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Abstract: The paper presents the new approach to wave composition rules for
advanced modeling of soft systems in quantum system theory. Firstly, the inter-
pretation of phase parameters is given. The phase parameters are essential to spec-
ify the mathematical operations assigned to different relations among subsystems,
e.g. co-operation, connection, co-existence, competition. Using wave composition
rules, we are able to create more complex and sophisticated quantum circuits. We
present the application of methodology on three illustrative examples.
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1. Introduction

Quantum system theory [1,13] describes the environmental properties as the phase
space of interconnected events. The entanglement of quantum states leads to space-
time synergies between particular events, which can be considered as a form of
ordering [14]. Knowing ‘something’ means knowing what ‘something’ transcends
– this feature is modeled using phase parameters. Naturally, everything is a part
of its inherent environment and nothing can be larger than its own environment.
Monitoring of unrealized possibilities and opportunities in our environment is ex-
ploring its major part. What has not happened is a necessary complement to what
has happened, and it is important to realize that it is sometimes more important
than what has happened.

The inspiration of how to understand environment modeling together with its
composition rules came from the reflection theory of waves of a long power line and
telegraph line [12]. We can recognize the non-end termination (infinite resistance),
short-circuit termination (zero resistance) or termination with given impedance.
Physics explains that non-end termination yields into wave reflection with an op-
posite phase (a reflected wave is shifted through 180 degrees). After interference, it
causes standing waves. Short-circuit termination causes a reflection with the same
phase (no phase shift of reflected wave). If any impedance terminates a power line,
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the reflected wave depends on the impedance’s characteristics and the interference
with the original wave can be computed using the theory of electrical circuits [8].

Section 2 presents the author’s approach to the interpretation of wave proba-
bilistic functions. Section 3 extends such approach to different system’s structures
and describes the wave composition rules for different operations with probabilis-
tic wave functions. This methodology is appropriate for modeling of soft systems.
Section 4 presents the symmetric interactions of co-operating or competing sub-
systems. In Section 5, this approach is applied to model interaction between a
subsystem and its environment. Illustrative examples of possible applications are
given in Section 6. Section 7 concludes the paper.

2. Interpretation of wave probabilistic functions

Let us define the set of N basic subsystems with wave representations [1]:

ψSi
= MSi

· ej·ϕSi i ∈ {1, 2, . . . , N} . (1)

Modulus MSi =
√
pSi represents the square of probability pSi (the dominance

or strength of the subsystem Si) and ϕSi
is the phase parameter (the ability to

co-operate or being incorporated into the system as a whole).

2.1 Phase parameters in quantum subsystems

For the sake of simplicity, we suppose constant modules Mi,k and a phase dynamics
of components νi,k in the following way:

ψSi
(t) =

N∑
k=1

Mi,k · ej·νi,k·t. (2)

In signal processing, ν- components represent harmonic frequencies obtained by
Fourier transform [2]. In quantum system theory, we can interpret νi,k as the
“data flow rate” of i-th subsystem in [bits/s]. In the case νi,k is higher, the k-th
component of i-th subsystem is able to exchange more data per second with its
environment.

Assume further that we can distinguish between positive and negative data
flow rates ν that means a clockwise or anticlockwise rotation in phase space. Let
us agree an assumption within this theory that positive values mean ordering.
In contrast, negative values represent disordering (chaotisation). Connecting the
same value of order and disorder yields to zero phase. If the data flow rate is
zero the subsystem interacts only randomly without any sophisticated structure
of dependencies. Maximal value of data flow rate νmax specifies a threshold of
communication possibilities of the subsystem.

