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Abstract: Deep-learning initiatives have vastly changed the analysis of data.
Complex networks became accessible to anyone in any research area. In this pa-
per we are proposing a deep-learning long short-term memory network (LSTM)
for automated stock trading. A mechanical trading system is used to evaluate its
performance. The proposed solution is compared to traditional trading strategies,
i.e., passive and rule-based trading strategies, as well as machine learning classi-
fiers. We have discovered that the deep-learning long short-term memory network
has outperformed other trading strategies for the German blue-chip stock, BMW,
during the 2010–2018 period.
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1. Introduction
In stock markets, optimal trading decisions made at the right time are crucial for
successful investment strategies. In order to reduce the risk and maximize profit,
investors try to obtain as much information as possible–company and market data,
qualitative and quantitative data–and they often equip themselves with real-time
trading systems [13], recommendation systems [64], and simulators [63]. Typically,
trading systems are classification algorithms, which deal with labeling the predictor
variables into classes [8]. There are many different trading systems: daily trading
system [21], fuzzy logic rules trading system [10], and others [14,22,30,51].

Trading systems are used by large corporations in real time, in real life, for
trading with real stocks. This can be risky, expensive, and very time-consuming,
since it may take years for a trading system to show its strengths. Fortunately
trading systems can also be used in virtual time by simulating the actual past
stock market behaviour. Using this approach, we propose a mechanical trading
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system (MTS) to sequentially (day-by-day) execute trading signals (decisions), and
thus trade with real stocks [66] in virtual time. Consequently, the quality and
effectiveness of a trading system over a period of a few years can be evaluated in a
matter of seconds.

The MTS works by giving three common trading signals, i.e., buy, hold, and
sell, for each of the stocks. It is given an initial amount of cash to buy stocks that
can be held in the portfolio or be sold at a later date. Buying and selling stocks can
generate profits if trading signals are given rationally or generate loss if they are not.
Profits and losses can be monitored and reviewed at the end of the trading period
to realize strengths and weaknesses of the trading decisions [47]. Trading decisions
are typically given by trading strategies, i.e., automated algorithms that constantly
monitor market behaviour and react accordingly. Multiple trading strategies are
usually incorporated within the trading system, by each giving unique trading
decisions. The latter can be evaluated quickly and inexpensively either in real-
world time or using the MTS.

In this paper we are proposing a concept of an automated, single stock, trading
system using the MTS, examining its potential by five different trading strategies,
realizing their strengths and weaknesses, and proving the correctness of an optimal
strategy. Based on this, we encourage further analysis and the design of an auto-
mated portfolio trading system for many similarly treated stocks in parallel. Here
we employ three different trading strategies: (1) passive, (2) rule-based – relative
strength index (RSI) and moving average convergence/divergence (MACD) tech-
nical indicators, and (3) surrogate model trading strategies using machine learning
classifiers (MLC) and long short-term memory network (LSTM). Each of them can
provide three trading signals: buy, hold, or sell.

Since deep learning (DL) [37] is primarily intended for engineering applications,
such as image and sound processing, we have not found many examples of DL in
the fields of finance, banking, or insurance. In line with this, we would like to
apply the DL to the area of finance, particularly mechanical trading systems as an
alternative, and thus test whether the DL can be successfully deployed into this
area.

The structure of the paper is as follows: Section 2 presents the literature review,
MLC applications and applications using LSTMs. Section 3 defines the method-
ology used in this paper. Section 4 details the dataset handling, its modifications,
and dataset split. Section 5 presents the results and concludes the paper.

2. Literature review
In 1970, Fama [24] introduced the Efficient Market Hypothesis (EMH), arguing that
any stock price at any time fully reflects all available information. Generally, three
forms of market efficiency have been proposed: weak, semi-strong, and strong [52],
implying that stock prices follow a random walk. Later researchers have shown that
stock prices may not follow the random walk perfectly, but are more-or-less non-
linearly related to past data [14]: [4] studies the mean reversion process compared
to stock price time series; [38] empirically proves that stock prices in Japan from
1999 to 2007 do not follow EMH and thus offer arbitrage options for investors; [40]
rejects the random walk model for the observed stock prices. We have found that
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stock markets, indeed, offer arbitrage opportunities, which may lead to arbitrage
profits [16]. Additionally, [2] reviews many stock market trading techniques, vari-
ables, and statistical tests. There have been several studies concerning the German
stock markets, e.g., relations between beta and realized returns [23], liquidity [31],
volatility and short selling constraints [6], or behavioural finance [43].

