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Abstract: The accurate estimation of very short-term wind speed is essential for
planning, management, and distribution of wind power produced by any installed
wind turbine at a power plant. This study is based on very short-term wind charac-
teristics and meteorological data measured from the wind farm at Bogdanci, in the
Former Yugoslav Republic of Macedonia (FYROM) in between May-September
2015. Moreover, the study focuses on the comparative analysis of conventional
polynomial based regression analysis and artificial neural network (ANN) meth-
ods for very short-term wind speed prediction at the interval of 10 min using four
types of wind directions, and three atmospheric parameters. Polynomial regression
analysis results in the maximum accuracy (R2 = 0.71) in the prediction of wind
speed rotation mean (WSRM) using the wind direction base mean (WDBM) and
temperature. The ANN method achieves the best efficiency (R2 = 0.97) in the
prediction of WSRM using four types of wind directions and three atmospheric
parameters. The ANN performs better than the conventional regression analysis
in the prediction of each of the target wind speeds.
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1. Introduction

The world demand for electric power is increasing day by day. The use of unsustain-
able resources, like coal, petroleum, and nuclear materials, etc. in electric power
production is costly and one of the factors liable for the climatic and environmen-
tal changes [1, 2]. One of the feasible solutions for clean energy production is to
exploit renewable energy sources, like wind energy [3,4] considerably. The research
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and development in the past few decades in electric power production using the
wind have been summarized in some review studies [5–10]. More specific details
are described in brief about the wind energy assets [5], existing technical knowl-
edge [6], problem-solving processes [7], storage systems [8], strategies [9], and effect
on the environment [10], etc. The prediction of wind speed is vital for the estima-
tion of power production and accordingly in scheduling, storage, and distribution.
The wind speed is affected by several parameters, including wind characteristics
and meteorological factors. Consequently, it is necessary to take account of these
factors in wind speed prediction modeling. According to the duration of measure-
ment (years to seconds), wind speed is estimated on long-term [11–14], medium-
term [15,16], short-term [17–40], and very short-term [41–44] basis by using numer-
ical weather prediction models [17], probabilistic, statistical and evolutionary ap-
proaches [18–21], artificial neural network (ANN) methods [22–28], the combination
of ANN with other methods [28–32], and ANN-based hybrid approaches [33–40],
etc. Long-term wind speed estimation is useful in the planning and further pro-
cess improvement of a wind farm. ANN method is usually used in the long-term
wind speed estimation such as the recurrent neural network [11,12] (mean absolute
error (MSE) = 1.95 and root mean square error (RMSE) = 2.67, respectively),
Gaussian mixture copula model (GMCM)-Gaussian process regression (GPR) ap-
proach (a minimum value of RMSE 0.06 mph compared to other methods), and
ANN method [14] (a minimum mean average error (MAE) = 0.17 − 0.38). The
indexed semi-Markov method has been used in wind speed prediction at long-term,
medium-term, and short-term scales [15]. In another study [16], a hybrid method
based on a combination of support vector regression, seasonal index adjustment,
and Elman recurrent neural network has been developed for the medium-term
wind speed prediction (40-41 % improvement in mean absolute percentage error
(MAPE)).

