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M. Kř́ı̌zek∗

Dedicated to Dr. Milan Práger on his 90th birthday.

Abstract: The standard cosmological model that is based on Einstein’s equa-
tions possesses many paradoxes. Therefore, we take a closer look at the equations
themselves, and not only on cosmological scales. In this survey paper, we present
10 significant problems and drawbacks of Einstein’s equations investigated by the
author. They include their extremely large complexity, non-differentiability of the
metric, difficulties with initial and boundary conditions, multiple divisions by zero,
excessive extrapolations to cosmological distances leading to mysterious dark mat-
ter and dark energy entities, unconvincing relativistic tests, the absence of aberra-
tion effects, and scale non-invariance. We also discuss a slight violation of the laws
of conservation of energy and of momentum.
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This paper is a natural continuation of paper [36] about the criticism of the
standard cosmological model that is based on Einstein’s equations. Albert Einstein
derived these equations more than 100 years ago and their agreement with the
reality seemed to be very good that time.

Later, new measurement methods and devices were invented in cosmology that
provide more accurate data and also completely new approaches to the study of
some physical phenomena. This progress in cosmological measurements and new
mathematical models for some parts of the physical model have brought the pos-
sibility to compare Einstein’s original equations with this new development. We
present 10 substantial drawbacks of Einstein’s equations that have been discovered
in this process of comparison. Their origin often lies in the limited precision of
measured data, identifying mathematical models with reality [38], and their in-
correct interpretations. For example, Einstein’s equations imply the well-known
Friedmann equation describing the expansion of a homogeneous and isotropic uni-
verse. It is an autonomous ordinary differential equation with constant coefficients.
However, from such a simple and trivial equation far-reaching conclusion about the
deep past and the far future are made. Other categorical conclusions include the
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existence of dark matter and dark energy and the age of the universe 13.79 Gyr up
to four significant digits [52].

Further problems arise from the nonlinearity and instability of Einstein’s equa-
tions, division by zero, subtraction of two inexact numbers of almost the same size.
This usually leads to a catastrophic loss of accuracy [7]. Finally note that many
conclusions in cosmology are not in the form of mathematical implications, since
various simplifications and approximations are done.

1. Extreme complexity of Einstein’s equations

In November 1915, Albert Einstein [17] (see also [18]) introduced his field equations
of general relativity consisting of 10 equations

Rµν −
1

2
Rgµν =

8πG

c4
Tµν , µ, ν = 0, 1, 2, 3, (1)

of the unknown 4× 4 symmetric metric tensor gµν of one timelike variable x0 and
three Cartesian or curvilinear space variables x1, x2, x3, i.e. gµν = gµν(x0, x1, x2, x3)
(for simplicity the dependence of all functions from Eq. (1) on these variables will
be nowhere indicated), where

Rµν =
3∑

κ=0

Rκ
µκν (2)

is the 4× 4 symmetric Ricci tensor,

R =

3∑
µ,ν=0

gµνRµν (3)

is the Ricci scalar (i.e. the scalar curvature), G = 6.674 · 10−11 m3kg−1s−2 is the
gravitational constant, c = 299 792 458 m/s is the speed of light in vacuum (the
constant 8πG/c4 does not appear in [17], since Einstein did not use SI units), Tµν
is the 4× 4 symmetric tensor of density of energy and momentum,

Rκ
µσν =

∂Γκ
µν

∂xσ
−
∂Γκ

µσ

∂xν
+

3∑
λ=0

ΓλµνΓκ
λσ −

3∑
λ=0

ΓλµσΓκ
λν (4)

is the Riemann curvature tensor that has 20 independent components from 44 =
256 components due to several symmetries1, where

Γµκσ =
1

2

3∑
ν=0

gµν
(∂gκν
∂xσ

+
∂gσν
∂xκ

− ∂gκσ
∂xν

)
(5)

are Christoffel’s symbols of the second kind (also called the connection coefficients)
and all derivatives are supposed to be classical. From this and the relation gκσ =

1In any space dimension N the Riemann curvature tensor has N2(N2 − 1)/12 independent
entries due to the following conditions: Rκ

µσν+Rκ
σνµ+Rκ

νµσ = 0 (the First Bianchi identity) and
Rλµσν = −Rµλσν = −Rλµνσ , where Rλµσν =

∑
κ gλκR

κ
µσν . Thus, Rλµσν = Rσνλµ.
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gσκ one can derive the symmetry Γµκσ = Γµσκ for µ = 0, 1, 2, 3 (see Eq. (41) and
Eq. (46) for the proof). Thus altogether we have 40 = 4×(1+2+3+4) independent
components. Finally, gµν is the 4× 4 symmetric matrix inverse to gµν , i.e.

gµν =
g∗µν

det(gµν)
, det(gµν) =

∑
π∈S4

(−1)sgnπg0ν0g1ν1g2ν2g3ν3 ,

where the entries g∗µν form the 4× 4 matrix of 3× 3 algebraic adjoints of gµν , S4 is
the symmetric group of 24 permutations π of indices (ν0, ν1, ν2, ν3), sgnπ = 0 for
an even permutation and sgnπ = 1 for an odd permutation.

Making all the above substitutions, the explicit expressing of the left-hand side
of Eq. (1) would occupy many pages with thousands of terms (partial derivatives of
real functions).2 For comparison note that the Laplace equation ∆u = 0 has only
three terms ∂2u/∂x2

i on its left-hand side, i = 1, 2, 3, and the famous Navier-Stokes
equations 24 terms.

Working with curved spacetime, one necessarily faces the extreme complexity
of the nonlinear system of second order partial differential Einstein’s equations (1).
It is so complicated that we do not know any of its analytical solutions for two or
more massive bodies (cf. [44]). Furthermore, there are no suitable guaranteed error
estimates for numerical solutions. Thus a natural question arises whether Einstein’s
equations describe reality sufficiently accurately. Their general form Eq. (1) has
not been tested, yet.

2. Non-differentiability of the Schwarzschild
metric

In Eq. (1), we shall first assume that

Tµν = 0. (6)

From now on we shall use the standard Einstein summation convention for sum-
mation over repeating upper and lower index. Multiplying Eq. (1) by gµν , we find
by Eqs. (3) and (6) that

0 = gµνRµν −
1

2
Rgµνgµν = R− 1

2
Rδµµ = R− 2R, (7)

where δµν is the Kronecker delta and

δµµ = 4.