For capturing those arbitrage opportunities, machine learning [55] can be ap-
plied, similarly to its use in other diverse application areas such as medicine [67],
bank marketing [32], credit rating systems [12], and bankruptcy prediction [57].
The outstanding benefit of allowing the model to learn by itself during an iterative
process makes machine learning algorithms very usable for arbitrage. Generally,
three types of machine learning exist: supervised, unsupervised, and reinforcement
learning [35, 36, 46], where one of the supervised tasks is classification. There are
numerous machine learning classifiers, such as support vector machine [19], bagging
predictors [7], random forests [9], and Fisher discriminant analysis [42]. Another
group of machine learning algorithms presents neural networks, e.g., long short-
term memory networks [28], which can be employed for classification purposes as
well. In the past, those have been applied extensively for researching stock mar-
kets [54], econometrics [3], financial market predictions [25], and electricity price
predictions [49].

3. Methodology

Following the idea in [44] we developed an MTS with passive, rule-based, and
surrogate model trading strategies [33]. Initially (on the first trading day), each
strategy gets 10,000.00 EUR in cash, which can be spent arbitrarily for buying
stocks. For each transaction, trading costs apply, which include commissions, bid-
ask spreads, market impacts, timing costs, and opportunity costs [17]. In agreement
with [58, 59, 62, 65], transaction costs, which are 1% of the stock’s value, are used.
We incorporate the assumption of perfect market liquidity so that stocks can be
bought and sold instantly. By giving the trading signals, MTS buys and sells stocks
for each trading strategy and thus controls its portfolio/capitalization value. Short
selling is not allowed in any of the trading strategies.

A passive trading strategy is the simplest trading strategy to apply: buying
the stock on the first trading day and holding the stock until the last trading
day. Hence, neither the stock’s current nor historic performance data is necessary.
This strategy results in profit if the stock price rises during the observed period
and results in loss if the price falls. Rule-based trading strategies are, on the
other hand, active trading strategies, since their decisions depend on calculated
technical indicators from historic stock prices. Two popular technical indicators,
RSI and MACD (see e.g., [15]), have been used in our paper. Another active
trading strategy is the surrogate model, where two variants are tested: MLC and
LSTM. Exceptionally, those both require a parallel surrogate model to be built
before the evaluation, which is typically an iterative (learning) procedure to lower
the error between the real world and surrogate model. The more the surrogate
model imitates the real world, the better it is [60].
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3.1 Machine learning classifiers

MLC trading strategy [35] brings a high level of reliability because it is based on
several algorithms that are tested simultaneously: decision trees [50], linear dis-
criminant analysis by Fisher [18], support vector machines [5,19], k-nearest neigh-
bors (k-NN) [1], and ensemble learning methods [45]. Three different branches of
decision trees are used in our MLC trading strategy: fine, medium, and coarse,
which differ according to their complexity, i.e., the number of splits [26]. Several
support vector machines (SVMs) are tested: linear, quadratic, and cubic SVM, as
well as fine Gaussian, medium Gaussian, and coarse Gaussian. The group of k-NN
is tested by six types: three according to complexity (fine, medium, and coarse)
and three according to distance metrics (cosine, cubic, and weighted). Ensemble
learning classifiers are classification algorithms that merge various classifiers into
an ensemble. Three different tree ensembles are used (boosted, bagged, and RUS-
Boosted trees) [56] and two types of subspaces (subspace k-NN [27] and subspace
discriminant) are used. The optimal MLC among the list is chosen next.

3.2 Long short-term memory networks

LSTMs were proposed from recurrent networks (RNNs), designed by Rumelhart,
Hinton, and Williams [53] in the late 1980s. LSTMs and RNNs are feedback-looped
networks and thus contain two inputs: new information from the dataset and pre-
vious output [29]. Both of them allow the information to persist from one input
to another [48]. Common RNNs suffer from the so-called vanishing or exploding
gradients, which makes them unable to memorize the long-term dependencies be-
tween data. The problem that arises is the gradient that diminishes or explodes
exponentially. This makes the network dependent on temporal components, which
may make such networks unable to account for inputs from several past steps and
thus practically cause it to quickly lose information from the past.

