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Abstract: The identification and classification is important parts of the research
in the field like underwater acoustic signal processing. Recently, deep learning tech-
nology has been utilized to achieve good performance in the underwater acoustic
signal case. On the other side, there are still some problems should be solved.
The first one is that it cannot achieve high accuracy by the dataset that is trans-
formed into audio spectrum. The second one is that the accuracy of classification
on the dataset is still low, so that, it cannot satisfy the real demand. To solve
those problems, we firstly evaluated four popular spectrums (Audio Spectrum, Im-
age Histogram, Demon and LOFAR) for data preprocessing and selected the best
one that is suitable for the neural networks (LeNet, ALEXNET, VGG16). Then,
among these methods, we modified a neural network(LeNet) to fit the dataset
that is transformed by the spectrum to improve the classification accuracy. The
experimental result shows that the accuracy of our method can achieve 97.22 %,
which is higher than existing methods and it met the expected target of practical
application.
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1. Introduction

The ocean covers 71 % of the entire Earth’s surface and is an essential part of the
Earth’s life supporting system. It contains huge underwater natural treasure like
rich mineral and biological resources. Underwater target detection requires the
use of appropriate underwater imaging techniques. Currently, underwater imaging
technology mainly includes optical imaging and sonar imaging [1]. Sonar image
has the advantages of representing long distance of action as it has strong pene-
trating ability, and is especially suitable for mixed waters. Therefore, it has been
widely used in underwater address geomorphology survey, underwater-lost object
searching, mine detection, dam foundation detection and other fields [2].

∗Hao Wu, Qingzeng Song, Guanghao Jin – Corresponding author; School of Computer Sci-
ence and Technology, Tiangong University, Tianjin, China, E-mail: moyingyao@foxmail.com,
qingzengsong@tiangong.edu.cn, jingh\protect_research@163.com

c©CTU FTS 2020 85

mailto:moyingyao@foxmail.com
mailto:qingzengsong@tiangong.edu.cn
mailto:jingh\protect _research@163.com


Neural Network World 2/2020, 85–96

Image processing for the characteristics of sonar images can clearly and real-
istically present the underwater scene information in front of the sonar operator,
improve the accuracy of manual interpretation, and reduce the probability of missed
and misjudged targets [3]. Under the same transmitting power, the sonar equip-
ment has different echo intensities for different types of targets. The echo intensity
carries the characteristic information of the target, which can be used for imaging
display, target classification and recognition. Typically, sonar target recognition is
based on characteristics such as radiated noise, timbre, and other factors belong
to the ship, which depends on the experience or knowledge of the sonar operator.
They identify the vessel by analyzing the radiation signal. The accuracy of those
methods is greatly influenced by conditional factors such as experience and the
training of voice workers who require a lot of time of practice and related finan-
cial support. Experts tried to classify underwater acoustics using machine learning
methods such as k-NN [4]. In addition, Gaussian mixture models (GMMs) [5] and
multilayer perceptron (MLP) [6] are also used for classification, but the accuracy
of classification is still insufficient to satisfy the needs of actual applications. This
is mainly caused by two reasons: Firstly, in the case of underwater acoustic signals,
due to the complex environment, the quality of the obtained signals is very poor as
it includes various noise, which causes the recognition rate of direct classification is
very low; Secondly, traditional machine learning methods usually extract features
manually, which greatly reduce the quality of the training set.

Hinton et al. proposed a deep learning framework [7]. Since then, it has proven
to be effective in the classification of many applications, and attracts a large number
of relevant researchers into related applications and actual system developments.
In recent years, deep learning has made breakthroughs in the fields of speech anal-
ysis and image recognition. It captures hidden deep features of the target signal
through a multi-level network without the effort to artificially design structural fea-
tures. Compared with machine learning methods, deep learning can extract deeper
features of the image through a multi-level network and achieve higher precision
in like classification on large datasets. The convolutional neural network proposed
by [8] is the first multi-layer structure that uses spatial relative relationships to
reduce the parameters and improve training performance. In 2012, deep convolu-
tional neural networks were applied to ImageNet and achieved amazing results [9].
Classification and positioning are the most important and challenging issues in the
field like underwater acoustic signals. Researchers have done a lot of work in re-
lated area like the classification for marine animals and some unpredictable noise
generated by objects. As the signal is unstable, it greatly reduces the recognition
accuracy. Deep learning can be used to solve this problem as it can extract fea-
tures based on big dataset. On the other side, as there are various noises, a good
selection of the features plays a crucial role in its performance.