Short-term wind speed prediction has better control over the scheduling of
power systems compared to long-term and medium-term wind speed predictions.
Numerous research reports are available in the literature based on short-term
[17–40] and very short-term [41–44] wind speed prediction using statistical and
ANN methods [18–40]. ANN methods have been widely used in short-term wind
speed prediction; mainly because of the irregular variation in the short-term mea-
surements can be controlled efficiently [22–40]. A few recent applications of ANN
methods in short-term wind speed prediction are as follows: back-propagation
ANN (MAE = 0.0016 − 0.0399) [22], abductive network (MAE = 0.85) [23], and
feed-forward back-propagation ANN trained with the Levenberg–Marquardt (LM)
algorithm (MAPE 4.55 %) [24]. Moreover, the performance of the ANN method in
short-term wind speed prediction has been evaluated [25–28], as the performance
comparison of back-propagation (RMSE = 1.25), radial basis (RMSE = 1.12),
and adaptive linear element ANN methods in hourly wind speed prediction [25], a
comparative analysis of regression analysis and ANN methods (RMSE = 2.10 m/s)
[26], a comparative study of linear, non-linear and back-propagation ANN methods
(RMSE = 0.2) [27], and a comprehensive performance analysis of auto-regressive
moving average (ARMA), five types of ANN methods and adaptive neuro-fuzzy
inference (ANFIS) model, in which ANN methods have less computation time,
therefore, it is better for the online application, though the ANFIS model performs
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better than some of the ANN methods [28]. The combination of ANN with other
methods also improves the wind speed prediction efficiency [28–33], like the min-
imum value of the normalized absolute average error of ANFIS method [28] and
the minimum value of mean square error (MSE) = 1.85) of fuzzy ARTMAP than
ANN method [29], the minimum value of MAPE = 3 % of the ANFIS model [30],
the improved performance of the combination of Bayesian combination algorithm
and three ANN models [31], and a combination of wavelet transform (WT) and
ANN method (the minimum value of MAPE = 6.97 %)) than the ARIMA, ANN
and persistence methods [32]. In some recent study, several hybrid models by us-
ing ANN methods have been developed [33–40], such as the best performance of
wavelet packet-ANN hybrid model than the wavelet packet-BFGS, wavelet packet-
ARIMA-BFGS, ANFIS, and PM methods [33], a hybrid of mesoscale model and
ANN (ten neurons in the hidden layer, the minimum value of MAE = 1.46) [34], a
hybrid of ANN and empirical mode decomposition (EMD) (the minimum value of
MAE = 1.13) [35], WT, seasonal adjustment method and radial basis function neu-
ral network (RBFNN) based hybrid model (MAPE = 0.23− 0.28) [36], a hybrid of
EMD, mind evolutionary algorithm and ANN, EMD, genetic algorithm and ANN
(MAPE = 66.96 % − 80.32 %) [37], a hybrid of WT, EMD, and Elman neural net-
works (MAPE = 2.21 %) [38], AdaBoost and ANN methods based hybrid methods
(the minimum RMSE = 2.58) [39], and a hybrid of WT, ANN and multi-resolution
analysis (RMSE = 0.76) [40].

The better performance of the ANN method independently, and in combina-
tion, in a hybrid model is obvious from the results of past studies [17–40]. Also,
specific meteorological parameters (air temperature, air pressure, relative humidity,
and rainfall, etc.), and wind characteristics have been used independently or in a
combination of inputs of the ANN method in the short-term prediction of standard
wind speed. Besides, the standard wind speed, there are some other types, like ro-
tation mean, hub mean, tip low mean, and base mean wind speeds to measure in the
wind turbine. The earlier wind speeds affect the generated wind power; therefore,
they should be included in wind power modeling by using some artificial intelli-
gence methods, like ANN. The present study is based on modeling of earlier types
of wind speeds measured at a wind farm. Specifically, the back-propagation ANN
method has been used in wind speeds modeling and its performance is compared
using the polynomial regression analysis method. Furthermore, the combination
of all measured wind characteristics and atmospheric parameters have been used
as the inputs of ANN method and combinations of two of them (one of the wind
characteristics and one atmospheric information) having maximum values of the
coefficient of correlation have been used in the regression analysis for the prediction
of very short-term wind speeds at the interval of 10 min. The monthly data in the
prediction of wind speed have been used. Experimental measurements of a few
days of each of the months have been used in the training of BPNN and measure-
ments of the rest of the day of a similar month have been used in the validation.
The short-term (at the interval of 10 min) prediction of average wind speed can be
used to design a real-time wind speed simulator. Further, the trained model can be
used to develop a real-time wind power system. The online forecast of wind speed
and the wind power at wind part can be obtained in less time using the monthly
trained BPNN model. The instantaneous wind speed prediction is used in error
correction in wind power production and distribution.
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2. Experimental measurements