LSTMs have been proposed to prevent this problem by reducing the information
attenuation [11], which makes them especially suitable for researching the long-term
dependencies in stock market prices. Although more on LSTMs can be found in [11,
20], basic working principle of LSTMs are presented in the following paragraphs.

Each LSTM unit consists of a core component, memory cell, and the three
gates: forget gate, input gate, and output gate. Memory cell, or the heart of
the LSTM, holds historic information learned in the past, while the three gates
assure its manipulation: (1) filtration of historic information, (2) contribution of
a new information, and (3) exploitation of the learned information. Filtration
is performed using the forget gate, which directs information to forget and to
persist. Contribution is performed using the input gate, which introduces the new
information to the existing information contained in the memory cell. Exploitation
is provided by an output gate, which generates (predicts) the output variable. The
memory cell and three gates are illustrated in Fig. 1.

The forget gate removes the information from the memory cell by masking
individual components of a vector Ct−1. Masking vector ft is generated by taking
the sigmoid function of a previous output ht−1, concatenated with the current
input xt. Sigmoid function limits the concatenated vector by 0 and 1, where 0
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Fig. 1 A memory cell is the heart of the LSTM unit. Source: Authors and [11].

totally blocks the information to remain in the memory and 1 totally persists the
information in the memory. Typically, analog values between 0 and 1 appear.

The memory cell thus temporarily becomes ft ·Ct−1 before a contribution to the
memory by the input gate occurs. First, the masking vector it is generated, which
is next multiplied by a cell candidate C̃t. The latter is specified by a tanh function
of a concatenated vector. Using the masking vector it, specific components are
only let through after the multiplication to contribute to the memory cell and form
the vector Ct. From the latter, the output ht can be generated by taking the tanh
function of the Ct, and selecting specific components set by an output masking
vector ot.

The LSTM unit is typically not self-standing, but it is incorporated into neural
architecture. We have used the following architecture: (1) sequence input layer,
which imports the data from dataset, (2) LSTM layer, (3) fully connected layer,
which extracts information from LSTM, (4) softmax layer, which transforms ex-
tracted information, and (5) classification output layer, which is used to compare
output with class labels and drive the training process.

The memory cell and the three gates constitute the majority of the LSTM
network, while the rest of the LSTM consists of so-called weights: input weights
W, recurrent weights R, and biases b [41]. Input weights W are assigned for each
gate unit: forget gate, input gate, output gate, and a cell candidate [41]. Similarly,
recurrent weights R and biases b are defined for each listed gate unit and a cell
candidate. The forward propagation thus progresses in the following manner (for
the input gate): σ · (Wi · xt +Ri · ht−1 + bi), where σ presents a sigmoid function;
Wi, input gate weights; and Ri, recurrent input weights.

The learning capacity of the LSTM is defined by the number of hidden units
Nunits that define the dimension of the vector ht and weights W, R, b [41]. The
latter are learnable, which means that their values adjust during the training pro-
cess. The training process is carried out by an optimizer, typically a gradient
descent, which is employed to find the optimal weights and biases. Optimality is
searched for using the objective function to lower the error between actual and
predicted labels. In our case we have used a stochastic gradient descent optimizer
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with adaptive learning rates, called Adam [34]. Here the gradient is described with
two higher moments: the first moment, or mean, and the second moment, or un-
centered variance. Additionally, the exponential moving average over the moments
is calculated, and both of them are corrected for bias to drive the training process.

3.3 Synthesis of a trading system
Fig. 2 presents the structure of our trading system. First, the original dataset
(x) is downloaded, preprocessed, and checked for any nonsense values, missing
data, and other misconceptions. Market data (DAX30 blue-chip market index) is
additionally included along with the original dataset and response variable. Next,
a response variable (y) is generated for the purpose of learning surrogate model
trading strategies. The resulting dataset is widened by technical analysis variables
to form a modified dataset (x∗) that is finally split into two mutually exclusive
datasets: in-sample and out-of-sample. The first one (in-sample) is used for training
the MLC and LSTM models and their evaluation, while the second is for evaluation
only.

Although passive and rule-based trading strategies do not require a dataset
split, it is done anyway to bring a fair evaluation of passive and rule-based trading
strategies in comparison with surrogate model trading strategies.