In this paper, we applied deep learning technology to the field of underwater
acoustic signals. First of all, among the possible spectrums for the preprocessing of
underwater acoustic signals, we evaluated the spectrums to find which is the most
suitable one for neural network learning in the underwater signal case. Based on
the selected spectrum, we modified an existing network to improve the accuracy of
classification, so that, our framework meets the real demand of the identification
and classification for aquatic signals which is to classify different types of ships and
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torpedoes. In the experiment, we compared the neural networks and selected the
best one for classification. Each network uses the same training data and verifi-
cation data. The results prove that our modified network can achieve the highest
precision, which proves that the modification can further improve the classification
accuracy.

The remainder of this paper is organized as follows: Section 2 provides a brief
overview of the work in the field of underwater acoustic signal processing. Section
3 introduces our materials and methods, detailing the four spectrums that are used
for data preprocessing and the classification networks. In Section 4, it describes
our experimental process and discusses the results. Finally, it summarizes our work
in Section 5 and introduces the direction of our future work.

2. Related works

Classification and the following positioning are the most important and challeng-
ing issues in the research field like underwater acoustic signals. Many researchers
have done a lot of contributions in related area like the classification of marine
animals and some noise generated by the objects. As the signal is unstable and
unpredictable, it may reduce the accuracy of the classification models. Deep learn-
ing can be used to solve this kind problem as it can extract features based on big
dataset. On the other side, as there are various noises, the good selection of the
features plays an important role in its performance.

Existing methods of preprocessing for underwater acoustic signals are mainly to
extract time domain or frequency characteristics, spectrum estimation, etc. In [10],
Zhu, P. et al. identified sonar images by convolutional neural networks (CNN) by
extracting features in underwater vehicle identification cases and using support
vector machines (SMV). In [11], M. Valdenegro-Toro uses neural networks to per-
form object recognition on forward-looking sonar images and has achieved good
results. In [12], Gang Hu et al. proposed a new method for feature extraction and
recognition of underwater noise data based on deep learning framework, which ap-
plied CNN and ELM to the recognition and classification of underwater targets. In
this paper, traditional machine learning methods are compared and the accuracy is
greatly improved. In [13], Jager J. et al. uses the activation of convolutional neural
networks to simulate the appearance of objects; thereby it can improve the accu-
racy of fish identification and tracking. In [14], Yue, H. et al. used convolutional
neural networks (CNN) and deep belief networks (DBN) to classify underwater
acoustic signals. The experimental results show that the deep learning method is
suitable for the classification of underwater targets and can improve the recognition
accuracy.

Paper [15] pointed out many important things for audio signal processing like
the similarities and differences between domains, problems, methods, key refer-
ences and potential for cross-fertilization between areas. In this work, key issues
and future questions regarding deep learning applied to audio signal processing are
identified. On the other side, there is still big gab between the state-of-art perfor-
mance and real demands because of the limited samples or plenty types of noise in
underwater case.
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In this paper, the original audio signals are firstly converted into four kinds of
spectrum samples to evaluate the efficiency of retaining key features. In order to
find the best spectrum that can be used with deep learning network, the datasets
that are derived from the four spectrums are input into some neural networks
for training and testing. After comparison and verification, the best spectrum is
selected and the corresponding samples are input into some neural models. Then
the best model is selected for the classification task to achieve high accuracy.

3. Materials and methods

Our original materials are audio files which format is *.wav. In real applications,
the radar operator makes the judgment based on not only the sound from the
headphones, but also the map of the audio that is displayed on the machines.
Thus the audio files of the target can be transformed into spectrums, so that, the
original audio recognition task is converted to an image recognition task. Then the
spectrum dataset is input into the deep neural networks, and after training and
testing, it can achieve the purpose of assisting the radar operator.