2.2 Phase parameters in quantum circuits

Quantum circuit is characterized by a wave information flow Φ and a wave infor-
mation content I introduced in [10] as wave probabilistic functions. For simplicity,

56



Sv́ıtek M.: Wave composition rules in quantum system theory

we use only simple phase dynamics of data flow rates νΦ and νI :

ψΦ (t) = |ψΦ (t)| · ej·(νΦ·t+ϕΦ), ψI (t) = |ψI (t)| · ej·(νI ·t+ϕI). (3)

Phases ϕφ and ϕI represent static interactions (organization of experiment) and νΦ

and νI dynamic data exchange among circuits components. For quantum system
modeling, the phase difference between Φ and I is important to compute an active
and a reactive information power [3].

2.3 Phase parameters in quantum physics

For physical interpretation of phase parameters, we get the inspiration in a holo-
graphic approach described in [4,5]. Suppose the real observation relief (an objec-
tive reality) is specified as:

s (x) = A+B · cos (ωx · x) . (4)

Value A is a constant signal and B is the amplitude of cosine changes in x-axis
with frequency ωx. Now, suppose the observer uses a cosine time signal cos (ωt · t)
with wavelength λt. If the observer is located directly at a point x, it watches the
complex signal where the objective reality is modulated on light waves:

ψ (x, t) = [A+B · cos (ωx · x)] · ej·ωt·t. (5)

In a case the observer is watching the scene from a distance z, we must take into
account the diffraction rules. The image of reality seen from a distance z (observed
signal) can be calculated using the Fresnel-Kirchhoff diffraction integral [6]. For
our simplified relief (4), the observer watches:

ψz (x, t) = A · ej·ωt·t + 1
2 ·B ·

(
ej·(ωt·t+ωx·x+Φz) + ej·(ωt·t−ωx·x+Φz)

)
. (6)

The new phase parameter can be computed from the geometry [7]:

Φz = 1
2·π · ω

2
x · λt · z. (7)

In a real observation process, the phase parameters are not available to us. We
can measure only the probability or energy spectrum:

Pz = ψz (x, t) · ψ∗
z (x, t) = A2 + 2 ·A ·B · cos (Φz) · cos (ωx · x) +

+ 1
2 ·B

2 · cos (2 · ωx · x) + 1
2 ·B

2.
(8)

By omitting the distortion components (e.g. higher frequencies), we can extract
useful information from the reality observed:

Pz ≈ A2 + 2 ·A ·B · cos (Φz) · cos (ωx · x) . (9)

From the above equation it is evident how the phase parameter Φz can bias
an observation process. For better clarification, we can rewrite equation (6) in a
“bracket” notation [8]:

ψz (x, t) ∝ A · |1〉+B · ej·Φz |cos(ωx · x)〉 . (10)
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Intersection operation represents the coexistence of constant and cosine signals
together.

The phase parameter Φz in our approach defines the quality of the observation
process, how the image of reality is distorted due to imperfect observations. Wave
nature disappears if the phase is zero. It can occur if the observer is located
directly at the place of measurement (z ≈ 0), or if the measurement is done with
infinite resolution (λt ≈ 0). Unfortunately, the measurements in quantum physics
are limited by Planck distance and wavelength of light [11] so the phase cannot be
zero.

3. Wave composition rules

3.1 Connected subsystems

Let us introduce two dynamical subsystems described by wave probabilistic func-
tions:

ψS1
(t) = MS1

· ej·ν1·t, ψS2
(t) = MS2

· ej·ν2·t. (11)

The connection means that both subsystems are firmly connected in one system
and together order the near environment. This situation is common in quantum
physics and it is generally represented by the Kronecker operation [9] for vectors
transformed into multiplication. We can thus provide the following operation for
connected quantum subsystems:

ψS1,2
(t) = ψS1

(t) · ψS2
(t) = MS1

·MS2
· ej·(ν1+ν2)·t. (12)

For this case, phase parameters ν1 , ν2 are added. In analogy with a power line, it
is a short-cut connection with zero resistance.

3.2 Co-operated subsystems

The co-operation in quantum system theory means that both subsystems are en-
capsulated inside a superior system without firm connection. In other words, they
are connected with infinite resistance (for a power line, it is the same as a non-end
connection).