Hence, R = 0 and Einstein’s equations (1) with right-hand side Eq. (6) can be
rewritten as

Rµν = 0, (8)

where by Eqs. (2) and (4)

Rµν = Γκ
µν,κ − Γκ

µκ,ν + ΓλµνΓκ
λκ − ΓλµκΓκ

νλ . (9)

2In spite of that in [44, p. 42] one can read: No equation of physics can be written more simply.
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Here the index after the comma indicates the ordered number of a variable with
respect to which we differentiate, i.e. Γκ

µν,κ = ∂Γκ
µν/∂x

κ .
Einstein himself did not believe that somebody will ever find a solution of

Eq. (1). However, already on December 22, 1915, Karl Schwarzschild wrote to
Albert Einstein that he has found a solution [57] (for the English translation of
Schwarzschild’s original letter by R. A. Rydin see [16]). The Schwarzschild solution
of Eq. (8) can be written as the following diagonal tensor

gµµ = diag
(
−r − S

r
,

r

r − S
, r2 sin2 θ, r2

)
, (10)

gµν = 0 for µ 6= ν, where the line element satisfies

ds2 = −r − S
r

c2dt2 +
r

r − S
dr2 + r2 sin2 θ dϕ2 + r2dθ2, (11)

r > S, the constant S is given by Eq. (12) below, t is a time coordinate, (r, ϕ, θ)
are the standard spherical coordinates, ϕ ∈ [0, 2π), θ ∈ [0, π], i.e. x0 = ct, x1 =
r sin θ cosϕ, x2 = r sin θ sinϕ, and x3 = r cos θ.

Schwarzschild assumed that the gravitational field has the following properties:
(a) it is static,
(b) it is spherically symmetric,
(c) the spacetime is empty,
(d) the spacetime is asymptotically flat.

For a fixed nonrotating ball in vacuum with mass M > 0 and with a spherically
symmetric mass distribution we set

S =
2MG

c2
(12)

which is called the Schwarzschild gravitational radius. From this we see that the
metric Eq. (10) changes into the standard Minkowski (pseudo)metric for M → 0.
According to well-known Birkhoff’s theorem (see [4]), the space outside a ball with
spherically symmetric mass distribution is described by Eq. (10) which is called
the exterior Schwarzschild metric, see e.g. [41], [44], [45].

In Appendices A and B, we show in detail that the classical Schwarzschild
solution Eq. (10) satisfies Eq. (1) with zero right-hand side Eq. (6). The reason for
this exposition is that everyone can recalculate some important formulae used in
subsequent sections. Another reason is that classical tests of general relativity are
usually based just on the exterior Schwarzschild solution.

In 1916 Karl Schwarzschild (see [58]) found the first nonvacuum solution of
Einstein’s equation (1). He assumed that the ball with coordinate radius r0 > 0 is
formed by an ideal incompressible non-rotating fluid with constant density to avoid
a possible internal mechanical stress that may have a non-negligible influence on
the resulting gravitational field. He also assumed the zero pressure at the surface.
Then (see e.g. [21], [23, p. 529], [60, p. 213]) the corresponding metric is

gµµ = diag

(
−1

4

(
3

√
1− S

r0
−

√
1− Sr2

r3
0

)2

,
r3
0

r3
0 − Sr2

, r2 sin2 θ, r2

)
, (13)
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where r ∈ [0, r0] and S is given by Eq. (12). The corresponding metric tensor
is called the interior Schwarzschild solution, see [60, p. 213]. It is again a static
solution, meaning that it does not change over time. To avoid the division by zero
in the component g11, we require

r3
0

r3
0 − Sr2

=
(

1− Sr2

r3
0

)−1

> 0 for all r ∈ [0, r0]

which leads to the inequality
r0 > S. (14)

Note that the ball in question is not a black hole and Eq. (13) is not a black hole
metric. Using Eq. (10) and (13), we can easily verify that the exterior and interior
metric have the same values for r = r0, i.e., each component gµµ = gµµ(r) is a
continuous function on [0,∞) for µ = 0, 1, 2, 3.

By inspection we can also find that g00, g22, and g33 are smooth functions at
r = r0 (i.e., their first derivatives are continuous). However, now we will show that
the first derivatives of g11 of the exterior and interior Schwarzschild solution do not
match (see Fig. 1). The reason is that they have a jump on the common boundary
r = r0, even though the 2nd order Einstein’s equations contain classical derivatives
of gµν which are supposed to be continuous in definition Eq. (5). Therefore, the
corresponding space manifold described by the Riemann curvature tensor is not
differentiable, since the tangent hyperplane for r = r0 cannot be uniquely defined.
All Riemannian manifolds must be locally flat which is not true in this particular
case, i.e., the geometry of the corresponding spacetime must be everywhere locally
Lorentzian [44, p. 29].

r0r

11
g

1

Fig. 1 The behavior of the non-differentiable component g11 = g11(r) of the metric
tensor from Eq. (10) and (13). The first derivative (∂g11/∂r)(r0) is not defined.
The piecewise rational function g11 cannot be smoothed near r0, since then Ein-
stein’s equations (1) would not be valid in a close neighborhood of r0.

We observe that the corresponding boundary conditions

∂g11

∂r
(0) = 0 and g11(r)→ 1 for r →∞

are quite natural due to spherical symmetry. From Eq. (10) we see that the one-
sided limit from above of the component g11(r) = r/(r−S) of the exterior solution
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is negative

lim
r→r+0

∂g11

∂r
(r) < 0,

whereas the component g11(r) of the interior solution Eq. (13) is an increasing func-
tion on [0, r0] (cf. Fig. 1). It is increasing even for a variable spherically symmetric
density. Consequently, Eq. (1) cannot be used inside the ball with radius r1 > r0 to
model our Sun or any other star with radius r0 together with its spherically sym-
metric vacuum neighborhood (see Fig. 2 and Eq. (5)). This is a serious drawback
of Einstein’s equations, since the composite metric tensor Eq. (10)+(13) is not dif-
ferentiable for r = r0. For a different choice of coordinates (e.g. Kruskal-Szekeres
like coordinates) the corresponding manifold remains non-differentiable. Conse-
quently, Eq. (10) and (13) are only local solutions and together they do not form
a global solution3 of Einstein’s equations inside the ball with radius r1. The jump
in the first derivative of g11 will appear even if we slightly deviate from spherical
symmetry, since local solutions continuously depend on data.

Let us emphasize that the covariant divergence of the right-hand side of Eq. (1)
has to be zero, see Eq. (38) below. Therefore, the covariant divergence of the
left-hand side is zero, too. However, this requires further differentiation of the
non-differentiable metric tensor at r0.

Fig. 2 A schematic illustration of the Sun with its spherically symmetric neighbor-
hood.

For comparison, note that the first classical derivatives of the Newton potential
u of a similar problem are continuous. It is described by the Poisson equation
∆u = 4πGρ, where ρ is the mass density. Let the right-hand f = 4πGρ side be
spherically symmetric and such that f(r) = 1 for r ∈ [0, 1] and f(r) = 0 otherwise.
Its solution is u(r) = 1

6r
2 − 1

2 for r ∈ [0, 1] and u(r) = −1/(3r) otherwise. Hence,
both u and ∂u/∂r are continuous at r0 = 1.

3Similarly, the function u(x) = |x| is a local classical solution of the second order ordinary
differential equation u′′ = 0 on the intervals [−1, 0] and [0, 1], but it is not a global solution over
the interval [−1, 1]. It is not even a weak or very weak solution there.
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3. Difficulties with initial and boundary conditions

Einstein’s equations (1) without initial and boundary conditions may have more
different solutions (see e.g. Theorem 1 below). Since Eq. (1) represents a sys-
tem of hyperbolic equations with second time derivatives, two initial conditions
should be prescribed. These equations are highly nonlinear. Therefore, the exis-
tence and uniqueness of a weak solution of Einstein’s equations with some initial
and boundary conditions is a serious problem. Note, for example, that the one-
dimensional steady-state nonlinear heat conduction equations with any type of
boundary conditions does not have a unique weak solution even when the heat
conduction coefficient is continuous, see [26, p. 182].