There are many types of spectrums. In order to find the best spectrum that
is suitable for deep neural network training, we selected four spectrums and con-
verts audio data into spectrum images. We selected the most popular spectrums
that are Audio Spectrum [16], Image Histogram [17], Demon [18] and LOFAR [19].
The datasets from related spectrum are input into LeNet [8] for training and test-
ing. The experimental results show that the accuracy of LOFAR is much higher
than the other three kinds of spectrum. Therefore, it proves that deep neural
networks are easier to extract signal features in LOFAR format data. In order
to improve the classification accuracy, we utilized LOFAR spectrum data through
LeNet, ALEXNET [20], VGG16 [21]. The experiments show that their accuracy is
similar, while it is not enough to the actual application. Based on the LeNet, we
tried to improve the accuracy with some modification. The experimental results
show that our modified network greatly improves the accuracy and can achieve the
practical application goals.

The whole process is shown in Fig. 1, where here (a) is the original audio signal
sample, and after the data pre-processing, the four types spectrum datasets (b) are
obtained. After the four types of spectrum datasets were trained by LeNet, the
accuracy of LOFAR was found to be the highest one by the comparison of accuracy.
Thus our framework selected LOFAR spectrum and the related dataset is input
into three classification networks as (d) shows. To further improve the accuracy,
we modified LeNet. In step (e), the networks are evaluated on the test dataset.

3.1 Spectrums

In the field of underwater acoustic signals, the original dataset is to be classified
by transforming it to audio spectrum. Because of the noise, the audio signals
are difficult to be identified and classified by neural networks in under water case.
Thus, we tried to convert them into different spectrums. There are many spectrums
that can be used to converted underwater acoustic signals. We selected the most
popular four types of spectrums: Audio Spectrum, Image Histogram, Demon and
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Fig. 1 The entire process of our framework.

LOFAR. Fig. 2 shows the samples of audio spectrum data. The horizontal axis
is the frequency and the vertical axis is the intensity. The graphic data of the
signal at various frequencies is recorded in a corrugated manner. There are 14,383
samples of the audio spectrum dataset, of which 10,080 are for training and 4,303
are for verification.
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Fig. 2 The samples in the audio spectrum dataset.

Image Histogram is a histogram used to represent the distribution of brightness
in an image, which plots the number of pixels for each luminance value of the image
as Fig. 3 shows. In the Image Histogram, the left side of the abscissa is a pure
black, darker area, and the right side is a brighter, whiter area. Therefore, the data
in the histogram of an image of a darker picture is mostly concentrated on the left
side and the middle part. In the field of computer vision, image histograms are
often used to binarize in images. There are 14,383 samples of the Image Histogram
dataset, of which 10,080 are for training and 4,303 for verification. We use a
balanced histogram, which is a method of adjusting the contrast to the image-
processing field. This method is often used to increase the global contrast of many
images, especially when the contrast of useful data for an image is fairly close. In
that way, the brightness can be better distributed over the histogram. This can be
used to enhance local contrast without affecting the overall contrast, and histogram
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equalization achieves that by effectively extending the commonly used brightness.
The normalized histogram is obtained by dividing the count of each attribute on
the histogram by the sum of the counts of all the attributes. The reason for
“normalization” is because the sum of all the attributes in the normalized histogram
is 1, that is, the count corresponding to each attribute is a number (percentage)
between 0 and 1.
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Fig. 3 Part of the sample in the Image Histogram dataset.

Demon spectrum extraction has stable features and clear physical meanings. It
is one of the important analytical methods of ship target recognition. It can ob-
tain line spectrum information through high-frequency broadband noise mediation
analysis. The Demon analysis processing is performed on the underwater acoustic
signal, and the underwater acoustic signal received by the passive sonar is selected
by a high frequency band of square demodulation, and then subjected to low-pass
filtering to obtain a corresponding Demon spectrum. Our Demon spectrum dataset
has 11,796 samples, of which 8,292 are for training and 3,504 are for verification.
Fig. 4 shows samples of the Demon spectrum dataset.

Fig. 4 The samples in the Demon dataset.

The LOFAR spectrum is a continuous time domain sample of the signal. The
spectrum and frequency characteristics of the radiated noise is analyzed by using
LOFAR [19]. Based on the local stability of the signal, it performs a short-time
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Fourier transform and the obtained time-varying information. It is projected on the
time and frequency planes, so it forms a three-dimensional mapping. It is usually
used for target recognition in underwater signal case. In the field of underwater
acoustic signal processing, target recognition and tracking tasks are achieved by
using various methods of extracting and identifying line profile features. Fig. 5
shows a sample of the LOFAR spectral dataset.

