives, nonselective excitatory neurons NSE, and the in-
hibitory interneurons Id. In the simulation, the number of neurons in each coding
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pool is 240, which represents the decision selectivity. The inhibitory population is
applied to create the global competition among the excitatory coding pools, and it
contains 400 inhibitory neurons. There are 1100 excitatory neurons used in NSE
pool. Each excitatory coding pool Ei receives the stimulus from the memory out-
put of Pj , j = k1, k2, . . . , ks, that is to say, multiple memory patterns correspond
to a decision (for example, different scenes can make people laugh). The stimulus
of Pj can be considered as the top-down control signal for Ei. The decision result
exhibits winner-take-all competition through the inhibitory population. When the
activity of a excitatory coding pool reach the decision threshold, other pools are
suppressed. This phenomenon has been confirmed by biological experiments of
monkeys’ random-dot task [34]. Sequential memory patterns are connected by ex-
citatory receptors AMPA. Decision-making patterns are connected by AMPA and
NMDA receptors. Inhibitory neuron clusters inhibit decision-making patterns by
GABA receptors. Decision-making patterns stimulate inhibitory neurons by AMPA
and NMDA receptors. If one or more decision-making patterns achieve cluster fir-
ing, these neuron clusters will increase the firing rate of inhibitory neuron clusters
through AMPA and NMDA receptors, thereby inhibiting other decision-making
patterns. In this process, although the activation patterns are also inhibited by in-
hibitory neuron clusters, the activation patterns will not be inactivated due to the
large mutual excitation stimuli within the activation patterns. At the same time,
each excitatory coding pool receives the external stimuli through AMPA receptors,
which can lead to the unconscious reactions. The synaptic weight between two
neurons in same excitatory coding pool is Wd = 0.887. The weight from excitatory
neuron to inhibitory interneuron is Wei = 0.5. The weight from all excitatory neu-
rons to the NSE neurons is Wn = 0.493. The weight from excitatory neurons to a
coding pool is Wr = 0.44. The synaptic weight between two neurons in inhibitory
pool is Wi = 1.1. The connection weight from inhibitory neuron to excitatory
neuron is Wie = 0.97. Machens’s study [35] shows that decision-making is con-
trolled by memory signals, and that action control is achieved by mutual restraint
between decision-making patterns. Gallivan’s [36] research indicates that brain se-
quential decision-making is achieved through competition among decision-making
patterns, which is accomplished by local inhibition between patterns. The experi-
ments of Kuo’s work [1] shows that there is a game relationship between controlled
decision-making (memory-based decision-making) and stimulus response. The pro-
posed network structure effectively constructs the game, that is, external stimulus
stimulates decision-making mode through excitatory synapses, which makes the
Top-down signal stimulus of sequential memory compete with external stimulus.
If the external stimulus and the memory signal are consistent, the decision-making
will be accelerated. If the external stimulus and the memory signal are inconsis-
tent, then the game between the external stimulus and the memory signal will lead
to a slower decision-making speed.

In this work, the synaptic current are mediated by three receptors: AMPA,
NMDA, and GABA. Each neuron from prefrontal cortex and superior colliculus
receives external inputs mediated by AMPA synaptic connection with Poisson spike
rate of 2400 Hz, which serves as the background noise from the outside. The
external inputs of Poisson spikes are generated randomly and independently. The
recurrent excitatory postsynaptic potentials are mediated by AMPA and NMDA
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receptors. The synaptic currents from inhibitory neurons to all other neurons are
mediated by GABA receptors. From the physiological point of view, the memory
signal should be mediated by the basal ganglia. In many works, the basal ganglia is
modeled as simple direct or hyperdirect pathways, which can adjust the threshold
level of the decision [22, 37]. In this work, we just focus on the how memory
influences the choice making, that the basal ganglia is neglected in this work, and
the memory output is directly connected to the superior colliculus.