We suppose both subsystems can exchange data. Imagine that the subsystem
S1 is an active one and sends its request to a passive subsystem S2. Subsystem S2

replies with an opposite phase function – it actually replies the environment of S2,
which has an opposite phase. From the point of view of S1 the received data is a
colored reflection of subsystem S2. Wave representation of such operation can be
written:

ψS1,2
(t) = ψS1

(t) · ψ∗
S2

(t) = MS1
·MS2

· ej·(ν1−ν2)·t. (13)

The co-operated rules for S1 yields into the phases ν1, ν2 subtraction. If the activity
comes from subsystem S2 we can speak about co-operated rules for S2 with final
phase (ν2 − ν1).
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3.3 Co-existed subsystems

Co-existence in quantum system theory represents the separate existence of both
subsystems S1 and S2 in one environment. The co-existence is expressed by sum
of wave functions:

ψS1,2
(t) = ψS1

(t) + ψS2
(t) = MS1

· ej·ν1·t +MS2
· ej·ν2·t. (14)

A union of wave functions describes how we can work with the subsystems S1 and
S2 separately, or with both of them at the same time.

4. Symmetric interactions

4.1 Symmetrically co-operative subsystems

We expect that each subsystem is able both to send and receive data from the
second one. If the first subsystem S1 starts the data transfer and the second S2

replies we can apply the rule of co-operated subsystems:

ψS,1 (t) = ψS1
(t) · ψ∗

S2
(t) = MS1

·MS2
· ej·(ν1−ν2)·t. (15)

Conversely, if the second subsystem S2 initiates communication and the first sub-
system S1 sends its reply we have wave function:

ψS,2 (t) = ψS2
(t) · ψ∗

S1
(t) = MS1

·MS2
· e−j·(ν1−ν2)·t. (16)

Because both variants are equal (symmetric interaction), we can express the final
waveform as a co-existence of both variants:

ψS (t) = ψS1
(t) ·ψ∗

S2
(t) +ψ∗

S1
(t) ·ψS2

(t) = 2 ·MS1
·MS2

· cos ((ν2 − ν1) · t) . (17)

In quantum physics, we speak about indistinguishable subsystems because both
have the same option to communicate. The result can be interpreted as a periodical
exchange of a common probability/energy valueMS1 ·MS2 between both subsystems
S1 and S2. This principle is called in quantum physics an exchange of a virtual
particle.

4.2 Symmetrically competing subsystems

Sometimes, there is only one state for only one subsystem. If two subsystems start
their competition, only one of them can be the winner (winner takes all). This
situation can modify the rule for wave probabilistic function in the following way:

ψS (t) = ψS1
(t) · ψ∗

S2
(t)− ψ∗

S1
(t) · ψS2

(t) . (18)

In quantum physics, it yields to the well-known Pauli Exclusion Principle.

59



Neural Network World 1/2020, 55–64

5. Interactions with an environment

In this session, we suppose that only one subsystem S1 exists within the environ-
ment SE . If the environment is closed (not connected to other systems) then the
energy (probability) conversation law must be fulfilled – the energy (probability)
of subsystem S1 must be equal to M2

S1
. It means that environment SE must have

an opposite phase (a mirror image of the subsystem S1):

ψSE
(t) = MS1 · e−j·ν1·t. (19)

Because the environment SE is connected with subsystem S1 we can write the final
wave probabilistic operation between the subsystem S1 and its environment SE as:

ψS,E = ψS1
(t) · ψSE

(t) = M2
S1
. (20)

We can imagine that subsystem S1 organizes itself (positive phase) at the expense
of its surroundings SE , which it chaotizes (negative phase).

For more complicated connections among subsystems, the environment copies
these structures to guarantee that the whole energy (probability) is conserved. All
complicated links eventually lead to the resulting wave function, which has its
amplitude and phase to which the environment reacts.