Fig. 5 Part of the sample in the LOFAR dataset.

3.2 Which spectrum is the best?

The classification problem is an important research issue in the field of underwater
acoustic signals, and researchers have done a lot of work in this field. The un-
derwater acoustic signal is unstable because of the reasons like noise, and such a
phenomenon greatly reduces the recognition accuracy. One of the ways to solve
this problem is feature extraction, and the features presented to the classifier play
a crucial role in its performance. In fact, the selection of dataset may be more
important than the modification the classifier when improving the accuracy. After
the data is preprocessed, it gets the datasets of Audio Spectrum, Image Histogram,
Demon and LOFAR. In order to determine which spectrum is the most suitable
one for neural networks, we input these into the classification network LeNet for
training. Fig. 6 shows the network architecture of LeNet [8].

Input
1@32*32

Conv1
6@28*28

Pool1
6@14*14

Conv2
16@10*10

Pool2
16@5*5

Fully Connected
120

Output
15

84

Fig. 6 LeNet network architecture.

LeNet has 7 layers, including 2 layers of convolution, 2 layers of pooling, and
3 layers of fully connected layers. The convolution operation is a weighted sum-
mation of pixels based on a convolution kernel. The purpose of the convolutional
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layer is to extract the features of the input image. The first convolutional layer can
only extract some relatively low-level features, such as edges, lines, etc. The second
convolutional layer extracts more complex features based on the low-level features
extracted by the first layer. The convolutional layer in the LeNet network architec-
ture uses 5 × 5 convolution kernels, and the convolution kernel has a moving step
size of 1. The role of the pooling layer is equivalent to converting a picture with
higher resolution to a picture with lower resolution, which can reduce the number
of parameters in the neural network case. The most common operation of those
methods is the largest pooling and average pooling. The pooling layer in the LeNet
network uses a 2× 2 input field with a moving step size of 2, that is, four pixels of
the previous layer are input to one pixel of the next layer, and the input fields does
not overlap. The pooling method adopted is the average pooling. The fully con-
nected layer spatially transforms features, especially transforms high-dimensional
features into low-dimensional features, and preserves useful information. The full
connection of the last layer acts as a classifier. The datasets of the four types of
spectrum are input into LeNet for training. By comparing the accuracy, we found
that LOFAR spectrum is the most suitable one for training of neural networks.

3.3 Classification network comparison

Based on the evaluation on spectrums, our framework determined to use LOFAR in
the field of underwater acoustic signals. Then our framework also inputs LOFAR
spectrum data into some mainstream classification networks. The experimental
results show that the difference of classification accuracy between LeNet, VGG16
and ALEXNET are not obvious, and they have not reached the standard that can
be applied. Thus we designed a neural network derived from LeNet. It consists of
an input layer, three convolution layers, three maximum pooling layers and three
fully connected layers. Its network structure is shown in Fig. 7.

Input
1@64*64 Feature maps

5@61*61
5@30*30 10@26*26 10@13*13 20@8*8 20@4*4

Hidden units
200

Output
15

200

Fig. 7 Network architecture.

In order to facilitate the training of the neural networks when there are insuffi-
cient samples, we adjust the size of the LOFAR spectrum from 512×512 to 64×64,
which is more suitable for network training. We input the 64 × 64 LOFAR spec-
trum into our improved classification models and the other ones (LeNet, VGG16,
ALEXNET). In more details about our network, the first convolutional layer has
five convolution kernels, each of which has a size of 4 × 4 and a convolution kernel
with a sliding step size of 1, without padding. The size of the filter in the pooling
layer is 2 × 2 and the step size is 2. The goal is to reduce the dimensions of the
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feature map and extend the perception domain. The effect of dimensionality re-
duction is to reduce the original image to a quarter and leave an average output.
There are three combinations of such a convolution layer and a pooling layer. In
order to make the network more suitable for the identification and classification of
LOFAR spectrum in aquatic signals, it adjusted the size and number of convolution
kernels in each convolutional layers. The specific parameters are shown in Tab. I.