All the experimental measurements have been accomplished at the wind farm in
Bogdanci, Former Yugoslav Republic of Macedonia (FYROM). The experimental
measurements contain four types of wind speeds, including (a) wind speed rota-
tion mean (WSRM), (b) wind speed hub mean (WSHM), (c) wind speed tip low
mean (WSTLM), and (d) wind speed base mean (WSBM); four types of wind di-
rections, including (a) wind direction rotation mean (WDRM), (b) wind direction
hub mean (WDHM), (c) wind direction tip low mean (WDTLM), and (d) wind
direction base mean (WDBM); and three atmospheric information, including (a)
air temperature, (b) air pressure, and (c) relative humidity. The location of the
wind farm is between the latitude of 41o20′31′′N – 41o12′11′′N, and longitude of
22o57′54′′E – 22o34′32′′E. The Bogdanci area of FYROM has an average wind
spend of about 5.5 mph. The Siemens wind turbines (SWT-2.3-93) have been in-
stalled at the wind park. Each of the wind turbines of capacity 2.3 MW contains
a three-bladed rotor (diameter 93 m) and fiberglass blades. Wind speeds and di-
rections, and meteorological parameters have been measured using wind direction
vanes (NRG 200P), Anemometers (NRG 40, P2546A), temperature sensors (NRG
110S), pressure and humidity sensors installed in different parts of the turbine.
The supervisory control and data acquisition (SCADA) has been used to record
wind characteristics and meteorological parameters. The average value of mea-
sured meteorological information and wind characteristics at the interval of 10 m
for five months (May-September 2015) has been used in further analysis. Fig. 1
demonstrates the variation of four wind speeds measured in June 2015. Further-
more, other statistical measures of wind characteristics and atmospheric factors are
summarized in Tab. I.

 

Fig. 1 The variation of wind speed measured at the interval of 10 min in June
2015.
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Month Measurement Minimum Maximum Mean Standard deviation

M
a
y

2
0
1
5

WSRM [m/s] 0.25 18.62 5.66 4.02
WSHM [m/s] 0.23 50.54 7.82 9.26

WSTLM [m/s] 0.33 16.84 5.06 3.35
WSBM [m/s] 0.23 11.76 3.64 2.41

WDRM [degrees] 2.30 358.95 247.00 87.34
WDHM [degrees] 0.79 359.77 218.30 98.58

WDTLM [degrees] 2.11 359.42 246.50 87.61
WDBM [degrees] 0.63 359.44 245.40 88.11

Air temperature [oC] 10.08 26.57 18.68 3.69
Air pressure [hPa] 959.60 973.26 966.10 3.44

Relative humidity [%] 18.95 89.12 55.48 12.16

J
u

n
e

2
0
1
5

WSRM [m/s] 0.23 20.04 6.00 3.91
WSHM [m/s] 0.09 20.32 6.25 3.96

WSTLM [m/s] 0.23 17.62 5.20 3.21
WSBM [m/s] 0.23 12.10 3.77 2.32

WDRM [degrees] 0.43 359.88 260.57 90.65
WDHM [degrees] 0.17 359.77 257.48 88.36

WDTLM [degrees] 0.27 359.73 261.50 88.50
WDBM [degrees] 0.07 359.76 263.45 85.32

Air temperature [oC] 12.11 31.61 20.03 3.96
Air pressure [hPa] 960.70 975.97 968.96 3.42

