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Abstract: Shallow neural network implementations are still popular for real-life
classification problems that require rapid achievements with limited data. Param-
eters selection such as hidden neuron number, learning rate and momentum factor
of neural networks are the main challenges that causes time loss during these im-
plementations. In these parameters, the determination of hidden neuron numbers
is the main drawback that affects both training and generalization phases of any
neural system for learning efficiency and system accuracy. In this study, several
experiments are performed in order to observe the effect of hidden neuron number
of 3-layered backpropagation neural network on the generalization rate of classifi-
cation problems using both numerical datasets and image databases. Experiments
are performed by considering the increasing number of total processing elements,
and various numbers of hidden neurons are used during the training. The results
of each hidden neuron number are analyzed according to the accuracy rates and
iteration numbers during the convergence. Results show that the effect of the hid-
den neuron numbers mainly depends on the number of training patterns. Also
obtained results suggest intervals of hidden neuron numbers for different number
of total processing elements and training patterns.
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1. Introduction

Neural network (NN) is an applicable artificial intelligence (AI) field that can be
used effectively in many pattern recognition applications as supervised or unsu-
pervised [1]. Flexible outputs of NN and capability of solving non-linear tasks,
produce successful and considerable results [1]. Thus, achieved results become
more accurate for real-life applications.
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One of the most common and popular supervised learning algorithms is the
backpropagation neural network (BPNN) [2]. BPNN is the most frequently used
learning algorithm in shallow neural networks because of its simplicity in the imple-
mentation, and efficiency of the obtained results in real life applications. Diversity
of implementations used BPNN effectively in classification [3, 4], control [5], pre-
diction [6] and optimization [7] problems.

However, several in-explicit factors such as the number of hidden layers, the
number of the neurons in these layers, the learning rate, and momentum factors are
still determined by trial and error, dependent on the application, by considering the
convergence efficiency and generalization results. The learning rate and momentum
factor are used to tune the adjustments for each iteration and to avoid local minima
during the convergence respectively [8]. Lower value learning rates and relatively
higher value momentum rates were preferred to be used in BPNN. The usage of
multi-hidden layers in BPNN increases the computational cost but rarely improves
the classification rates [8]. Thus, researchers were redirected to use a single hidden
layer in BPNN implementations. However, at that time, the determination of
hidden neuron numbers which is the most important uncertainty emerged. For
this reason, several experiments had been performed and different approaches as
constructive and pruning [9], were proposed by the researchers to determine the
optimum hidden neuron number for a specific application.

Constructive approaches [10, 11] are based on adding extra neurons into the
hidden layer which starts with an undersized number of hidden neurons until the
satisfactory results obtained. Conversely, pruning approaches [12–14] remove the
less relevant neurons start in an over-sized network to find the smallest optimum
number of hidden neurons. Pruning approaches determine hidden neuron to be
pruned according to the neuron activities with little influence [15]. The calculation
of the influence of neurons can differ from each method and can be calculated by
considering various information such as variance analysis of sensitivity informa-
tion [13], quantified sensitivity measure [9], hidden neurons with zero values [16],
apparent rate error [17], weight variation information [18], during the training.

In the literature, rare analysis was performed for hidden neuron number effect
of backpropagation neural network. Shafi et al. [19] investigated hidden neuron
and layer number effect of backpropagation architecture for a time frequency ap-
plication. They concluded that, 40 hidden neuron number in a single hidden layer
performed optimum result for their application and also it was mentioned that the
increment of hidden neuron number decreases the success of neural network.

Researches show that the performed experiments to determine the hidden neu-
ron number can produce different results for different applications. However, di-
versity of the methods for different approaches and the difficulties in the imple-
mentation of these methods cause extra time cost for the applications need rapid
achievements. The analysis of the behavior or response of the neural system in
terms of learning (convergence) efficiency and especially in generalization ability
which is the main indicator of the success of the neural system, is required. Training
and generalization of NN using diverse conditions with different number of hidden
neurons is important in order to determine over-sized and undersized hidden neu-
ron numbers. Over-sized number of hidden neurons causes over-fit the training
data which models noise and this reduces the generalization ability of the network
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even the convergence is extremely successful [8]. The usage of undersized number
of hidden neurons prevents the convergence of training data, therefore this may
lead to obtain inefficient classification rates in generalization. However, the deter-
mination of these under or over-sized numbers of the hidden neurons is related to
the complexity of the application, hence the neural network.