PREPROCESSING,
TECHNICAL
ANALYSIS

ORIGINAL
DATASET

MODIFIED
DATASET

IN-SAMPLE
(TRAINING)
DATASET

OUT-OF-
SAMPLE
DATASET

OUT-OF-SAMPLE
TRADING

IN-SAMPLE
TRADING

CONTINUE TO NEXT DATAPOINT

CONTINUE TO NEXT DATAPOINT

TRADING
STRATEGIES

TRADING
STRATEGIES,
SURROGATE

MODELS

In-sample
trading
phase

Out-of-sample
trading
phase

Best MLC surrogate model

EVALUATE ON
MTS AND

VISUALIZE
RESULTS

EVALUATE ON
MTS AND

VISUALIZE
RESULTS

Fig. 2 Trading system. The original dataset is preprocessed and technical analysis
is executed to form a modified dataset. The in-sample and out-of-sample datasets
are generated next and proceeded to in-sample and out-of-sample phases. The in-
sample trading phase is responsible for building the surrogate models, while the
out-of-sample is tasked with exploiting them. Next, the best MLC surrogate model
among all is proceeded to in the out-of-sample trading phase. Evaluation on MTS is
performed separately: first the in-sample dataset and then the out-of-sample dataset
is evaluated. Source: Authors.

4. Dataset
The original dataset was downloaded from Yahoo! Finance [61] using the GitHub
library by Lenskiy [39]. A German DAX30 blue-chip stock “Bayerische Motoren
Werke AG” (BMW) was chosen for the analysis because (1) it is listed on the
European stock markets; (2) is relevant to European investors; (3) is intrinsically
related to the German national economy and other European countries; (4) is an
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important economic partner in Slovenia as well as of interest to Slovenian investors;
and (5) is known to be a global company with a long tradition and high liquidity
of its stocks. BMW is mainly disclosed with high market capitalization: approx-
imately 48 billion EUR with more than 657.6 million shares outstanding at the
time of writing as well as high daily volume, i.e., more than 2 million transactions
daily. The following data variables were downloaded for the time period from 1
January 2010 to 9 November 2018: daily close price, daily open price, highest daily
price, lowest daily price, daily adjusted close price, and daily volume. The original
dataset consists of N = 2247 datapoints with d(orig) = 6, where each datapoint
represents a single trading day and d(orig) presents the dimension of the original
dataset. Tab. I presents the descriptive statistics of the original dataset, where
“Adj. Close” presents the daily adjusted close and Jarque-Bera shows a statisti-
cal test for testing the normality of data. One-day returns on close prices have
been tested for normality, and it has been assessed that none of the variables are
normally distributed. Although the variables are non-stationary, we perform the
Jarque-Bera test to remind readers that non-normality (and non-stationarity as
well) of the variables makes the standard econometric approaches for the analysis
of such data difficult. Since we do not have access to intra-daily stock prices, we
assume that close prices do not vary the last few minutes of the trading day. Ac-
cordingly, we may buy or sell the stock prior to closing the market with the close
price already obtained. Therefore, we react as trading still continues.

Variable Min Max Median Mean Stdev Jarque-Bera
Close 28.65 122.60 78.01 74.37 17.59 469.61
Open 28.90 123.30 78.20 74.40 17.63 733.04
High 29.29 123.75 78.90 75.21 17.70 447.08
Low 28.28 120.35 77.11 73.48 17.48 524.01
Adj. Close 21.59 105.03 68.91 64.25 18.43 467.73
Volume 372,209 15.6E6 1.9E6 2.1E6 1.1E6 19,812
Market 5,072 13,560 9,447 9,220 2,340 656

Tab. I Descriptive statistics of the original dataset. According to the Jarque-Bera
test, none of the variables are distributed normally. It is worth mentioning that
none of the variables are stationary either.

4.1 Response variable generation
A response variable (y) is a categorical vector that incorporates three common
trading signals: “Buy,” “Hold,” and “Sell.” The response variable is analytically
derived from the stock’s close prices. Those are due to the best expressing market
activity and investors’ supply and demand used preferentially instead of adjusted
close prices, which account for dividends and stock splits, and consequently do not
represent direct market activity.