Relative humidity [%] 24.96 92.54 55.21 14.89

J
u

ly
2
0
1
5

WSRM [m/s] 0.33 18.02 5.24 3.55
WSHM [m/s] 0.23 18.31 5.52 3.62

WSTLM [m/s] 0.24 16.44 4.68 2.92
WSBM [m/s] 0.23 11.73 3.44 2.11

WDRM [degrees] 0.06 359.85 228.87 93.84
WDHM [degrees] 0.17 359.80 225.50 92.78

WDTLM [degrees] 0.03 359.99 231.11 92.07
WDBM [degrees] 0.32 359.25 233.79 89.43

Air temperature [oC] 16.65 34.88 25.18 4.12
Air pressure [hPa] 960.30 977.45 968.61 4.150

Relative humidity [%] 19.61 90.65 45.56 13.66

A
u

g
u

st
2
0
1
5

WSRM [m/s] 0.23 14.46 4.18 2.52
WSHM [m/s] 0.13 14.61 4.48 2.61

WSTLM [m/s] 0.23 12.43 3.78 2.09
WSBM [m/s] 0.23 9.33 2.80 1.61

WDRM [degrees] 0.21 360.00 220.95 96.15
WDHM [degrees] 0.03 359.93 218.91 94.73

WDTLM [degrees] 0.12 359.92 222.68 93.22
WDBM [degrees] 0.20 359.95 224.93 89.49

Air temperature [oC] 14.64 33.01 24.52 3.85
Air pressure [hPa] 962.50 977.40 969.14 3.21

Relative humidity [%] 15.53 92.10 48.73 16.84

S
ep

te
m

b
er

2
0
1
5

WSRM [m/s] 0.22 18.66 5.48 4.14
WSHM [m/s] 0.08 18.52 5.72 4.12

WSTLM [m/s] 0.23 16.20 4.91 3.48
WSBM [m/s] 0.23 11.84 3.56 2.49

WDRM [degrees] 1.44 359.58 233.49 89.90
WDHM [degrees] 0.08 359.87 228.85 89.21

WDTLM [degrees] 0.81 359.41 234.97 87.56
WDBM [degrees] 0.10 359.97 233.09 86.80

Air temperature [oC] 11.25 33.70 20.43 5.09
Air pressure [hPa] 961.80 974.97 968.84 2.95

Relative humidity [%] 11.56 93.44 62.62 20.82

Tab. I The monthly statistics of wind characteristics and atmospheric parameters
from May–September 2015.
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3. Analysis and results

3.1 Data preprocessing

The wind characteristics and meteorological data have some random missing values
for some days of each of the month, due to instrument failure or operational main-
tenance on the wind turbine. The preprocessing step of data analysis includes the
filtering of missing values of the experimental measurements. Several approaches
for controlling of missing data is available in the literature such as deletion, im-
putation, and maximum likelihood, etc. [45], though, in the present analysis, the
deletion approach was selected to reduce further computation. The measurement
of WSHM, and WDHM have missing values for 15 days in May 2015, while mea-
surement of WSRM, WSTLM, WSBM, WDRM, WDTLM, WDBM, temperature,
pressure, and relative humidity have missing values for seven days, three days, eight
days, and six days in July–September 2015, respectively. All the measurements for
the missing days have been filtered for each of the months and rest were used for
further analysis with the regression and ANN methods. Even by using the conven-
tional deletion methods, sufficient data are available for the wind speed modeling
in each of the months. The month of May has a maximum number of missing data,
rests of the months have missing data for a few days.