It is usually difficult, if not impossible, to prescribe explicitly any appropriate
initial and boundary conditions for non-spherically symmetric regions for gµν satis-
fying Eq. (1). The reason is that matter tells spacetime how to curve and spacetime
tells matter how to move. So the initial space manifold is a priori not known except
for some special cases when the analytical solution of Einstein’s equation is known.
More precisely, the left-hand side of Eq. (1) corresponds to geometry and the Ein-
stein tensor Gµν := Rµν − 1

2Rgµν tells gravitational spacetime how to curve. The
right-hand side of Eq. (1) corresponds to physics and the tensor Tµν tells matter
how to move.

Furthermore, let us point out that the knowledge of the metric tensor gµν
does not determine the topology of the corresponding manifold. For instance, the
Euclidean space E3 has the same metric as S1 × E2, but different topology. Here
S1 stands for the unit circle. Other examples can be found in [44, p. 725].

In 1917, Albert Einstein introduced a new form of his equations (see [19])

Rµν −
1

2
Rgµν + Λgµν =

8πG

c4
Tµν (15)

with non-zero cosmological constant Λ to avoid a gravitational collapse of the
whole universe. It is said that the gravitational constant G is the worst established
constant of all fundamental physical constants, since its value is known only to
3 (or 4) significant digits. However, we do not know any significant digit of the
cosmological constant Λ, yet. Note that the standard cosmological model only
assumes that Λ ≈ 10−52 m−2.

Theorem 1. Let gµν be a solution of Eq. (15). Then (−gµν) solves Eq. (15) if
we replace Λ by (−Λ). In particular, if Λ = 0, then (−gµν) solves Eq. (1).

Proof. Using Eq. (5), we observe that the Christoffel’s symbols remain the same
if we replace gµν by (−gµν), namely,

Γµκσ =
1

2
(−gµν)

(
−∂gκν
∂xσ

− ∂gσν
∂xκ

+
∂gκσ
∂xν

)
.

By Eq. (2) and (4) we find that the Ricci tensor Rµν in Eq. (15) does not change
as well. Concerning the second term on the left-hand side of Eq. (15), we see
from Eq. (3) that

(
− 1

2Rgµν
)

remains also unchanged if we replace gµν by (−gµν).
Finally, for the third term we get Λgµν = −Λ(−gµν). �

Finally emphasize that Einstein’s equations are fully deterministic whereas the
universe does not operate solely gravitationally due to quantum phenomena. Their
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effects can be observed not only on microscopic scales. For instance, we may decide
whenever we wish to change the trajectory of an asteroid in arbitrary direction by
the famous kinetic impactor method. The evolution of the real world is thus prob-
ably unstable with respect to initial conditions, since small quantum fluctuations
can produce big consequences. Such processes cannot be described by Einstein’s
equations.

4. Division by zero in the Schwarzschild-de Sitter
model

Let us seek a solution of Eq. (15) when

Tµν = 0.

Similarly as in Eq. (7) we find by Eq. (3) that

0 = gµνRµν +
(
Λ− 1

2R
)
gµνgµν = R+ 4

(
Λ− 1

2R
)

= 4Λ−R,

i.e., in this case Einstein’s equation (15) can be rewritten as

Rµν = Λgµν . (16)

When Einstein’s paper [19] appeared, then afterwards several articles (cf. [27,
p. 438], [68]) were published that looked for an exterior Schwarzschild-like solution
of Eq. (16) using the standard spherical coordinates, see Appendix C,

gµµ = diag
(
−
(r − S

r
− Λr2

3

)
,
(r − S

r
− Λr2

3

)−1

, r2 sin2 θ, r2
)
, (17)

where S is given by Eq. (12), r > S, and θ ∈ [0, π]. We observe that Eq. (17) reduces
to the exterior Schwarzschild metric (10) for Λ = 0. If Λ 6= 0 and S = 0 (i.e., M = 0
by Eq. (12)), we get the de Sitter or anti-de Sitter metric [14]. Moreover, if Λ = 0
and S = 0 then Eq. (17) changes into the Minkowski metric.

For Λ > 0 and
L := Λ−1/2 (18)

let S > 0 be such that S < L/2. Then

g00(L) = −1+
S

L
+

1

3
< −2

3
+
L

2L
< 0, g00(2L) = −1+

S

2L
+

4ΛL2

3
=

1

3
+
S

2L
> 0.

(19)
Hence, the continuous component g00 = g00(r) changes its sign on the interval
(L, 2L), i.e., there exists r ∈ (L, 2L) such that g00(r) = 0. Consequently, in the
evaluation of the next component

g11(r) =
(r − S

r
− Λr2

3

)−1

one divides by zero for r = r and the metric breaks down. The metric tensor
Eq. (17) is thus not well defined at cosmological distances even though the cosmo-
logical constant was invented just to treat extremely large distances in the universe.
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The component g11(r) attains arbitrarily large values when r → r− even though
there is no physical barrier. Therefore, the quadratic form gµν(r)vµvν is also not
well-defined at r = r for any contravariant vector vµ such that v1 6= 0. A different
choice of coordinates does not help to avoid this singularity, since the form does
not change its value for any given r.

5. Division by zero in the Friedmann model

We meet division by zero also for a nonzero right-hand side of Eq. (15). In cosmol-
ogy, the metric of the expanding homogeneous and isotropic universe is expressed
by the Robertson–Walker metric

ds2 = −c2dt2 + a2(t)
(
dχ2 + sinn2χ(dθ2 + sin2 θ dϕ2)

)
(see e.g. [41], [44]), where θ ∈ [0, π], ϕ ∈ [0, 2π), χ ∈ [0, π] for k = 1 and χ ∈ [0,∞)
otherwise, χ is a dimensionless comoving distance, a = a(t) is a smooth positive
function which is called the expansion function, and sinn depends on the curvature
index k ∈ {−1, 0, 1} as follows

sinnχ =

 sinχ if k = 1,
χ if k = 0,
sinhχ if k = −1.

(20)

The corresponding metric tensor is then given by the diagonal matrix

gµµ = diag(−1, a2, a2sinn2χ, a2sinn2χ sin2 θ), µ = 0, 1, 2, 3.

If k = 1 then a(t) is the radius of the space represented by the three-dimensional
sphere S3(t).

We shall assume that a = a(t) satisfies the Friedmann ordinary differential
equation

ȧ2 =
8πGρa2

3
+

Λc2a2

3
− kc2 (21)

for t > τ , where the dot denotes the time derivative, ρ = ρ(t) > 0 is the mean mass
density, and

τ ≈ 380 000 yr

is the time of decoupling of the cosmic microwave background radiation (cf. Eq. (26)
and the footnote 5 below). In [25] Alexander Friedmann derived Eq. (21) exactly
from Eq. (15) without any approximations, i.e., Eq. (21) is a direct mathemati-
cal consequence of Eq. (15) for a homogeneous and isotropic expanding universe,
see [34] for the proof.