A response variable is calculated for each time horizon n. In this paper five time
horizons n = 1, 2, . . . , 5 are used, which apply five unique n-day returns. Those
are symbolized by ∆n and are calculated as in Eq. 1. Afterwards, the response

157



Neural Network World 3/2019, 151–171

variable is assigned according to the value of ∆n, by Eq. 2

∆n = x
(close)
t

x
(close)
t−n

− 1, (1)

y
(n)
t


Buy; ∆n > 0.05
Hold; −0.05 < ∆n < 0.05
Sell; ∆n < −0.05

,∀n = 1, 2, . . . , 5, (2)

where x(close)
t presents the actual close price and x(close)

t−n the close price n-days ago.
If the quotient between those ∆n exceeds the positive/negative threshold, set at
+/- 0.05, the response variable yt becomes “Buy,” or “Sell” for day t. Otherwise,
the response variable is assigned as “Hold.” We additionally assume that once the
stock is bought or sold, no further transactions are allowed following n-days. This
type of response variable is used for supervised learning.

4.2 Data preprocessing and technical analysis
Technical analysis, shown in Fig. 2, is used to widen the original dataset (x) and
thus incorporate new information into the model. According to Tab. II, the result-
ing modified dataset (x∗) consists of 43 variables. The following technical indica-
tors were employed (for different time horizons): n-daily return (RET), difference
in daily return (DIFF), relative strength index (RSI), moving average convergence
divergence (MACD), inclination of daily returns trend (INCL), changes of returns
(CHG RET), differences between inclinations (DIFF INCL), coefficients between
stock prices (COEF), and market returns (MARKET RET) with market inclina-
tions (MARKET INCL).

Stock and market data come in the form of coefficients of averages with date
data in the integer form. The coefficient of average is calculated as a variation from
the average value of a specific explanatory variable. Inclinations are calculated as
regressions over 5, 10, 15, and 20 samples of daily returns. Differences between
inclinations are derived as follows: 5-day inclination from 5 days ago is subtracted
from current 5-day inclination; furthermore, 10, 15, and 20 days inclinations are
subtracted from current 5-day inclination. Coefficients between stock prices are
derived as relative coefficients, between high and low prices and relative coefficients
between close and open prices. In the last step, linear transformation is employed to
make the learning process of the LSTM easier. It does not change the information
criteria, nor the objectivity of the dataset. Linear transformation is performed
using the fixed scaling factors, prior to the split, which makes both the in-sample
and out-of-sample datasets fixed and known in advance. Despite this fact, they are
not initially shown to the surrogate model.

In fact, the MTS makes the continuous updates by updating new datapoints.
It always takes only one datapoint at a time (one trading day), makes a decision,
and then proceeds to the next trading day. In this way, MTS proceeds through all
of the in-sample and out-of-sample trading decisions and simultaneously measures
capitalization performance.
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Explanatory variables No. of var.
1. Stock and market data:

open, close, high, low, adj. close, volume, market index 7

2. Date data:
year, month, day, day of week, days to next trading day, days 6from previous trading day

3. Technical indicators:
RET: n = {1, 2, 3, . . . , 10}-day period 10
DIFF: n = {1, 2}-day period 2
RSI: 14-day period RSI, standardized 1
MACD: 12-day short, 26-day long and 9-day signal period 1
INCL: n = {5, 10, 15, 20}-day period 4
CHG RET: n = {1, 2}-day period 2
DIFF INCL 4
COEF 2
MARKET RET: n = {1, 4}-day period 2
MARKET INCL: n = {5, 10}-day period 2

Sum 43

Tab. II The modified dataset consists of 43 explanatory variables (features), which
are divided into three categories: stock and market data, date data, and technical
indicators. Stock, market and date data are unique features, while the technical
indicators are derivatives of those two features. Each explanatory variable is fed
into the trading system.

With the removal of a few samples, the final size of the modified dataset is
reduced to (x∗,y) = 2222 × 43. The modified dataset is split fifty-fifty, i.e., half
of the datapoints (N = 1111) become in-sample and the other half, out-of-sample.
Such a long out-of-sample is an unusual practice, but it is employed anyway to
eliminate any coincidences (random effects) that might show to be beneficial during
evaluation. By using such a practice, redundancy and generalization of surrogate
model is desired to make sure that trading strategies work systematically.