3.2 Regression analysis

Correlation values among different wind speeds and their affecting factors have been
computed in order to decide the two best inputs (one from the wind direction and
another from the atmospheric condition) in the regression analysis. In May, August,
and September 2015, WDBM and temperature have the maximum correlation with
different types of wind speeds, hence selected for the regression analysis, while in
June 2015, WDBM and pressure, and in July 2015, WDRM and temperature have
been selected in the prediction of four types of wind speeds due to a maximum value
of the correlation. The polynomial regression analysis using two selected inputs
with different values of the degree has experimented in MATLAB. Polynomials with
two and three degrees result in the best performance in the prediction of different
wind speeds. The complete measurements of each of the months have been used in
the Polynomial regression model fitting. Analysis results are summarized in Tab. II
Four best outcomes of regression analysis in wind speed prediction are shown in
Fig. 2. One wind direction and one atmospheric factor (which have higher values
of correlation coefficient whether positive or negative) have been selected as inputs
in the prediction of wind speed using the regression analysis. For instance, WDBM
and air temperature have maximum values of correlation with the wind speeds
in May 2015, therefore selected as inputs to regression analysis. The obtained
values of the coefficient of determination (R2) are summarized in Tab. II, which
indicates the best estimation result in the prediction of WSRM (R2 = 0.71). The
visual demonstration is shown in Fig. 2(a). Eq. 1 represents the related regression
relation.

WSRM = a+ b×T + c×WDBM + d×T 2 + e×T ×WDBM + f ×WDBM2, (1)
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Fig. 2 Polynomial regression analysis results in the prediction of (a)WSRM using
temperature and WDBM, (b) WSHM using pressure and WDBM, (c) WSTLM
using temperature and WDRM, and (d) WSBM using temperature and WDBM.

where T is air temperature, a = 25.52, b = −2.35, c = 0.02, d = 0.06, e =
−0.002, and f = −0.00008. The lower value of d, e, and f denotes negligible
contribution of the second power in the prediction of the WSRM, hence the first
power of WDBM, and the air temperature has the main contribution. The WDBM
and air pressure have a maximum correlation with the wind speeds in June 2015,
consequently, selected as inputs for regression analysis. The outcomes indicate the
best prediction of the WSRM, and WSHM (R2 = 0.43). Fig. 2(b) represents the
estimation outcomes of the WSHM. The regression expression is represented in
Eq. 2.

WSHM = a + b× P + c× WDBM + d× P × WDBM + e× WDBM2, (2)

where P is air pressure, a = −225.6, b = 0.24, c = 1.74, d = −0.002, and e =
0.0001. The lower value of d and e denotes insignificant influence of the second
power of dependent variable in the prediction of the WSHM. The WDRM and
air temperature have a maximum correlation with the wind speeds in July 2015,
consequently, selected as inputs of regression analysis. The outcomes indicate the
best prediction of WSRM (R2 = 0.47). Though, in order to demonstrate a different
wind speed than the previous case, the estimation outcome of the WSTLM is shown
in Fig. 2(c). The related regression expression is represented in Eq. 3.
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Month Target Inputs R2

May 2015

WSRM

WDBM, Air temperature

0.71
WSHM 0.08

WSTLM 0.67
WSBM 0.63

June 2015

WSRM

WDBM, Air pressure

0.43
WSHM 0.43

WSTLM 0.35
WSBM 0.34

July 2015

WSRM

WDRM, Air temperature

0.47
WSHM 0.46

WSTLM 0.37
WSBM 0.32

August 2015

WSRM

WDBM, Air temperature

0.43
WSHM 0.41

WSTLM 0.32
WSBM 0.32

September 2015

WSRM

WDBM, Air temperature

0.71
WSHM 0.71

WSTLM 0.65
WSBM 0.63

Tab. II The monthly statistics of wind characteristics and atmospheric parameters
from May-September 2015.

WSTLM = a + b× T + c× WDRM + d× T × WDRM + e× WDRM2 +

+f × T × WDRM2 + g × WDRM3, (3)

where a = −1.19, b = 0.17, c = −0.007, d = −0.0015, e = 0.0004, f = 7.42 ×
10−7, and g = −7.43 × 10−7. The lower value of c, d, e, f , and g means minor
influence of the second and third power of dependent variable in the prediction
of the WSTLM. The WDRM and air temperature have a maximum correlation
with the wind speeds in August and September 2015, consequently, selected as
inputs to regression analysis. The outcomes indicate the best prediction of WSHM
(R2 = 0.47) in August and WSRM and WSHM (R2 = 0.71) in September 2015.
Fig. 2(d) represents the estimation outcomes of the WSBM in September. Eq. 4
represents the related mathematical expression.