6. Illustrative examples

6.1 Wave composition rules

Let us define three subsystems S1, S2, S3 with their wave probabilistic functions
given by:

ψS1
= α0 |0〉1 + α1 |1〉1 , (21)

ψS2 = β0 |0〉2 + β1 |1〉2 + β2 |2〉2 , (22)

ψS3 = γ0 |0〉3 + γ1 |1〉3 . (23)

Symbol |k〉i means the state k falling on the subsystem Si.

We suppose that S1 and S2 are firmly connected in S1,2 that is represented by
wave function:

ψS1,2 = α0 · β0 |00〉1,2 + α0 · β1 |01〉1,2 + α0 · β2 |02〉1,2 +

+α1 · β0 |10〉1,2 + α1 · β1 |11〉1,2 + α1 · β2 |12〉1,2 .
(24)

Both of them co-exist with subsystem S3 in a common environment. This
situation can be formulated:

ψS1,2,3
= α0 · β0 |00〉1,2 + α0 · β1 |01〉1,2 + α0 · β2 |02〉1,2 +

+α1 · β0 |10〉1,2 + α1 · β1 |11〉1,2 + α1 · β2 |12〉1,2 + γ0 |0〉3 + γ1 |1〉3 .
(25)
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After interacting with the environment, we obtain the following energies (proba-
bilities) assigned to all possible variants of the final outputs:

P1,2,3 = ψS1,2,3
· ψ∗

S1,2,3
= p00 |00〉1,2 + p01 |01〉1,2 + p02 |02〉1,2 + p10 |10〉1,2 +

+p11 |11〉1,2 + p12 |12〉1,2 + p000 |000〉1,2,3 + p010 |010〉1,2,3 + p020 |020〉1,2,3 +

+p100 |100〉1,2,3 + p110 |110〉1,2,3 + p120 |120〉1,2,3 + p001 |001〉1,2,3 + p011 |011〉1,2,3
+p021 |021〉1,2,3 + p101 |101〉1,2,3 + p111 |111〉1,2,3 + p121 |121〉1,2,3 .

(26)
For the above computing we used logical operations [14]:

α0 · β0 · |00〉1,2 · α
∗
0 · β∗

1 · |01〉1,2 = 1
2 · α0 · β0 · α∗

0 · β∗
1 ·
(
|00〉1,2 + |01〉1,2

)
, (27)

α0 · β0 · |00〉1,2 · γ
∗
0 · |0〉3 = α0 · β0 · γ∗0 · |000〉1,2,3 . (28)

By using an intersection or a union operation, we can compute different prob-
abilities, for example:

• |00〉1,2 OR |000〉1,2,3 is p00 + p000

•
(
|00〉1,2 OR |000〉1,2,3

)
AND |10〉1,2 is (p00 + p000) · p10

The above example shows how we can compute the final energy (probability) for
specified structures of the system [10] with different links (connection, co-operation,
co-existence) among the components / subsystems.

6.2 Real and observed reality

Let us introduce two extended descriptions of dynamical subsystems (11):

ψS1,Ok
(t) = MS1

· ej·(ν1·t+Φ1,Ok), ψS2,Ok
(t) = MS2

· ej·(ν2·t+Φ2,Ok). (29)

Added phase parameters Φ1,Ok
and Φ2,Ok

represent the phase shifts. In other
words, they explain how k-observer perceives the first and the second subsystem
from its subjective point of view. If these phases are zeros we can speak about the
real reality (without any observation error).