It is obvious that, this complexity of the NN should be considered as a structure
by the inclusion of each element of NN as the number of training patterns and
input neurons. The number of input and output neurons, which depends on the
application, and the number of training patterns increase the complexity of the
neural network, thus change the effect of the determined hidden neuron number
during the training and generalization. In this study, the complexity of NN is called
Total Processing Elements (TPE) of the neural system. During the increment
of TPE, it is not known how much the number of hidden neurons needs to be
increased or decreased. Therefore, various number of hidden neurons should be
considered during the learning, and generalization rates should be analyzed for
considered hidden neuron numbers in order to determine the interval of minimum
and maximum hidden neuron numbers suitable for all applications. In this study,
fourteen classification applications were performed with different number of hidden
neurons in 3-layered network architecture.

The aim of this research was to analyze the behavior of BPNN by considering
training iterations and foremost generalization rates and to contribute BPNN im-
plementations by recommending general minimum and maximum hidden neuron
numbers according to TPE of the applications to minimize time loss during trial
and error.

The rest of the paper is organized as follows; Section 2 summarizes the several
real-life applications using BPNN and considered hidden neuron numbers in these
applications. Section 3 explains specifications of experimental design with consid-
ered numerical datasets and image databases and Section 4 presents experimental
results. Discussions of experimental results and suggestions are placed in Section 5.
Finally, Section 6 concludes the analyzes of results obtained in this research.

2. Hidden neuron usage in the literature

Several and different real-life applications and experiments were performed using
BPNN, and various hidden neuron numbers were considered to be used. Different
applications with various datasets or image databases may require the consideration
of a different number of hidden neuron numbers, while the datasets strongly affects
the convergence of BPNN. In this section, a summary of recent and varied real-life
experiments, and considered hidden neuron numbers in these researches will be
presented.

Recently, Li [20] proposed an automatic impedance matching method based on
BPNN, and Liu [21] used BPNN to analyze high-power LED photoelectrothermal.
Linlin [22] propose 3D indoor localization by implementing BPNN. Lilik [23] and
Dimililer [24] used it to detect the lung cancer on CT scan images. Comparison
of workload prediction model for cloud computing by Kumar et al. [6], privacy-
preserving using modified BPNN for cloud computing by Yuan et al. [25], and a
system in order to detect the sub-pixel land change for remotely sensed images by
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Wu et al. [26] proposed using BPNN. Also, nonlinearity compensation of a photonic
transducer-based optical current sensor in [27] and classification of four varieties of
bulk rice grain images in [3] used BPNN. Nuclear power plant transients identifier
[28], and optimal control for robotic arms [5] were implemented. In addition to
these researches, Khashman and Sekeroglu [7] suggested BPNN to determine the
optimum threshold value for document image enhancement. Dimililer [4] classified
pest insects, and Khashman et al. [29] solved the classification problems of 2 Euro
and 1 TL coins in slot machines using BPNN. Beside these applications, image
compression [30], microRNA analysis [31] and medical applications [32] considered
BPNN for performance improvement. Tab. I summarizes the applications and
decided on hidden neuron numbers to be used.

Author Year
Hidden Neuron

Number

Yang Li et al. 2018 33
Hogwei Liu et al. 2017 20
Linlin et al. 2017 11
Kumar and Singh 2017 7
Dimililer and Zarrouk 2017 40
Wu et al. 2017 15
Wei et al. 2016 40
Dimililer et al. 2016 25
Yuan and Yu 2014 5
Yuan and Yu 2014 12
Yuan and Yu 2014 15
M-Bakhshayesh and Ghofrani 2014 10
Rubio 2012 20
Adali and Sekeroglu 2012 20

Tab. I Hidden neuron numbers in recent applications.