5. Results
The purpose of our experimental work was to compare the presented trading strate-
gies with different time horizons for automated stock trading. BMW stock was
taken for the analysis. The in-sample ranges were taken from 8 Feb 2010 to 20
Jun 2014, while out-of-sample ranges were taken from 23 Jun 2014 to 9 Nov 2018.
Implementation of the described MTS and its features was done in the MATLAB
programming environment. A computer with the Ubuntu Linux operating sys-
tem and Intel Core i5-2430M @ 2.40 GHz with 8 GB RAM was used. Tab. III
presents the parameter settings of each MLC and LSTM, where S(max) represents
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the maximum number of splits for each branch of the decision tree; k, the number
of nearest neighbors; and D, subspace dimension. Cosine and cubic metric rep-
resent alternative distance metrics, while kscale is a kernel scale parameter, where
“auto” means its automated selection. The number of learners Nlearners parameter
in bagged trees represent the complexity of an ensemble.

No. MLC method MLC parameter MLC setting

1. Fine decision tree max. splits S(max)
f 100

2. Medium decision tree max. splits S(max)
m 20

3. Coarse decision tree max. splits S(max)
c 4

4. Discriminant analysis covariance structure full
5. Linear SVM kernel scale kscale auto
6. Quadratic SVM kernel scale kscale auto
7. Cubic SVM kernel scale kscale auto
8. Fine Gaussian SVM kernel scale kscale 1.6
9. Medium Gaussian SVM kernel scale kscale 6.6
10. Coarse Gaussian SVM kernel scale kscale 26
11. Fine k-NN no. of neighbors k 1
12. Medium k-NN no. of neighbors k 10
13. Coarse k-NN no. of neighbors k 100
14. Cosine k-NN neighbors k, cosine metric 10
15. Cubic k-NN neighbors k, cubic metric 10
16. Weighted k-NN neighbors k, distance weight 10
17. Boosted trees max. splits S(max)

boost 20
18. Bagged trees no. of learners Nlearners 30
19. Subspace discriminant no. of dimensions Ds 22
20. Subspace k-NN no. of dimensions Ds 22
21. RUSBoosted trees max. splits S(max)

RUS 20

LSTM parameter LSTM setting
1. No. of hidden units Nunits 7
2. Batch size Nb 1111
3. Maximum epochs N (max)

e 2000
4. Initial learning rate L(init)

r 0.05

Tab. III MLC parameter settings are listed on the upper portion of the table, while
LSTM parameter settings are on the lower.

Before conducting the experiments, the LSTM neural architecture was tested
for overfitting problems. Various architectures regarding the LSTM units were
tested, e.g., Nunits = 1000, 500, 200, 100, 50, 20, 15, but all of them signaled
overfitting problems. In order to ensure the greatest generalization, we reduced to
Nunits = 7. Fig. 3 presents the architecture of neural network and the dimensions
of each layer.
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Fig. 3 Architecture of neural network: sequence input layer, LSTM layer, fully
connected layer, softmax layer, and classification output layer. Source: Authors.

Experiments and results are divided into three subsections: (1) the effect of time
horizon, a where graphical comparison is placed; (2) a detailed tabular comparison;
and (3) the discussion.

5.1 Effect of time horizon
The effect of time horizon is analyzed first. Here five different time horizons are
tested, n = 1, 2, . . . , 5-day returns, where trading results are shown for both in-
sample and out-of-sample. However, a fair evaluation is only produced by the
out-of-sample. First, the most common daily stock return, i.e., 1-day, is tested by
taking today’s and yesterday’s stock performances. Such an instance is the most
responsive by giving trading signals quickly. Fig. 4a presents the in-sample results
for 1-day stock returns, and Fig. 4b shows the out-of-sample results, revealing the
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Fig. 4 Trading results for 1-day stock returns. The left figure shows results of the
in-sample trading strategy, while the right figure shows the out-of-sample trading
strategy. LSTM performs best for in-sample and out-of-sample. Source: Authors.
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results of all five trading strategies. In both cases, LSTM performed the best. Stock
price naturally rises heavily in the in-sample period and falls majorly in the out-
of-sample period. Overall, two things are observed: first, out-of-sample profits are
much lower than in-sample, and, second, benchmarking strategies perform worse.
The capitalization value diminishes from the initial value in both passive and rule-
based strategies. Although the use of LSTM benefits (profit almost exceeds 40 %
of initial capitalization value), its potential is not exploited fully. MLC strategy,
on the other hand, significantly falls behind, but still performs better than the
passive strategy. Here, discriminant analysis is chosen as an optimal MLC method.
Fig. 5 (upper) presents the results of 2-day stock returns’ time horizon, where the
response variable is calculated as the difference between current price and the price
two days ago. LSTM performs by far the best among all strategies, because it
results in profits, while all the other strategies end up with lower capitalization
value than when they started. The fine tree is used as the optimal MLC method.
Fig. 5 (lower) presents the results of using the 3-day stock returns, where another
outstanding LSTM performance occurs. MLC performs better on the 2-day time
horizon and ends up with only about half of the LSTM’s profit on the 3-day time
horizon. The fine tree is the optimal MLC method here as well. Fig. 6 (upper)
presents the results for the 4-day stock returns, where LSTM vastly surpasses the
other strategies on out-of-sample. MLC again employs a loss. This time the cubic
SVM method is found to be the optimal MLC method. Fig. 6 (lower) presents the
results of the 5-day time horizon, which is closely related to the 4-day time horizon
for in-sample. Out-of-sample indicates that increasing the time horizon n further
might decrease LSTM performance. Nevertheless, it performs significantly better
than RSI and MACD rule-based strategies, performing solidly in the beginning of
the trading period, but later losing the benefits gained. Here the medium decision
tree is the optimal MLC method.