We shall suppose that
ȧ(τ) > 0, (22)

since the universe was expanding at time τ . Furthermore, assume that ȧ(t) 6= 0 for
all t > τ and divide equation Eq. (21) by ȧ2. Then the Friedmann equation reads

ΩM(t) + ΩΛ(t) + Ωk(t) = 1 for all t > τ, (23)
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where

ΩM(t) =
8πGρ(t)

3H2(t)
> 0, ΩΛ(t) =

Λc2

3H2(t)
, and Ωk(t) = − kc2

a2(t)H2(t)
, (24)

are normalized cosmological parameters called (see [49, p. 58], [52, p. 37]) the density
of dark and baryonic matter, density of dark energy, and the curvature parameter,
respectively, and

H(t) =
ȧ(t)

a(t)

is the Hubble parameter. Note that Eq. (23) is really a differential equation, since
the derivative ȧ is hidden in the Hubble parameter.

In the literature on cosmology, the division of Eq. (21) by the square ȧ2 ≥ 0 is
usually done without any preliminary warning that we may possibly divide by zero
which may lead to various paradoxes. For instance, we see by Eq. (24) that

ȧ(t)→ 0 =⇒ ΩM(t)→∞ and ΩΛ(t)→ ±∞ for Λ 6= 0, (25)

corresponding e.g. to an oscillating universe or the Einstein static4 but unstable so-
lution a(t) ≡ Λ−1/2 for Λ > 0 (cf. Eq. (18)) or de Sitter solution a(t) = α cosh(ct/α)
for ρ = 0 and a suitable constant α > 0 (see e.g. [12], [14], [19], [40]). Is there re-
ally an infinite density of dark matter and dark energy, when a = a(t) reaches its
extremal values? The true density of baryonic matter is surely finite.

Now we show that division by zero in Eq. (24) may appear for Λ negative,
vanishing, and also positive. Setting

A =
Λc2

3
and B = −kc2,

the Friedmann equation (21) can be rewritten as the following simple autonomous
ordinary differential equation with constant coefficients5

ȧ2 = Aa2 +B +
C

a
for t ≥ τ, (26)

where C = 8πGρa3/3 > 0 is constant by the law of conservation of mass for zero
pressure, i.e. ρ(t)a3(t) = ρ(t0)a3(t0), where t0 is the present time (see [35, p. 100]).
If ȧ 6≡ 0 then by Eq. (26) we can find that

ä(t) = Aa(t)− C

2a2(t)
. (27)

1) First assume that Λ < 0. Since A < 0, the function

ϕ(a) := Aa− C

2a2

4The Einstein static solution a(t) ≡ Λ−1/2 solves the Friedmann equation Eq. (21) for k = 1
and ρ = Λc2/(4πG).

5For the time interval (0, τ), when radiation dominates over matter, the term D/a2 with
constant D > 0 is added to the right-hand side of Eq. (26).
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is negative and it attains its unique maximum on the interval (0,∞) at the point

amax = 3

√
C

−A
> 0.

Setting K := ϕ(amax), we deduce by Eq. (27) that

ä(t) ≤ K < 0 (28)

for all t > τ such that a(t) > 0, i.e., a = a(t) is strictly concave. By integration we
obtain that

ȧ(t)− ȧ(τ) =

∫ t

τ

ä(s) ds ≤ K(t− τ) < 0. (29)

Since ȧ(τ) and Kτ are fixed numbers and the constant K is negative, we get
ȧ(t) < Kt + const. By the continuity of ȧ and Eq. (22) there exists t1 > τ such
that

ȧ(t1) = 0.

Therefore, we always divide by zero in Eq. (24) when Λ < 0.

2) The well-known case Λ = 0 also produces division by zero in Eq. (24)
when the density ρ = ρ(t) is larger than the so-called critical density ρcrit(t) =
3H2(t)/(8πG), see e.g. [33, p. 285], [61].

3) Finally, let Λ > 0. The right-hand side of Eq. (26),

F (a) = Aa2 +B +
C

a
, a ∈ (0,∞),

is strictly convex, since its second derivative F ′′(a) = 2A + 2C/a3 is positive for
a > 0. From the equation F ′(a) = 2Aa − C/a2 = 0 we find that F attains its
unique minimum at the point

amin =
3

√
C

2A
> 0.

Now let k = 1 and F (amin) < 0. Then there exist two roots a1 < a2 such that
F (a1) = F (a2) = 0 and F is negative on the interval (a1, a2). So let the initial
condition a(τ) satisfy the inequalities 0 < a(τ) < a1. Then F is positive on the
interval (0, a1). Set

K := Aa1 −
C

2a2
1

. (30)

Since 0 < a1 < amin, we obtain by Eq. (27) that

ä(t) = Aa(t)− C

2a2(t)
≤ K < Aamin −

C

2a2
min

= 0

for all t > τ such that a(t) > 0. Hence, Eq. (28) holds with the constant K given
by Eq. (30). From Eq. (29) we again obtain the existence of a time instant t2 > τ
such that

ȧ(t2) = 0 (and a(t2) = a1).

Therefore, the cosmological density parameters are not well defined due to the
division by zero in Eq. (24). We also see that their names were not appropriately
chosen. For instance, if k 6= 0 then the curvature parameters Ωk(t1) and Ωk(t2)
approach ±∞ by Eq. (24) even though nothing dramatic happens.
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6. The proclaimed amount of dark matter is over-
estimated

According to the standard cosmological model [52], our universe contains more
dark matter than ordinary baryonic matter (see Fig. 3) and

the ratio of masses of dark matter to baryonic matter ≈ 6 : 1. (31)

The amount of baryonic matter is estimated by a luminous matter [67, p. 74].
The cosmological parameters Eq. (24) are searched so that the solution of Eq. (23)
is as close as possible to the measured data.

Dark

energy

Dark matter

Baryonic matter

Fig. 3 Results of the Planck satellite [52] are interpreted in such a way that our
universe consists of about 6 times more dark matter than ordinary baryonic matter.
However, they are based on the normalized Friedmann equation (23), which was
derived using excessive extrapolations by many orders of magnitude.

In [31], we presented 10 counterarguments showing that such a claimed amount
of dark matter Eq. (31) can be a result of vast overestimation and does not conform
to reality (see also [39] and references therein). Some of these counterarguments can
be convincingly verified even by simple hand calculations. Here we will, therefore,
briefly mention only a few main arguments.

The terms dark matter and dark energy from Fig. 3 are inconsistent, i.e., they
are not on the same meaning level. Energy is consistent with the term mass through
the relation E = mc2. In this case, the physical quantities energy and mass are
real numbers with appropriate physical dimensions, while matter is neither a real
number nor a physical quantity.