2.2 Neural circuit model

In this work, the synaptic connections between neural populations and the re-
current connections are all to all. In this section, the single neuron and synapse
are modeled by leaky integrate-and-fire model, which is with conductance-based
synapses, following in the previous studies [24, 37]. The membrane dynamics of
each neuron evolves as following equation:

Cm
dV (t)

dt
= −gm(V (t) − VL) − Isyn(t), (1)

where Isyn(t) is the total synaptic current to the neuron, Cm is the total membrane
capacitance, gm is total leak conductance, VL is the resting potential. The total
leak conductance gm is 25 ns for pyramidal neurons and 20 nS for interneurons.
In this work, the resting potential VL is set as VL = −70 mV for both excitatory
and inhibitory neurons. When the neuron’s membrane potential V (t) reaches a
threshold Vthreshold = 50 mV, a spike is generated and the membrane potential
V (t) is set to the reset potential Vreset = −55 mV. Then the neuron is unable to
spike again for a period Tr, which is the absolute refractory period. The absolute
refractory period is 2 ms for pyramidal neurons and 1 mS for interneurons.

The total synaptic current Isyn(t) is combined by the external inputs from the
outside, background noise, and recurrent inputs from other neurons. All these
currents are mediated by three types of synaptic receptors: the excitatory synaptic
currents are mediated by AMPA receptors and NMDA receptors, and the inhibitory
components are mediated by GABA receptors. Thus, the total synaptic current
Isyn(t) to each neuron can be given by:

Isyn(t) = IAMPA,ext(t) + IAMPA,rec(t) + INMDA,rec(t) + IGABA(t), (2)

where IAMPA,ext(t) is the external stimulus to the neurons. The synaptic currents
for different synaptic receptors are described as following:

IAMPA(t) = gAMPAsAMPA(t)(V (t) − VE), (3)

INMDA(t) =
gNMDAsNMDA(t)(V (t) − VE)

1 + [Mg2+]E−0.062V (t)/3.57
, (4)

IGABA(t) = gGABAsGABA(t)(V (t) − VI), (5)

where VE = 0 and VI = −70 the reversal potentials for the excitatory neurons and
the inhibitory neurons respectively. gAMPA, gNMDA and gGABA are the synaptic
conductance strength between the neurons. In this work, the NMDA-mediated
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currents have a voltage dependence controlled by the extracellular magnesium con-
centration [Mg2+] = 1 mM [38]. s is the gating variable denoting the fractions of
open channels, which are given by:

dsAMPA(t)

dt
= −sAMPA(t)

τAMPA
+

∑
k

δ(t− tk), (6)

dsNMDA(t)

dt
= − sNMDA(t)

τNMDA,decay
+ αx(t)(1 − sNMDA(t)), (7)

dx(t)

dt
= − x(t)

τNMDA,rise
+

∑
k

δ(t− tk), (8)

dsGABA(t)

dt
= −sGABA(t)

τGABA
+

∑
k

δ(t− tk), (9)

where δ(t − tk) is the Dirac delta function, which represent the spikes emitted by
k-th presynaptic neuron at the time tk. In this work, the value of α is set as
α = 0.74 m · s−1. It is noted that the rise time for NMDA-mediated and GABA-
mediated synapses are not modeled in this work because the rise time (< 1 ms) is
very short, which is much smaller than the decay time [16]. The decay constants
τAMPA = 2 ms, τNMDA,decay = 100 ms, and τGABA = 10 ms for AMPA, NMDA
and GABA synapses respectively. The rise time for NMDA synapses is set as
τNMDA,rise = 2 ms [33].

The values of synaptic conductances for pyramidal neurons are set as follows:
gAMPA,ext = 2.08 nS, gAMPA,rec = 0.104 ns, gNMDA = 0.328 ns, and gGABA =
1.44 ns. For inhibitory interneurons, the values of synaptic conductances are given
as: gAMPA,ext = 1.62 ns, gAMPA,rec = 0.081 ns, gNMDA = 0.258 ns, and gGABA =
0.973 ns. gAMPA,ext is the synaptic efficacy from the outside input to all neurons;
gAMPA,rec is the conductance mediate the excitatory recurrent current. In this work,
the second-order Runge-Kutta method is used to solve the synaptic differential
equation, and dt = 0.1 msec is applied for integration step.