3. Experimental design

The complexity of NN may differ the effect of hidden neuron number, thus, a
variety of NN architectures are needed to be considered in order to analyze the
effect of hidden neuron number on the generalization ability and learning efficiency
of NN. Over or undersized number of inputs and outputs which depend on the
application, can be considered separately however, further training patterns should
also be included for the calculation of the complexity of NN. Slight complexity of
NN may cause smooth convergence of it and makes analyses of the effect of hidden
neuron numbers on huge NN architecture, difficult. Therefore, besides low or high
input neuron numbers, it is necessary to complicate the learning of the NN by using
further training patterns, and it is called Total Processing Elements (TPE) of NN.
TPE can be obtained by multiplication of the number of input neurons (number
of attributes) and training patterns (instances for training) as shown in Eq. 1.
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TPE = In × TrP, (1)

where In is the number of input neurons and TrP is the number of training patterns
for the corresponding experiment.

Besides these, during the experimental design, lower instances with high train-
ing patterns and high instances with low training patterns were also considered in
order to observe and analyse the effect of hidden neuron numbers in various condi-
tions. It is clear that the characteristics and the selection of training patterns are
also important for the NN during the learning and generalization phases. Obvi-
ously, classification problems are not limited only with image-based databases; thus
numerical datasets that contain different acquired signals or attributes should be
considered. In order to provide different and various classification experiments with
varied patterns and TPE, six numerical datasets and three image databases that
were used for the classification problems, were considered. Datasets are benchmark
and frequently used numerical datasets; Iris [33], Wines [34], Hepatitis [35, 36],
Sonar [37], Autism screening adult [38] and Cardiotocography [39], and the im-
age databases are AT&T Face Database [40], CASIA Multi-Spectral Palmprint
Database [41] and Coins Database [29].

Datasets were directly considered for training and generalization phases with
normalized values, but image databases were used with different dimensions which
represent input neuron numbers, and low or high training patterns to increase TPE.

Experiments were divided into five categories according to TPE; low-processing
experiments (LPEX), medium-processing experiments (MPEX), standard-processing
experiments (SPEX), high-processing experiments (HPEX) and over-sized process-
ing experiments (OPEX). Tab. II shows the minimum and maximum TPE for each
experimental category.

Category Minimum TPE Maximum TPE

LPEX 60 1000
MPEX 1000 10,000
SPEX 10,000 150,000
HPEX 150,000 500,000
OPEX 500,000 –

Tab. II TPE values for experiment categories.

Since the improvement of recognition rates of NN for any dataset or database
was not the scope of this research, training patterns were randomly selected both for
numerical datasets and image databases. To vary the number of training patterns,
10-30 % of total considered data were used for training. The rest of the patterns
were used for the generalization phases of the experiments. Tab. III shows details
of experiments with input and output neurons of NN, training patterns, and TPE
of each experiment. In image databases, Experiment 2.1 (AT&T Face Database),
Experiment 2.5 (Coins Database) and Experiment 3.1 (Casia Palmprint Database)
consist of image pre-processing step with Average Pixel per Node (APPN) [29,42]
approach to reduce input data and observe the effect of hidden neuron number for
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image database with lower TPE. APPN is based on dividing an image into pre-
defined segments and calculating the gray level average of the pixels belong to the
corresponding segment. Thus, individual value for each segment was obtained and
the input neuron number of NN was statistically reduced.

Data Name Category
Exp.
No.

Inp. N.
Number Output

Tr.
Pat. TPE Type

Iris LPEX 1.1 4 3 15 60 Numeric
Hepatit LPEX 1.2 19 2 20 380 Numeric
Wines LPEX 1.3 13 3 48 624 Numeric
AT&T Face MPEX 2.1 100 10 30 3000 Image
Sonar MPEX 2.2 60 2 60 3600 Numeric
CTG MPEX 2.3 21 3 200 4200 Numeric
Autism MPEX 2.4 16 2 280 4480 Numeric
Coins MPEX 2.5 256 2 32 8092 Image
Casia Palmprint SPEX 3.1 256 20 240 61,440 Image
Coins SPEX 3.2 4096 2 16 65,536 Image
Coins SPEX 3.3 4096 2 32 131,072 Image
Coins HPEX 4.1 16,384 2 16 262,144 Image
AT&T Face HPEX 4.2 10,000 10 30 300,000 Image
Casia Palmprint OPEX 5.0 4096 20 240 983,040 Image

Tab. III Details of experiments.