WSBM = a + b× T + c× WDBM + d× T × WDBM + e× WDBM2 +

+f × T × WDBM2 + g × WDBM3, (4)

where a = 4.72, b = −0.27, c = −0.0085, d = −0.0046, e = −0.00033, f =
−1.49 × 10−5, and g = 1.31 × 10−6. The lower value of c, d, e, f , and g means
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the negligible effect of the second and third power of dependent variable in the
prediction of the WSRM. Thus, the best performance of regression analysis was
achieved for the prediction of WSRM in the month of May and September 2015
using WDBM, and air temperature, while using the same inputs in the month
of May for the prediction of WSHM has a minimum value of the coefficient of
determination.

3.3 Artificial neural network analysis

Four types of wind speeds have a high correlation; therefore, each of them was
predicted using the ANN method. The feed-forward back-propagation neural net-
work (BPNN) has been implemented in MATLAB for the wind speed prediction.
The Schematic representation of the BPNN is shown in Fig. 3. The mathematical
details of BPNN method can be seen in Ref. [46,47]. The BPNN has seven neurons
in the input layer, one neuron in the output layer, while the number of neurons
in the hidden layer has been optimized to obtain the maximum value of the co-
efficient of determination (R2). The maximum value of R2 has been obtained for
the fifty neurons in the hidden layer. Due to the fast convergence characteristics,
the Levenberg-Marquardt method was used in the training of BPNN method. The
70 % of total measurements have been used in the training of BPNN, while the
rest 30 % have been used in validation and test (15 % for each), randomly for each
of the months, e.g. in May 2015, out of total 2367 measurements, 1657, 355, and
355 measurements have been used in training, validation, and test, respectively.
Though due to a different number of missing measurements for each of the month
size of training, validation, and test subsets vary.

The four types of measured wind speeds have been predicted using the four
wind directions and three atmospheric factors as inputs of BPNN. Therefore, a
total of 20 simulations have been designed in the prediction of four target wind
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Fig. 3 The schematic representation of feed-forward back-propagation neural net-
work. (BPNN) used in the analysis.
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speeds of five months. A tenfold cross-validation method has been implemented in
order to reduce the over fitting of the BPNN model. Tab. III summarizes BPNN
analysis results. The visual representation of the best BPNN prediction results is
shown in Fig. 4, Fig. 5, Fig. 6, and Fig. 7.

Month Target
Coefficient of determination (R2)

Training data Test data Validation data R2

May 2015

WSRM 0.98 0.95 0.95 0.97
WSHM 0.82 0.63 0.72 0.78
WSTLM 0.97 0.95 0.94 0.96
WSBM 0.95 0.94 0.94 0.94

June 2015

WSRM 0.90 0.82 0.8 0.87
WSHM 0.87 0.79 0.84 0.85
WSTLM 0.87 0.80 0.79 0.85
WSBM 0.85 0.83 0.79 0.84

July 2015

WSRM 0.92 0.88 0.88 0.91
WSHM 0.91 0.91 0.89 0.91
WSTLM 0.92 0.89 0.91 0.91
WSBM 0.87 0.86 0.85 0.87

August 2015

WSRM 0.86 0.81 0.83 0.85
WSHM 0.86 0.82 0.79 0.84
WSTLM 0.85 0.83 0.81 0.84
WSBM 0.89 0.82 0.82 0.87

September 2015

WSRM 0.98 0.96 0.97 0.97
WSHM 0.96 0.94 0.95 0.95
WSTLM 0.96 0.93 0.95 0.95
WSBM 0.96 0.93 0.94 0.95

Tab. III A summary of BPNN analysis results. Input: WDRM, WDHM,
WDTLM, WDBM, Air temperature, Air pressure, Relative humidity.