3. Results

This paper uses MATLAB coding to implement the model. The computing devices
used are configured as: memory (16G), CPU (Intel Xeon E5-1620). We first check
the performance of the sequence memory in the model. In order to realized the
sequential activation of the specific coding pools Pn, a global inhibitory signal for
all specific coding pools is introduced in this work. Based on proposed model,
a sequence recall in the sequence meomory modular is shown in Fig. 2(a). The
example in Fig. 2(a) is formed by four items. Fig. 2(a) shows the rate of average
activity in the four specific pools corresponding to the items in the sequence. After
each switch, the next item is activated, and the previous item is inhibited. The
two choice unconscious decision making without up-down control is presented in
Fig. 2(b). In Fig. 2(b), there is no up-down control from the sequence recall. There
are two optional decisions in Fig. 2(b), and the each decision component receives
external stimulus just like saccade test. The excitation coding pool for each decision
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Fig. 2 (a) The sequence memory with four patterns, and each color indicates a
pattern; (b) Two choice unconscious decision making without up-down control.
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Fig. 3 (a) Two choice decision making sustained excitation by one memory pattern,
which has same desirable decision with that of the unconscious; (b) Two choice
decision making sustained excitation by one memory pattern, which has different
desirable decision with that of the unconscious.

compete with each other, and one is activated, and another is suppressed. The
simulation indicates that the decision time is more than 600 ms.

Fig. 3 gives the process of network decision making under persistent up-down
control signals. Fig. 3(a) and Fig. 3(b) receive two different external stimulus
respectively. Fig. 3(a) shows two choice decision making which has same desirable
decision with that of the automatic responses, while Fig. 3(b) shows two choice
decision making which is different from that of the automatic responses. It can
be seen from Fig. 3 that if the stimulus response and conscious decision-making
are consistent, then the decision time will be relatively short, and the decision can
be made in about 400 ms. The simulation indicates that the decision time can be
shortened if the stimulus response and the conscious decision are inconsistent. If
the stimulus response and the conscious decision are inconsistent, then the decision
time is about 600 milliseconds, which is same as the stimulus response time in
Fig. 2(b). In fact, the weight of the external stimulus is less than the weight
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between the memory module and the decision pool. In Fig. 3, the intensity of the
external stimulus is less than that of the memory stimulus. That’s why the brain
is able to make conscious decisions in Fig. 3(b). For the simulation of Fig. 3(b), if
the intensity of external stimuli is large enough, automation responses will occur,
and memory based decisions will be inhibited.

In order to reflect the dynamic process of network in multiple decision mak-
ing, Fig. 4 gives the decision results under different conditions with three optional
decisions. Fig. 4(a) shows the automation response with one choice in three op-
tions, and there is no up-down control signal on decision pools. Fig. 4(b) presents
conscious decision making with one choice in three options sustained excitation by
one memory pattern, which has same desirable decision with that of the automa-
tion response. The simulation results indicate that the decision time is shortened
when the up-down control signal has same desirable decision with that of the au-
tomation response. Fig. 4(c) shows the automation response with two choice in
three options, and there is no up-down control signal on decision pools. Fig. 4(d)
presents the conscious decision making with two choice in three options sustained
excitation by one memory pattern, which has same desirable decisions with that
of the unconscious. Fig. 4(c)(d) are the multiple decision making. In reality, a
memory pattern may correspond to multiple actions. Fig. 4(e) shows the conscious
decision making with two choice in three options sustained excitation by one mem-
ory pattern, which has one desirable decision same as that of the unconscious, and
another is different from the the unconscious. Although there is a pattern of con-
scious decision making and the pattern of stimulus response is inconsistent, two
decisions have same decision time, which are about 400 ms. Fig. 4(f) shows the
conscious decision making with two choice in three options sustained excitation by
one memory pattern, which has different decision from that of the unconscious.
The simulation in Fig. 4(f) indicates that the decision time of two choices is same,
it is about 600 ms. From Fig. 4(e)(f), it can be seen that the decision time of all
decision patterns is consistent in multi-mode decision making in any case. That
is, when making conscious decision, no matter how many decisions are made, it is
realized simultaneously.