The cosmological parameters Eq. (24) corresponding to the present time t0
were determined by the three seemingly independent methods of Baryonic Acous-
tic Oscillations (BAO), Cosmic Microwave Background Radiation6 (CMB), and
Supernovae type Ia explosions (SNe), see Fig. 4. However, these methods are not

6For a trustworthy criticism of this method we refer to [66].
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independent, since the searched cosmological parameters Eq. (24) are supposed to
satisfy the same normalized Friedmann equation Eq. (23) in all three methods.
Moreover, to extrapolate Einstein’s equations from the Solar system to the whole
universe, which is at least 15 orders of magnitude larger, is questionable, see [38].
In truth, it is more likely that the measured data just indicate that the extrapola-
tion is wrong, since it requires one to introduce some exotic dark matter and dark
energy.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.3

0.7

Fig. 4 Admissible values of cosmological parameters, obtained by three different
methods: BAO, CMB, and SNe, intersect in a small region containing cosmological
parameters ΩM ≈ 0.3 and ΩΛ ≈ 0.7.

At the end of the 20th century (when Perlmutter et al. published their famous
paper [50]) it was thought that red dwarfs of the spectral class M form only 3 %
of the total number of stars, see [3, p. 93]. Nevertheless, the Gaia satellite esti-
mated that red dwarfs are in the vast majority — about 75 %. This large portion
essentially contributes to invisible baryonic matter.

Taking into account relativistic effects of high velocities, gravitational redshift,
gravitational lensing in a curved space, decreasing Hubble parameter, intergalactic
baryonic matter, dynamical friction, gravitational aberration, etc., we showed in
[33, Chapts. 7–9] that the proclaimed ratio Eq. (31) can be essentially reduced by
means of actual data.

Einstein’s equations (15) on maximally symmetric space manifolds imply the
Friendmann equation (21). This is a mathematical implication, since no approx-
imations are made, see [34] for details. Experiments based on the Friedmann
equation imply the existence of a 6 times larger amount of dark matter than bary-
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onic matter. Since it appears (see [31]) that this ratio is far from reality, Einstein’s
equations cannot describe it well. For instance, the perfect spiral shape of galaxies
(see Fig. 5) indicates that there is not 6× more gravitationally interacting dark
matter than ordinary baryonic matter inside galaxies.

Fig. 5 Spiral galaxies could not have such a large symmetry if there were to be six
times more uniformly distributed dark matter than structured baryonic matter.

7. Dark energy mystery

By the scientific results of the Planck satellite [52], our universe is composed of
about 68 % of some mysterious dark energy, i.e., the present value ΩΛ = 0.68 in
Eq. (24). Nevertheless, this quantity was again obtained from the ΛCDM cosmo-
logical model which is based on excessive extrapolations [38].

For the luminosity distance of supernovae type Ia explosions, Perlmutter et al.
in [50, p. 566] and Riess et al. in [54, p. 1021] used the following formula which was
taken from [12, p. 511] (see also [35] for its detailed derivation)

dL(z) =
c(1 + z)

H0

√
|Ωk|

sinn

(√
|Ωk|

∫ z

0

dz√
(1 + z)2(1 + ΩMz)− z(2 + z)ΩΛ

)
, (32)

where z is the corresponding redshift, sinn is defined by Eq. (20), ΩM, ΩΛ and Ωk
are values of cosmological parameters Eq. (24) at the present time t0, and

H0 = H(t0) (33)

is the Hubble constant. The distance dL thus essentially depends on the fact whether
Einstein’s equations on cosmological distances sufficiently well approximate reality,
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since the Friedmann equation Eq. (23) is a mathematical consequence of Eq. (15)
for a homogeneous and isotropic universe.

At the end of the 20th century, cosmologists believed that the expansion func-
tion a = a(t) is concave everywhere, i.e., ȧ is a decreasing function of time, since
the expansion of the universe is slowed down by an attractive gravitational force.
In 1998–1999, the Supernova Cosmology Project and the High-z Supernova Search
teams focused on supernovae at large distances corresponding to redshifts of 0.2 to
1. They independently discovered that type Ia supernovae have up to 15 % lower
intensity (see [51], [54]) than they should have if the expansion of the universe were
to be decelerating. But this means that the light of a supernova propagates into a
larger volume than if the universe expansion slowed down only by gravity. To ex-
plain this paradox, it was necessary to introduce, in addition to dark matter, dark
energy that on the contrary accelerates the expansion of the universe. Thus, it was
found that the derivative ȧ = ȧ(t) is increasing (i.e., a is strictly convex) in the
time interval of about the last five billion years, which corresponds approximately
to the redshift 0 ≤ z ≤ 0.5.

The method SNe (see Fig. 4) treats type Ia supernovae as standard candles.
However, they cannot be considered as standard candles due to the possible large
extinction of light from the supernova. This essentially depends on its location
in the host galaxy, if it is at the edge of a galaxy or in the middle completely
surrounded by galactic gas and dust. It also depends on the direction of supernova
rotational axis. In this way we may receive several orders of magnitude weaker
light.

Finally, the main argument against the proposed amount of dark energy is
the 120-order-of-magnitude discrepancy between the measured and theoretically
derived density of vacuum energy (see [2]). From this it is evident that the stan-
dard cosmological model, which is a direct mathematical consequence of Einstein’s
equations Eq. (15), does not approximate reality well.

8. Mercury’s perihelion shift revisited

Classical tests of the theory of general relativity, such as bending of light, Mercury’s
perihelion shift, gravitational redshift, and also Shapiro’s fourth test of general rel-
ativity (see e.g. [28], [44], [59]) are based on verifications of very simple algebraic
formulae (cf. e.g. Eq. (37) below) derived by various simplifications and approx-
imations from the Schwarzschild solution Eq. (10) without any guaranteed error
estimates. Nevertheless, we cannot test the validity of Einstein’s equations Eq. (1)
by means of the Schwarzschild solution. This could be used only to disprove their
validity (more precisely, to disprove their good approximation properties of reality).
Analogously, good approximation properties of the Laplace equation ∆u = 0 can-
not be verified by testing its linear solution u(x1, x2, x3) = x1 +x2 +x3, since there
exist infinitely many equations having the same solution, e.g. ∆u+ ∂nu/∂xn1 = 0
for any integer n ≥ 2. Thus the equation ∆u = 0 should be tested for all its
solutions and not only one solution. Similarly, there exist many other equations
than Eq. (1) having the solution Eq. (10), e.g., Rµν + n(g11 − r/(r − S)) = 0 for
any integer n ≥ 1 due to Eq. (8).
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In the current astrophysical community, it is generally accepted that the addi-
tional relativistic perihelion shift of Mercury is

E = 43′′ per century (34)

and that it is the difference between its observed perihelion shift O caused by other
planets (see Fig. 6) and the one C calculated by Newtonian mechanics with infinite
speed of gravitational interaction, i.e.,

E = O − C. (35)

However, this is an ill-conditioned problem due to the subtraction of two quite
inexact numbers of almost equal magnitude [7]. Moreover, the quantities O and C
are not uniquely defined.