4. Discussion

The variation of four wind speeds Fig. 1 and their quantitative characteristics in
Tab. I represent the maximum significance of WSHM and the minimum worth of
WSBM in wind power production (since the wind power is proportional to the
cube power of wind speed). Though, the maximum value of standard deviation for
WSHM and the minimum value for WSBM signifies the maximum dispersion and
noise for earlier wind speed. Comparing the measurement of four wind directions,
WDBM has a minimum value of dispersion while WDRM has a maximum value
of dispersion. Among three atmospheric factors, air pressure has a minimum value
of variance while the relative humidity has a maximum value of variance. The
correlation coefficient values for five months of measurements denote the degree
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Fig. 4 The BPNN analysis results in the prediction of WSRM using four wind
directions and three atmospheric factors as inputs in May 2015.
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Fig. 5 The BPNN analysis results in the prediction of WSHM using four wind
directions and three atmospheric factors as inputs in June 2015.
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Fig. 6 The BPNN analysis results in the prediction of WSHTM using four wind directions and 
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Fig. 6 The BPNN analysis results in the prediction of WSHTM using four wind
directions and three atmospheric factors as inputs in July 2015.
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Fig. 1 The BPNN analysis results in the prediction of WSBM using four wind directions and 
three atmospheric factors as inputs in September 2015. 
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Fig. 7 The BPNN analysis results in the prediction of WSBM using four wind
directions and three atmospheric factors as inputs in September 2015.
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of linear association of different wind speeds and affecting factors, including four
wind directions, and three atmospheric factors. Each of the wind speed exhibits
a high correlation except WSHM in May 2015. The high correlation values were
observed among the wind directions. The wind directions have an average value of
correlation with wind speeds.

The atmospheric factors have low values of correlation with wind speeds and
wind directions. Especially, the temperature has negative correlation with wind
speeds for each month of measurements which signify low wind speed at high tem-
perature. From the quantitative results of wind speed prediction using BPNN
analysis of the measurements in May-September 2015 in Tab. III, it is apparent
that the best performance has been achieved in the estimation of WSRM using
all the four wind directions and three atmospheric parameters (R2 = 0.97), while
the minimum prediction efficiency (R2 = 0.78)was achieved for the prediction of
WSHM in May 2015. The visual representation of BPNN outcomes in the predic-
tion of WSHM for May 2015 is shown in Fig. 4 which shows the best performance
of BPNN with training, test, validation, and complete data sets (R2 = 0.95−0.98).
Fig. 5 represents BPNN analysis outcomes for the prediction of WSHM in June
2015 (R2 = 0.79− 0.87). The predicted outcomes of WSTLM in July using BPNN
are shown in Fig. 6 (R2 = 0.89−0.92). Fig. 7 exhibits predicted outcome of WSBM
using BPNN(R2 = 0.93 − 0.96) in September. Consequently, the visual represen-
tation in Fig. 4, Fig. 5, Fig. 6, and Fig. 7 of BPNN analysis outcomes for different
wind speed prediction and quantitative analysis outcomes in Tab. III demonstrates
the superior performance of the BPNN over the regression analysis. Also, combin-
ing numerous affecting factors of wind speed modeling with BPNN is simpler and
effective than the regression analysis. This is the first kind of study based on the
modeling of wind turbine data of FYROM. Consequently, the direct assessment of
present results from the previous studies is not feasible. Though some related stud-
ies in wind speed prediction are as follows: in [26], improved performance of ANN
method compared to regression analysis in terms of RMSE is presented by using
only wind direction, in a similar study [27], the maximum value of coefficient of
determination was achieved by using the BPNN method and selecting the best set
of parameters from air temperature, air pressure, relative humidity, and rainfall by
using the regression analysis, while in the present study, the maximum value was
achieved by including wind directions in the set of input parameters. The present
study is based on the modeling of local wind turbine data, though it addresses a
novel way of modeling wind speeds by including several types of wind directions
and significant atmospheric factor in a single BPNN method which results in a
satisfactory performance (R2 = 0.98). Besides, different kinds of short-term wind
speed have been predicted successfully.