5.2 Detailed comparison among trading strategies

Capitalization values in this subsection are shown in a tabular fashion. Three
comparisons are presented and discussed: (1) relative capitalization values, (2)
number of transactions, and (3) computational time requirements. Tab. IV shows
the final capitalization values for each of the trading strategies at each time horizon.
Both the MLC and LSTM profits are highest for 2-day stock returns at in-sample
and decrease afterwards. Decreasing profits apply for LSTM after 2-day stock
returns on out-of-sample as well, but not for MLC, which performs best for 3-day
stock returns. Passive, RSI, and MACD strategies perform consistently for all time
horizons.

Tab. V shows the number of transactions. Those are held constant for passive,
RSI, and MACD trading strategies, but vary significantly for MLC and LSTM
strategies. The shortest time horizon provides the minimal out-of-sample trans-
actions that could be caused by a fixed level of response variable. By decreasing
the level (currently set at +/-0.05), the number of transactions would increase, but
increasing too high might negatively affect the capitalization value. Generally, no
pattern can be observed for the number of transactions, but by simplifying, we
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Fig. 5 Trading results for 2-day (upper portion) and 3-day (lower portion) time
horizon. The left figures show the results of the in-sample trading strategy, while
the right figures show the out-of-sample trading strategy. LSTM performs best for
both the in-samples and out-of-samples. Source: Authors.
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Fig. 6 Trading results for 4-day (upper portion) and 5-day (lower portion) time
horizons. The left figures show the results of the in-sample trading strategy, while
the right figures show the out-of-sample trading strategy. The passive strategy per-
forms best for out-of-sample for the 5-day and LSTM performs best for the rest of
the samples. Source: Authors.
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Strategy 1-day 2-day 3-day 4-day 5-day
In/Out In/Out In/Out In/Out In/Out

Passive 3.093/0.794 3.093/0.794 3.093/0.794 3.093/0.794 3.093/0.794
RSI 1.439/0.714 1.439/0.714 1.439/0.714 1.439/0.714 1.439/0.714
MACD 0.699/0.369 0.699/0.369 0.699/0.369 0.699/0.369 0.699/0.369
MLC 3.215/1.103 4.269/0.902 3.127/1.291 3.076/0.884 1.950/1.087
LSTM 3.916/1.487 4.860/1.902 4.837/1.699 3.161/1.550 3.040/1.461

Tab. IV Summary of relative capitalization values among trading strategies.

Strategy 1-day 2-day 3-day 4-day 5-day
In Out In Out In Out In Out In Out

Passive 1 1 1 1 1 1 1 1 1 1
RSI 28 24 28 24 28 24 28 24 28 24
MACD 82 88 82 88 82 88 82 88 82 88
MLC 17 1 33 8 37 17 35 6 22 11
LSTM 13 5 37 10 45 9 35 7 39 18

Tab. V Summary of number of transactions among trading strategies.

could argue that odd time horizons, excluding the 1-day stock return, achieve a
higher number of transactions than even.

Fig. 7 shows the computational time of MLC and LSTM trading strategies. It
is clear that the LSTM time complexity considerably exceeds other MLC methods.