Name Channel Kernel Size Stride Padding Type

Conv1 5 4 1 Valid –
Pool1 5 2 2 Valid Max
Conv2 10 4 1 Valid –
Pool2 10 2 2 Valid Max
Conv3 10 4 1 Valid –
Pool3 10 2 2 Valid Max
FC1 200 – – – –
FC2 200 – – – –
FC3 15 – – – –

Tab. I Network parameter configuration.

4. Experiment

4.1 Spectrum comparison

During the comparison experiment of spectrums, the training set and the test
one of each dataset are using the same equipment. The experimental results are
shown in Tab. II. We select the LeNet as the classification model to compare these
spectrums.

Spectrum Category Accuracy [%]

Audio Spectrum 54.93
Histogram 55.12

Demon 13.07
LOFAR 83.64

Tab. II Spectrum comparison.

The experimental result shows that the Demon spectrum has the lowest ac-
curacy, which shows it is not suitable for the training of neural networks. The
accuracy of Audio Spectrum and Image Histogram is similar, but it still cannot
meet real requirements because of the low accuracy. LOFAR has the highest ac-
curacy, greater than 80 %, and is suitable to deep learning framework training for
further improvement. When the training samples are insufficient, the spectrums
should help the models capture key features. LOFAR applies a short-time Fourier
transform that can reduce the complexity of the signals while amplifying the most
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important features. This kind preprocessing can be a good choice to improve the
accuracy of models when there are insufficient training samples.

4.2 Modified network

Based on the experiment, our framework determined that in the field of underwa-
ter acoustic signals, LOFAR spectrum is a suitable spectrum for the deep learning
classification framework. On the other side, its classification accuracy is not enough
for practical applications. Our framework inputs the LOFAR spectrum dataset to
VGG16, ALEXNET. ALEXNET consists of 12 layers and consists of five convo-
lutional layers, three pooling layers and four fully connected layers. The network
uses 11 × 11 large convolution kernel with a total parameter of 60M. There are
many versions of VGG, and this article uses VGG16 for comparison. VGG16 is a
large network with a total of 138 million parameters. It consists of 13 convolutional
layers, 5 pooled layers and 2 fully connected layers. The experimental results are
shown in Tab. III.

Network Architecture Accuracy [%]

LeNet 83.64
ALEXNET 89.30

VGG16 82.47
Our Net 97.22

Tab. III Spectrum comparison.

The experimental results show that LeNet, ALEXNET and VGG16 have similar
accuracy, and they have not reached the standard of practical application. Con-
sidering that these networks are based on the network architecture derived from
CNN, we also designed a suitable one based on LeNet. The classification structure
is shown in Fig. 6. The experimental results show that the accuracy has been
greatly improved, which reaches 97.22 % and meets the requirements of practical
applications. It proves that the classification network can be further improved by
the modification of the neural networks.

4.3 Discussion

Audio spectrum or Demon one can express details of the signals. The more infor-
mation does not fit the models when the training samples are insufficient. On the
contrary, Histogram reduces so much information which can improve the efficiency
of training while the accuracy is limited as this loses some key features. LOFAR
one can reduce some noises while retaining enough key features to ensure high
accuracy.

The tuning of models is a challenge especially when the structure of these is
complicated. When the training samples are insufficient, the model that has big
structure is hard to be trained and achieve high accuracy because of the problems
like gradient vanishing one. Thus we select a medium model to tune the parameters
when the training samples are insufficient.
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5. Conclusions and future work

By comparing the four spectrums of Audio Spectrum, Image Histogram, Demon
and LOFAR, we found that in the field of underwater acoustic signals, LOFAR spec-
trum is the most suitable spectrum for neural network training among evaluated
spectrums. Based on LOFAR spectrum, we designed a neural network architecture
for the recognition and classification of underwater acoustic signals, which greatly
improved the classification accuracy. In practical situations, datasets are not read-
ily available due to some limitations and security reasons. Therefore, when adding
classification labels to actual applications for in-depth analysis and finding details,
there may be no large datasets for training. In future work, we will try to do
some research on how to increase the number of samples by using methods such as
Generative Adversarial Nets.
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