For M observers we have at disposal M images of observed reality assigned
to each observation process. This situation represents a relativity of a perceived
reality. The question in this example is how to approximate the real reality in
the best way? We can apply a democratic principle and use the average of all
observations:

ψ̄S1 (t) = MS1 · ej·ν1·t · 1
M ·

M∑
k=1

ej·Φ1,Ok = M̄S1 · ej·(ν1·t+Φ̄1), (30)

ψ̄S2
(t) = MS2

· ej·ν2·t · 1
M ·

M∑
k=1

ej·Φ2,Ok = M̄S2
· ej·(ν2·t+Φ̄2), (31)

The final values M̄S1
, Φ̄1, M̄S2

, Φ̄2 can be taken as the best approximation of the
reality.
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It is evident that the illustrative example can be extended into systems with
more components (subsystems) and more sophisticated dynamical links among
them (connection, co-existence, co-operation, competition, etc.). We can model
through the presented methodology also the time varying observations, taking into
account both learning and forgetting processes.

6.3 Different relationships among subsystems

We can generalize the previous example and extend it to a set of N different
subsystems with their own relations to other subsystems. For the sake of simplicity,
we assume that modulus Msi assigned to i-th subsystem is the same for all links.
Wave function of multi-links i-th subsystem can be given in matrix form:

ψSi
= MSi

·


ej·Φi,1

ej·Φi,2

.
ej·Φi,N

 . (32)

The phase Φi,k is parameter explaining how i-th subsystem perceives the k-th
one. Phase Φi,i describes how i-th subsystem sees itself in relation with common
reference. Co-existence of N subsystems in an environment can be written by wave
function:

ψS = MS1 ·


ej·Φ1,1

ej·Φ1,2

.
ej·Φ1,N

·|S1〉+MS2 ·


ej·Φ2,1

ej·Φ2,2

.
ej·Φ2,N

·|S2〉+· · ·+MSN
·


ej·ΦN,1

ej·ΦN,2

.
ej·ΦN,N

·|SN 〉 .
(33)

By the use of matrix representation, we can provide all manipulations (union,
intersection, etc.) in more dimensional space. It is visible that each phase param-
eter Φi,k carry useful information. These phase parameters could be time varying
and information can be modulated on these carriers.

7. Conclusion

The inspiration of this paper originated in the reflection theory on a long power
and telegraph line [12]. This approach was modified for phase parameters used
in quantum system theory [1]. With respect to the physics/information analogies
[13], different kinds of terminations have been replaced by characteristics of linked
subsystems and by characteristics of the environment.

Wave function with opposite phase is a supplement of the subsystem. Con-
nection of the subsystems with its environment leads to a zero phase that means
a fully probabilistic nature – pure energy without any sophisticated organization.
The main goal of an arranging process is to transform a pure energy (zero phase)
into a more sophisticated one at the expense of the energy of environment. If we
organize our environment, we can obtain from the energy difference between dis-
orderliness and order the energy source of life. It is clear that living organisms
communicate with their environment to benefit from it [15].
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For practical use of the quantum system theory [1], it was necessary to develop
the wave composition rules, how the different links among subsystems could be
modeled. We identified the different relations among subsystems like connection,
co-existence, co-operation, symmetric co-operation and symmetric competition.

Finally, we presented three examples to illustrate the practical applicability
of our approach. The first example shows the composition rules of three discrete
quantum subsystems. Common connection and co-existence of the subsystems were
analyzed and the wave composition rules were applied to compute final probabili-
ties. The second example simulates a set of many observers with different point of
views on real reality modeled by shifted phase parameters. Quantum system the-
ory can provide us with approximate best result through a well-known democratic
approach. This view is naturally characterized by both modulus and phase of wave
probabilistic function. What we call the truth is often the result of some social
agreement or even a consensus approximated by the average of different subjective
wave functions. The third example extends this approach to different relation-
ships to other subsystems that reflects its own perception of each subsystem. It is
possible to model reality while respecting the views of all subsystems.

There is a view that a world is composed of miniature, quantum, in some ways
illusory worlds. We create our world by how we think, what we focus on and how we
behave and act. The own worlds of the various observers (wave functions) interact
with each other and create a common information field that then represents the
complex knowledge through which our world is conveyed to us.
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