Fig. 6 An idealized uniform perihelion shift of Mercury in the direction of circu-
lation is shown on the left. For clarity, a very high artificial eccentricity e = 0.8 is
chosen. On the right is schematically depicted an irregular perihelion shift caused
by the gravitational tug of other planets.

There are many ways how to obtain C. The analytical solution of the associated
N -body problem is unknown and moreover unstable in the Lyapunov sense. By [46],
the numerically calculated perihelion in the heliocentric system may increase about
24′′ or decrease about 11′′ per year, cf. Fig. 7 and Eq. (34). So it is not clear how
to define the mean value per century. Which 100 years? According to [46, p. 657]
and [48],

O ≈ 575′′ per century and C ≈ 532′′ per century,

but in the literature we can find other values of O and C (see [30]). For instance,
in [8] the position of each planet is established by more than 100 parameters which
are corrected every few years so that they are consistent with the observed positions
of the planets. Thus the value O − C = 43′′ per century is unconvincing.

Note that the full angle has over a million arc seconds, namely,

u = 360 · 3600′′ = 1 296 000′′.

Eq. (34) gives less than one arc second per year. Mercury’s perihelion separation
from the Sun is r = a(1 − e) = 46 · 106 km, where e = 0.2056 is the eccentricity
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Fig. 7 The shift of the line of apsides of Mercury’s orbit during five years only,
calculated numerically from the N -body problem in heliocentric coordinates (adapted
from [53]). The graph resembles deterministic chaos. The scale on the horizontal
axis is given in years, and on the vertical axis the shift angle is in arc seconds.

of its elliptic orbit and a = 57.909 · 106 km the length of its semimajor axis. The
Solar system barycenter shifts by about 1000 km every day (see Fig. 8), whereas
the additional relativistic perihelion shift of Mercury is by Eq. (34) on average only

2πr

u
· 0.43′′ = 96 km per year. (36)

For comparison, the average orbital speed of Mercury is about 50 km/s. However,
the positional data from the Messenger spacecraft were typically taken every 10
minutes during the period 2011–2015, see [48, p. 3]. These values show that Mer-
cury’s perihelion shift problem is extremely difficult to solve, see also [30], [64],
and [65].

Einstein [16, p. 839] presents the following formula for the relativistic perihelion
shift derived by many simplifications and approximations

ε = 24π3 a2

T 2c2(1− e2)
= 5.012 · 10−7 rad (37)
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Fig. 8 The trajectory of the Newtonian center of gravity of the Solar system for
the period 2000–2050. The center of the Sun (whose diameter is almost 1.4 million
km) is at the origin of the heliocentric system. The center of gravity shifts each
day by about 1000 km, while the additional relativistic perihelion shift of Mercury
is by Eq. (36) on average of only 96 km in a year.

for one period T = 7.6005 · 106 s, which yields the idealized value E = 43′′ per
century. Let us emphasize that in [16, p. 832] he did not described the gravitational
field around the Sun by Eqs. (8)–(9), but (in our notation) by the equation

Γκ
µν,κ − ΓλµκΓκ

νλ = 0

and, moreover, the Schwarzschild solution Eq. (10) was not known at that time.
In [17] he claims (without any proof) that these incomplete equations do not change
the proclaimed value Eq. (34). Mercury was replaced by a massless point and the
other planets were not taken into account. On the contrary, the quantities O and
C from Eq. (35) do include the influence of the other planets. Their effects on
the difference O − C do not cancel, because it is a nonlinear problem. Therefore,
formula Eq. (34) is not a mathematical consequence of Einstein’s equations Eq. (1),
since many simplified reasoning and rough approximations were done.

9. Slight violation of the law of conservation
of energy

In general relativity the energy-momentum conservation is true only locally, which
is expressed in the covariant divergence form as

Tµν;ν :=
∂Tµν

∂xν
+ ΓµλνT

λν + ΓνλνT
µλ = 0, (38)
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see e.g. [24, p. 103], [44, p. 146]. However, in [33] we presented 10 independent ob-
servational arguments showing that the Solar system slowly expands. For instance,
the mean recession speed of the Earth from the Sun is about 5 m/yr (see [37]) which
cannot be explained by the loss of solar mass, or the solar wind or tidal forces. This
speed guarantees almost constant influx of solar energy over the past 3.5 Gyr.

The measured recession speed of the Moon from the Earth is 3.84 cm/yr while
tidal forces can explain only one half of this value (see [15]). The corresponding
remainder is by [33, p. 187] equal to 0.67H0, where H0 is the Hubble constant
Eq. (33).

Mars, whose current mean temperature is −63 ◦C, must have been closer to the
Sun (see [29], [42, p. 88]) to have had liquid water on its surface ≈ 3.5 Gyr ago. At
that time the luminosity of the Sun was only 75 % of its present value. Thus the
greenhouse effect on Mars could hardly increase the mean temperature up to 0 ◦C.
For comparison, note that the present greenhouse effect of Earth’s atmosphere is
only 29 ◦C, see [33, p. 174]. These and several other examples indicate that the law
of conservation of energy is slightly violated, since the Solar system is sufficiently
isolated from the gravitational influence of nearby stars. By [37] the expansion
rate of the Solar system is comparable to H0. The Hubble constant is thus an
important parameter in the context of the Anthropic principle [29].

Slight violation of the laws of conservation of energy and of momentum in the
static spacetime can easily explain a wide range of puzzles such as the faint young
Sun paradox, the formation of Neptune and Uranus closer to the Sun, the existence
of rivers on Mars, the paradox of tidal forces of the Moon, the paradox of the large
orbital angular momentum of the Moon and Triton, migration of planets, the slow
rotation of Mercury, the absence of its moons [33], etc.

In [33] we also show that galaxies themselves slightly expand. For instance,
by [6] and [62] galaxies at cosmological distances have on average more stars per unit
volume when compared with the present situation. According to [22], superdense
galaxies were quite common in early universe with redshift z > 1.5, while at present
they are quite rare. Paper [63] also suggests that early galaxies were smaller and
denser just after their formation. By [56] the measured stellar mass density in
galaxies with z ≤ 3 is up to 7.9 times higher than for galaxies in our neighborhood.
The mass density of some galaxies for z > 1 is even comparable with the density
of globular clusters (see [9]).

The above arguments support the conjecture that the law of conservation of
energy in the static spacetime is slightly violated due to the observed slow expansion
of the Solar system and spiral galaxies, and also their clusters. By the theorem
of Emmy Noether the energy of each isolated system is conserved if it possesses
symmetry with respect to time translations. However, such symmetry is not true
for spiraling trajectories.