5. Conclusion

In the present study, different types of wind speeds, wind directions, and atmo-
spheric data, have been measured at the Bogdanci Power Plant in the FYROM for
the period of May-September 2015. The average wind speeds have been predicted
for each month of measurement at the interval of 10 min using regression analy-
sis, and BPNN methods. The BPNN method performs better than the regression
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analysis for each type of wind speeds and each month of measurements. The best
performance of BPNN has been achieved for the prediction of the WSRM.
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[12] CARTA J.A., VELÁZQUEZ S. A new probabilistic method to estimate the long-term wind
speed characteristics at a potential wind energy conversion site. Energy. 2011, 36, pp. 2671–
2685, doi: 10.1016/j.energy.2011.02.008.

[13] YU J., KUILIN C., JUNICHI M., MUDASSIR M.R. A Gaussian mixture copula model based
localized Gaussian process regression approach for long-term wind speed prediction. Energy.
2013, 61, pp. 673–686, doi: 10.1016/j.energy.2013.09.01.

[14] AZAD H.B., MEKHILEF S., GANAPATHY V.G. Long-term wind speed forecasting and
general pattern recognition using neural networks. IEEE Trans. Sustain. Energy. 2014, 5,
pp. 546–553, doi: 10.1109/TSTE.2014.2300150.

[15] D’AMICO G., PETRONI F., PRATTICO F. Wind speed and energy forecasting at different
time scales: a nonparametric approach. Physica A: Statistical Mechanics and its Applica-
tions. 2014, 406, pp. 59–66, doi: 10.1016/j.physa.2014.03.034.

[16] WANG J., QIN S., ZHOU Q., JIANG H. Medium-term wind speeds forecasting utilizing
hybrid models for three different sites in Xinjiang, China. Renew. Energ. 2015, 76, pp. 91–
101, doi: 10.1016/j.renene.2014.11.011.

[17] CASSOLA F, BURLANDO M. Wind speed and wind energy forecast through Kalman fil-
tering of numerical weather prediction model output. Applied Energy. 2012, 99, pp. 154–166,
doi: 10.1016/j.apenergy.2012.03.054.

298

http://dx.doi.org/10.1086/261170
http://dx.doi.org/10.1126/science.285.5428.687
http://dx.doi.org/10.1126/science.285.5428.687
http://dx.doi.org/10.1016/S0960-1481(98){00298-5}
http://dx.doi.org/10.1016/S1364-0321(00)00004-6
http://dx.doi.org/10.1016/j.rser.2012.12.028
http://dx.doi.org/10.1016/j.rser.2012.12.028
http://dx.doi.org/10.1109/PEMWA.2009.5208325
http://dx.doi.org/10.1109/PEMWA.2009.5208325
http://dx.doi.org/10.1016/j.rser.2010.03.007
http://dx.doi.org/10.1016/j.rser.2011.09.024
http://dx.doi.org/10.1016/j.neucom.2005.02.003
http://dx.doi.org/10.1016/j.neucom.2005.02.003
http://dx.doi.org/10.1016/j.energy.2011.02.008
http://dx.doi.org/10.1016/j.energy.2013.09.01
http://dx.doi.org/10.1109/TSTE.2014.2300150
http://dx.doi.org/10.1016/j.physa.2014.03.034
http://dx.doi.org/10.1016/j.renene.2014.11.011
http://dx.doi.org/10.1016/j.apenergy.2012.03.054


Jha S.K., Bilalovikj J.: A comparative approach of neural network and. . .

[18] RIAHY G.H., ABEDI M. Short term wind speed forecasting for wind turbine applications
using linear prediction method. Renew. Energ. 2008, 33, pp. 35–41, doi: 10.1016/j.renene.
2007.01.014.
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