As it is shown in Tab. I, researchers generally optimized hidden neuron numbers
between 5-30 in performed experiments for specific applications. Thus, in this
research, hidden neuron numbers are determined by starting from 5 to 30 with
an increment of 5 hidden neurons for each training. However, the usage of more
than 30 hidden neurons should also be analyzed in order to observe the effect on
training and generalization phases with varied TPE. Therefore; 50, 75, 100, 150,
and 200 hidden neurons are also considered in this research which can be described
as over-sized hidden neuron numbers.

In following sections, NN architectures of experiments are shown as IN-HN-
OUT, where IN and OUT is the number of input and output neurons which depend
on the application, and HN is considered hidden neuron numbers which are 5, 10,
15, 20, 25, 30, 50, 75, 100, 150 and 200 in this research.

4. Experimental results

In this paper, six numerical datasets and three image databases were considered
in fourteen experiments with varied values of training patterns and TPE. In each
experiment, patterns were trained using eleven different hidden neuron numbers.
After performing several preliminary experiments, the learning rate and momentum
factor set to 0.00079 and 0.90 respectively which were the most efficient relationship
between them for all experiments commonly. Root Mean Square (RMS) Error
was used as stopping criteria of BPNN and it was determined as 0.003. Initial
weights were assigned randomly between -0.30 and 0.30, and the Sigmoid activation
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function was used for all layers. Bias weights were also considered for each layer
and tolerance value of BPNN was set to 0.5 which means any actual output which
is less than 0.5 was considered as “unrecognized”. While the effect of hidden
neuron numbers on the performance was the objective of the study, fixed training
and testing sets were considered for each experiment with different hidden neuron
numbers, and experiments were performed using Hold-out Method, which is based
on dividing dataset into two sets as training and testing, and obtaining results in
one-run. The evaluation was performed using the accuracy rates obtained for each
hidden neuron number on a fixed testing and training sets using fixed parameters.

Learning efficiency of patterns was analyzed by using training iterations for
each hidden neuron number, and the generalization ability of BPNN which was
the main indicator of the success of the neural system, was analyzed by calcu-
lating the accuracy of the system. Accuracy was calculated by dividing correctly
classified untrained patterns to total untrained patterns which are considered in
generalization.

As it is expected, test results of training data were obtained 100 % for all ex-
periments and hidden neuron numbers.

4.1 Results of low-processing experiments

Three different numerical datasets; Iris, Hepatitis, and Wines were used in LPEX,
and TPE is below 1000 for each experiment.

In Experiment 1.1 (Iris Dataset), 15 training and 51 test patterns were consid-
ered in 4-HN-3 architecture, and generalization ability did not differ with hidden
neuron numbers from 5 to 30 and 94.11 % of accuracy was achieved. Defined RMS
Error was reached by 15 hidden neuron numbers in minimum iterations and the
usage of more hidden neurons increased the iterations linearly. 7.62 % of differ-
ence occurred between the maximum and minimum iteration numbers of 5 to 30
hidden neurons, however by considering all hidden neuron numbers, this difference
increased to 31.50 % between the minimum and maximum iterations.

In Experiment 1.2 (Hepatitis Dataset) 20 training and 120 test patterns were
considered in 19-HN-2 architecture. Accuracy differed unsteadily and indepen-
dently to hidden neuron numbers and maximum is achieved by 75 hidden neuron
numbers. However, only three more test patterns are recognized correctly in 75
hidden neuron numbers by comparing the minimum accuracy in this experiment.
Minimum and maximum iteration numbers are achieved in 5 and 200 hidden neu-
rons respectively. The difference between minimum and maximum iterations is
14.55 %.

In Experiment 1.3 (Wines Dataset), which was the last, but not the least ex-
periment of LPEX, 48 training and 129 test patterns were considered in 13-HN-3
architecture. Hidden neurons from 5 to 75 produced same and highest accuracy by
96.15 % and hidden neuron numbers above 75 started to decrease accuracy but with
only a single test pattern. Similar to the second experiment, minimum and max-
imum iteration numbers were achieved in 5 and 200 hidden neurons, respectively,
and the difference between the minimum and maximum iterations was calculated
as 24.81 %.