The angular momentum is also not conserved, see e.g. the recent proceedings
[47] for the galactic angular momentum paradox: How is it possible that spiral
galaxies (originating from small random fluctuations in a hot homogeneous and
isotropic universe) rotate so fast? Their orbital speed v satisfies the Tully-Fisher
relation v4 ∼M , where M is the mass of a spiral galaxy [43].
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10. Scale non-invariance

First, it is necessary to emphasize that no equation of mathematical physics de-
scribes reality absolutely exactly on any scale. The reason is that the laws of
physics are not unchanged under a change of scale, in general. For instance, the
trivial relation for the distance s = vt is scale invariant in the Euclidean space, but
in reality it is not scale invariant, since the velocity v is always less than c. We
cannot apply it on very small scales due to the Heisenberg uncertainty principle
and on very large scales due to the expansion of the universe. Thus also Einstein’s
equations do not trustworthy describe phenomena at atomic level (see also Sec-
tion 3) or an extreme state just after Big Bang when quantum effect played an
important role.

Second, it is evident that gravity works on different scales in different ways.
For instance, planetary systems, globular clusters, spiral galaxies (with 2, 3, or 4
arms), galaxy clusters, and large-scale structures of sheets and filaments consisting
of galaxy superclusters have completely different shapes. All these entities are
governed by gravity, but it is hard to imagine that all of them would be described
only by Eq. (15). For instance, its static solution Eq. (17) is not scale invariant,
since it contains the fixed physical constants Λ, c, and G through relation Eq. (12),
where the scale is given by the Schwarzschild radius S.

Third, in [38] we present other examples showing why excessive extrapolations
of Einstein’s equations to cosmological distances are questionable. These extrapo-
lations indicate that the proclaimed dark matter and dark energy arise mostly due
to modeling errors. When the curvature index k = 1, then the corresponding space
manifold is S3(t). Since it is bounded, the scale invariance cannot hold.

Fourth, the scale non-invariance in time follows from the previous section. The
present state of our universe depends on its history, whereas the first order ordinary
differential Friedmann equation Eq. (21) is reversible in time, i.e., its solution for
t > t0 depends only on the value of the expansion function at the present time t0
and it is independent of its history before t0.

11. Other arguments

The age of the universe was derived from the ΛCDM model up to four significant
digits

t0 = 13.79 Gyr (39)

using the backward integration of the Friedmann equation (26) and the present
value of the Hubble constant H0. Nevertheless, from such a simple equation we
should not make any categorical conclusions about the real age of the universe, since
it was derived from Einstein’s equations by excessive extrapolations to cosmological
scales. For instance, by [13] the oldest known star HD 140283 was formed 14.46±0.8
Gyr ago (cf. Eq. (39)). Bond et al. [5] improved this estimate to 14.46± 0.31 Gyr,
which is in conflict with Eq. (39). The reason is that stars are born by gravitational
collapse of very cold gas (about 10 K) which was not available shortly after the
Big Bang. Moreover, it is very probable that there are older stars in the whole
Universe than HD 140283 from the solar neighborhood.
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In 2016, the Planck Collaboration stated that H0 = 66.93±0.62 km s−1Mpc−1.
This value is based on the standard cosmological model (i.e. Einstein’s equations),
while the Gaia and Hubble Space Telescope measurements of Cepheids and RR
Lyrae yield H0 = 73.52±1.62 km s−1Mpc−1, see [55]. We again get a contradiction
between theory and observations.

In [32] we prove the following theorem showing that Einstein’s equations should
not be applied to galactic or cosmological scales. Consider a fixed nonrotating ball
in vacuum with mass M > 0 and with a spherically symmetric mass distribution.
The Euclidean volume of the spherical shell r0 ≤ r ≤ r1 illustrated in Fig. 2 equals
V = 4

3π(r3
1 − r3

0). By Birkhoff’s theorem [4] the space outside the mass ball is
described by the exterior Schwarzschild metric Eq. (10). Thus, for the static case
the proper (relativistic) volume of the spherical shell is by the Fubini theorem equal
to

Ṽ =

∫ r1

r0

r2

√
r

r − S
dr ·

∫ 2π

0

(∫ π

0

sin θ dθ
)

dϕ = 4π

∫ r1

r0

r2

√
r

r − S
dr.

Theorem 2. Let M > 0 and r0 > S be fixed. Then

Ṽ − V →∞ for r1 →∞.

This theorem can be applied e.g. to an imperceptible pinhead, since the mass
M > 0 can be arbitrarily small which yields quite absurd result.

The right-hand side of Einstein’s equations should contain the speed of gravity
instead of the speed of electromagnetic interaction, even though it seems (see [1])
that these speeds are the same under normal conditions.

Einstein’s equations do not contain delays (in time variables) corresponding to
the finite speed of gravity. This does not allow to treat properly aberration effects.
The actual angle of gravitational aberration has to be necessarily positive, since
the zero aberration angle would contradict causality [33]. In fact, the causality
principle should be prior to the law of conservation of energy.

In the framework of general relativity Steven Carlip in [10] derived that the
gravitational aberration angle of a body with speed v is bounded from above by
the fraction v3/c3, while the angle of light aberration is approximately equal to
v/c. However, he assumed that the laws of energy and momentum conservation
hold exactly. Since electromagnetic and gravitational interaction have probably
the same speed [1], the corresponding aberration angles should have the same size.

It is not known whether close binary systems producing gravitational waves
are really described by Eq. (1) or (15). Einstein [20] used several approximations
that led to a nonhomogeneous partial differential equation with the d’Alembert
operator for a plane gravitational wave far away from its source. Therefore, recent
detections of gravitational waves do not confirm that Einstein’s equations describe
reality well.

Appendices

Appendix A: Calculation of the Christoffel symbols

Let the assumptions (a), (b), (c), and (d) from Section 2 be valid. Entries of the Ricci
tensor (see Eq. (49) below) are defined by means of the Christoffel symbols. In the
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covariant form (i.e. only with lower indices) the Christoffel symbols of the first kind are
defined as follows

Γµνκ =
1

2
(gµν,κ + gκµ,ν − gνκ,µ), µ, ν,κ = 0, 1, 2, 3, (40)

where gµν,κ = ∂gµν/∂x
κ . This is altogether 4 × 4 × 4 = 64 entries. However, since the

metric tensor is symmetric, we get by Eq. (40) the following symmetry in the last two
indices

Γµνκ =
1

2
(gµκ,ν + gνµ,κ − gκν,µ) = Γµκν , (41)

i.e., there are only 4× 10 = 40 independent Christoffel symbols. From Eq. (40) also have
gµν,κ = Γµνκ + Γνµκ .

Under the coordinate transformation ∼: (t, r, ϕ, θ) 7→ (−t, r, ϕ, θ) the metric compo-
nents change as follows

g̃µ0 = −gµ0 for µ 6= 0,

but they should be the same. Therefore,

gµ0 = 0 for µ 6= 0.

Similarly, the coordinate transformations

(t, r, ϕ, θ) 7→ (t, r,−ϕ, θ) and (t, r, ϕ, θ) 7→ (t, r, ϕ,−θ)

yield gµ2 = 0 for µ 6= 2 and gµ3 = 0 for µ 6= 3, respectively. Consequently, from the
symmetry of the metric tensor we get

gµν = 0 for µ 6= ν

and thus the metric tensor is diagonal. The corresponding four diagonal entries are
independent of time coordinate t, because the gravitational field is static.