5.3 Discussion and conclusion
In this paper we have shown that novel and prominent deep-learning networks
can be successfully used for automated stock trading. Stock markets inherently
consolidate long-term dependencies, which must be taken into account prior to
choosing a trading strategy. To empirically evaluate the success of each of the
trading strategies in volatile stock markets, we have developed a mechanical trading
system enabling fair evaluation of different trading strategies. Passive, rule-based
(RSI and MACD), and surrogate model trading strategies (MLC and LSTM) have
been implemented.

We found that the LSTM network outperforms all benchmarking (passive, RSI,
MACD and MLC) trading strategies. MLC achieves its highest out-of-sample profit
for the 3-day stock returns, while LSTM peaks for the 2-day stock returns (190.2 %
of overall return). Profits and losses are consistent for passive and rule-based
trading strategies and thus do not depend on the time horizon. MACD is the most
frequent trading strategy.

The passive strategy does not depend on any past information and is, there-
fore, least demanding; the trading performance of other strategies highly depends
on the information available. MLC and LSTM, nevertheless, require training and
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Fig. 7 A bar chart of computational time requirements, expressed in logarithmic
scale. Time [s] is located on the x-axis for each of the surrogate model trading
strategies. We can see the very long computational time for the LSTM, which
performs the worst according to this criterion. Source: Authors.

validation datasets and are much more dependent on the information available.
Some classification methods, e.g., SVM, might require a greater and more bal-
anced training dataset. For example, the response variable is very imbalanced,
since it consists of 17 “Buy,” 20 “Sell,” and 2,185 “Hold” signals for 1-day stock
returns. Surrogate model methods, therefore, achieve 98 % accuracy by constantly
outputting the “Hold” signal only.

Stock price movements are random. Therefore, generalization of the surrogate
models is highly desired for two reasons: (1) to disregard random movements and
(2) to account for systematic movements only. Complicated classifiers may lack
of generalization ability, but as it turns out for the LSTM, this can be prevented
by careful choice of LSTM units. Moreover, LSTM units can be chosen optimally
for each of the time horizon individually. Although this seems sensible, it was
not implemented in our case. We have experimentally optimized the architecture
for 1-day stock returns and left the architecture universal for the rest of the time
horizons. Thus, we have not fully exploited the LSTM’s potential.

We found it difficult to assure the stability of the surrogate models, especially
the LSTM, which has always reacted in a slightly different way by rerunning the
learning process. Typically, this is reconciled by calculating the mean performance
on a short out-of-sample period or even cross-validating in some cases. Despite this
fact, we employed a different strategy. To accommodate for the nonstability of a
surrogate model, a very prolonged out-of-sample dataset has been established to
avoid any beneficial random effects. To determine the level of nonstability, multiple
learning processes have been rerun. The best among them has been announced as

166



Fister D. et al.: Deep learning for stock market trading: a superior. . .

optimal in the end, for which we (1) assumed that it properly recognized the market
activity/patterns and reacted accordingly and (2) concluded that the surrogate
model did not memorize/remember the data.

To extend the analysis and enlarge the dataset, a longer period of financial
data could be downloaded for the BMW stock (beyond the year 2010). Although
this seems a reasonable enhancement of the study, one should keep in mind the
2007-2009 global financial crisis that caused significant changes in market activity.
By incorporating those years into the analysis, one would risk the infection of pre-
crisis market behaviour and the relevance of financial shock for after-crisis market
behaviour. We estimated that this does not seem reasonable and thus omitted the
pre-crisis period. This omission was later found to be beneficial.

The LSTM neural network and its specific learning process showed a crucial role
in the design of the optimal trading strategy and was found to be very useful even
though we have, once again, not exploited its full potential. For future, we would
like to propose three improvements: (1) longer sequence length to incorporate more
comprehensive LSTM configuration; (2) hyperparameter tuning; and (3) an online
surrogate model where remodeling would be performed after each trading day. In
this way, the newest information would be always incorporated into the surrogate
model. Additionally, out-of-sample trading would shrink to one day to further
enhance trading results.

This application is a genuine proof-of-concept and a fundamental basis for a
more comprehensive portfolio MTS, where many different types of stocks in parallel
would be managed by such a system. Based on this encouraging application, we
would like to account for all the stocks in the DAX30 blue-chip stock market index.
Such an application would significantly increase model complexity and the dataset.
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