Fig. 5 shows the sequence multiple conscious decision making based on the
sequence memory. Fig. 5(a) gives the transformation between single decision pat-
terns, which occurs when the patterns of sequential memory change. The decision
patterns are corresponding to different memory patterns. It can be seen from
Fig. 5(a) that when the conscious decision making and the autonomic response are
consistent, the decision making speed is faster, about 400 ms. At 1800 ms, the first
sequential memory pattern ends, and the memory pattern corresponding to the
decision pattern will also be inhibited by the inhibition pool. At about 2400 ms,
the second memory pattern emerges, and the second memory pattern stimulates
the second decision pattern. Fig. 5(b) gives the transformation between a single
decision pattern and multiple decision patterns. The first pattern of sequential
memory corresponds to the first decision pattern, and the second memory pattern
of sequential memory correspond to two decision patterns. It can be seen from
Fig. 5(b) that when a memory pattern corresponds to multiple decision patterns,
the average firing rate of each decision pool will be reduced by half when compared
to a single decision pattern. From the perspective of cognitive neuroscience, the
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Fig. 4 (a)Unconscious decision making with one choice in three options; (b) Deci-
sion making with one choice in three options sustained excitation by one memory
pattern, which has same desirable decision with that of the unconscious;(c) Uncon-
scious decision making with two choice in three options; (d) Decision making with
two choice in three options sustained excitation by one memory pattern, which has
same desirable decisions with that of the unconscious; (e) Decision making with
two choice in three options sustained excitation by one memory pattern, which has
one desirable decision same as that of the unconscious, and another is different
from the the unconscious; (f) Decision making with two choice in three options
sustained excitation by one memory pattern, which has different decision from that
of the unconscious.
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Fig. 5 Sequence multiple conscious decision making based on the sequence mem-
ory. (a)From single decision pattern to another decision pattern, all the conscious
decisions are same as unconscious decision; (b)From single decision pattern to an-
other two decision patterns, all the conscious decisions are same as unconscious
decision; (c) From two decision patterns to another pattern, all the conscious de-
cisions are different from unconscious decision; (d)From two decision patterns to
another two patterns, the first decisions are different from unconscious decision,
and the second decisions are same as unconscious decision.

brain’s ability to respond is limited. Therefore, when a memory pattern corre-
sponds to multiple simultaneous decision making, the reactivity of each decision
will be reduced, and the model proposed in this paper can well prove this point.
Fig. 5(c) gives a jump from two decision patterns to another decision pattern, and
all the conscious decisions are different from unconscious decision. Assuming the
external stimulus to unconscious pool in the experiment time is continuous. That
is, external stimuli have been acting on unselected decision pool persistently. It can
be seen from simulation that for the first decision, the decision time is relatively
long, about 600 ms, while the decision time is very short for the second decision
models. When the first memory pattern disappears, such as 2000 ms 2500 ms in
Fig. 1, the decision pattern corresponding to the memory will be inhibited by the
inhibitory pool, and the firing rate will gradually decrease, but in the process, the
first decision pattern can still inhibit the occurrence of the unconscious response.
Therefore, unselected decision making pool is always resting, and can not stimulate
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other neurons. Thus, the decision time of the second decision pattern in Fig. 5(c)
is not affected by the external stimulus signals. Fig. 5(d) gives the transition from
multiple decision patterns to multiple decision patterns, and the first decisions are
different from unconscious decision, the second decisions are same as unconscious
decision. The simulation shows that the average firing rate of the second deci-
sion patterns is higher than the first decision patterns. This is because the second
memory pattern and external stimuli have the same decision patterns, and the
two signals act on second decision patterns, which results in increased stimulus
intensity.

4. Conclusion

Brain decision making is one of the most important neural activities in human be-
ings. Automatic response and conscious decision making are two important repre-
sentations of brain decision-making. The flexibility of behavior activity is an impor-
tant sign of human brain decision-making ability, which requires the brain to solve
the conflict between automatic response and conscious decision-making. The cur-
rent research focuses on the expression of decision information, but rarely involves
the transmission mechanism of conscious decision-making information. This paper
establishes a memory based conscious decision-making model, in which the memory
pattern of sequential memory is used as the top-down control signal, and compete
with the automatic response, so as to realize the conscious decision-making. In ad-
dition, the proposed model considers the multi-patterns decision making, and the
reaction intensity decision pattern decreases with the increase of number of decision
patterns. The reliability of the model is verified by simulation experiments.

From the physiological point of view, the memory signal should be mediated by
the basal ganglia. The choice of decision making is realize by the inhibitory effect of
neural circuits in basal ganglia [18]. This paper does not consider the conduction
of the basal ganglia. Recent neural results have found that feedback from the
external segment of globus pallidus to the striatum in the basal ganglia is critical for
inhibitory control, and this feedback effect can realize the interdependence between
memory and inhibitory control [39, 40]. Moreover, the indirect pathway composed
of striatum, globus pallidus, subthalamic nucleus STN and substantia nigra pars
recitulata (SNr) can balance the inhibitory effect of direct pathway. These results
are in urgent need of the biological neural dynamics mechanism model to explain
the related phenomenon. In the future works, the modeling of the basal ganglia
should be considered in the decision model.
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