Since our problem is spherically symmetric, the metric tensor is of the form

gµµ = diag
(
−A(r), B(r), r2 sin2 θ, r2

)
. (42)

We shall look for the unknown functions A = A(r) and B = B(r) which satisfy

A(r)→ 1 and B(r)→ 1 for r →∞, (43)

since the spacetime is asymptotically flat.

For µ = ν we find by (40) that

Γµµκ =
1

2
(gµµ,κ + gκµ,µ − gµκ,µ) =

1

2
gµµ,κ .

From this and Eq. (40) by differentiating with respect to t, r, ϕ, θ we get

Γ001 = −1

2
A′, Γ111 =

1

2
B′, Γ221 = r sin2 θ, Γ223 = r2 sin θ cos θ, Γ331 = r, (44)

where the prime indicates the differentiation along r, and

Γµµκ = 0

276
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for the other cases. Moreover, by Eq. (40) and (42) we obtain

Γ100 = −1

2
g00,1 =

1

2
A′,

Γ122 = −1

2
g22,1 = −r sin2 θ, (45)

Γ133 = −1

2
g33,1 = −r,

Γ322 = −1

2
g22,3 = −r2 sin θ cos θ,

and the other Christoffel symbols are zero.

To get once contravariant and twice covariant Christoffel symbols (i.e. with one upper
and two lower indices) that appear in Eq. (5), we use the following relation (cf. also [44,
p. 340])

Γµνκ = gµλΓλνκ (46)

with summation over λ = 0, 1, 2, 3, where Γλνκ are defined by Eq. (40),

gµµ = diag
(
− 1

A(r)
,

1

B(r)
,

1

r2 sin2 θ
,

1

r2

)
(47)

is the inverse matrix to gµµ for A(r) 6= 0 6= B(r) and 0 < θ < π. Since gµµ is diagonal
and Γµνκ = Γµκν , we get by Eqs. (44), (45), (46), and (47) that

Γ0
01 = g00Γ001 =

A′

2A
,

Γ1
00 = g11Γ100 =

A′

2B
,

Γ1
11 = g11Γ111 =

B′

2B
,

Γ1
22 = g11Γ122 = −r sin2 θ

B
,

Γ1
33 = g11Γ133 = − r

B
, (48)

Γ2
12 = g22Γ221 =

1

r2 sin2 θ
r sin2 θ =

1

r
,

Γ2
23 = g22Γ223 =

1

r2 sin2 θ
r2 sin θ cos θ = cot θ ,

Γ3
13 = g33Γ331 =

1

r2
r =

1

r
,

Γ3
22 = g33Γ322 = − sin θ cos θ ,

and the other Christoffel symbols are zero.

Appendix B: Calculation of the Ricci tensor

First recall the definition of the Ricci tensor from Eq. (9),

Rµν = Rνµ = Γκ
µν,κ − Γκ

µκ,ν + ΓλµνΓκ
λκ − ΓλµκΓκ

νλ . (49)
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From this and Eq. (8) we have

R00 = Γκ
00,κ − Γκ

0κ,0 + Γλ00Γκ
λκ − Γλ0κΓκ

0λ = Γ1
00,1 + Γ1

00Γκ
1κ − 2Γ1

00Γ0
01

=
A′′B −A′B′

2B2
+
A′

2B

( A′
2A

+
B′

2B
+

2

r

)
− 2

A′

2B

A′

2A

=
A′′

2B
− A′

4B

(A′
A

+
B′

B

)
+
A′

rB
= 0. (50)

Similarly, we obtain

R11 = −Γ0
10,1 − Γ2

12,1 − Γ3
13,1 + Γ1

11Γκ
1κ − (Γκ

1κ)2

= −A
′′

2A
+
A′

4A

(A′
A

+
B′

B

)
+
B′

rB
= 0, (51)

R33 = Γ1
33,1 − Γ2

32,3 + Γ1
33(Γ0

01 + Γ1
11 + Γ2

21 + Γ3
31)− 2Γ3

31Γ1
33

= − 1

B
+

1

sin2 θ
− r

2B

(A′
A
− B′

B

)
= 0, (52)

and

R22 = R33 sin2 θ = 0. (53)

Multiplying Eq. (50) by B/A and summing with Eq. (51), we obtain

A′B +AB′ = 0

which means that AB is constant. From boundary conditions Eq. (43) we find that this
constant is

AB = 1.

Substituting B = 1/A into Eq. (52) for θ = π/2 (the plane of symmetry), we obtain
A+ rA′ = 1 which yields

d(rA)

dr
= 1.

By integration we get

rA = r − S,

where the constant S has to be chosen so that Eq. (12) holds (see e.g. [24, p. 121] for
details). Hence,

A(r) =
r − S
r

and B(r) =
r

r − S , (54)

i.e., the relation Eq. (10) is true.

Appendix C: Calculation of the Schwarzschild-de Sitter
metric

The procedure to get the metric tensor satisfying Eq. (17) is similar to the case Λ = 0
investigated above. According to [11, p. 195], an exterior metric associated to a ball with
spherically symmetric mass distribution can be described by the diagonal metric tensor
(cf. Eq. (42))

gµµ = diag
(
−e2α(r), e2β(r), r2 sin2 θ, r2

)
. (55)
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We shall look for the unknown functions α = α(r) and β = β(r) so that Eq. (17) is
satisfied. By to [11, p. 195] the entries of the Ricci tensors are

R00 = e2(α−β)
(
α′′ + (α′)2 − α′β′ + 2α′

r

)
,

R11 = −α′′ − (α′)2 + α′β′ +
2β′

r
, (56)

R33 = e−2β(r(β′ − α′)− 1) + 1,

and we again have R22 = R33 sin2 θ = 0 as in Eq. (53). Multiplying the equation R00 =
Λg00 = −Λe2α by e−2(α−β), we obtain

α′′ + (α′)2 − α′β′ + 2α′

r
= −Λe2β .

Summing this with Eq. (56), we get by Eq. (17) and (55) that

2(α′ + β′)

r
= 0.

This means that α+ β is a constant, which can be chosen zero (see [11, p. 196]). Hence,

α = −β. (57)

Substituting this into the equation R33 = Λg33, we find by Eq. (55) and (56) that

1− Λr2 = e2α(2rα′ + 1) =
∂

∂r

(
e2αr

)
.

Therefore,

re2α = r − Λr3

3
+ C

for some integration constant C, i.e.

e2α = 1− C

r
− Λr2

3
> 0 (58)

keeping in mind the discussion after formula Eq. (19). Requiring that the resulting metric
changes into Eq. (10) for Λ → 0, we see that the constant C should be equal to the
Schwarzschild radius S given by (12). Then by Eqs. (55), (57), and (58) the Schwarzschild
metric with generally nonzero cosmological constant is

gµµ = diag
(
−
(r − S

r
− Λr2

3

)
,
(r − S

r
− Λr2

3

)−1

, r2 sin2 θ, r2
)
. (59)
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[32] KŘÍŽEK M., KŘÍŽEK F. Quantitative properties of the Schwarzschild metric. Publ. Astron.
Soc. Bulg. 2018, 1, pp. 1–10.
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