Tab. IV shows the obtained results of Low-Processing Experiments for all hidden
neuron numbers.
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Experiment 1.1 Experiment 1.2 Experiment 1.3
Hidden
Neuron Iterations

Gen.
Ability Iterations

Gen.
Ability Iterations

Gen.
Ability

No. [%] [%] [%]

5 31,717 94.11 11,996 58.33 11,230 96.15
10 31,969 94.11 11,498 59.16 10,058 96.15
15 29,816 94.11 11,281 58.33 9,790 96.15
20 30,694 94.11 11,055 58.33 9,603 96.15
25 30,155 94.11 11,075 58.33 9,557 96.15
30 32,276 94.11 11,123 60.00 9,293 96.15
50 32,602 92.15 10,905 60.00 9,340 96.15
75 33,939 92.15 10,702 60.83 9,100 96.15
100 34,848 90.19 10,730 60.00 8,880 95.38
150 38,125 88.23 10,498 58.33 8,586 95.38
200 43,532 88.23 10,250 58.33 8,444 95.38

Tab. IV Results of low-processing experiments.

4.2 Results of medium-processing experiments

In MPEX, five experiments were performed using both numerical datasets and
image databases. In these experiments, minimum and maximum TPE was 3000
and 8192, respectively.

In Experiment 2.1 that APPN was applied to face images, 30 train and 70 test
images were considered in 100-HN-10 architecture. Even the convergence occurred
in maximum iterations, the highest accuracy was achieved with 5 hidden neurons
by 95.71 % and the difference between the highest and the closest one was 10 %
(150 and 200 hidden neurons). Minimum and maximum iterations were recorded
in 200 and 5 hidden neurons, respectively, with the difference of 84.32 %.

In Experiment 2.2 (Sonar Dataset), 60 train and 251 test data were used in 60-
HN-2 architecture, and close results were obtained by 69.13 % and 69.75 % with 5
and 200 hidden neurons, only by 1 test pattern difference. Even the close iterations
were computed, minimum and maximum iterations occurred in 200 and 5 hidden
neurons with 8.62 % of difference.

In Experiment 2.3 (CTG Dataset), 21-HN-3 architecture with 200 training and
1926 test patterns were used. The highest and lowest accuracy were obtained
with 75 hidden neurons and 5 hidden neurons with classification of 19 more test
patterns correctly. Minimum and maximum iterations were recorded in 10 and 150
with 10.11 % of difference.

In Experiment 2.4 (Autism Dataset), 16-HN-2 architecture with 280 training
and 422 test patterns and, close and similar results are obtained in the generaliza-
tion. However, the highest accuracy is achieved with 150 and 200 hidden neurons
by 99.52 %. 16-100-2 architecture is converged in minimum iterations and 16-150-2
is converged in maximum iterations with a difference of 68.05 %.
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In Experiment 2.5 (Coins Database), 256-HN-2 architecture is used and APPN
applied to coin images. Totally 32 training and 48 testing images were considered
in this experiment. 5 hidden neurons achieved 90.63 % of accuracy and the rest of
the hidden neurons produced 75 % of accuracy. Similar to Experiment 2.1 and 2.2,
lowest and highest hidden neuron numbers reached to RMS Error in maximum and
minimum iterations with a difference of 55.25 %.

Tab. V shows the obtained results of Medium-Processing Experiments for all
hidden neuron numbers.

Exp. 2.1 Exp. 2.2 Exp. 2.3 Exp. 2.4 Exp. 2.5

Hid. N.
No. Iter.

Gen.
Ab. Iter.

Gen.
Ab. Iter.

Gen.
Ab. Iter.

Gen.
Ab. Iter.

Gen.
Ab.

[%] [%] [%] [%] [%]

5 30,294 95.71 9,020 69.13 6,629 62.70 1,998 99.05 6,959 90.73
10 12,246 80.00 8,935 67.90 5,980 63.37 2,041 99.05 5,036 75.00
15 9,228 84.28 8,854 67.90 6,159 63.37 1,953 99.29 5,341 75.00
20 8,433 82.85 8,929 67.90 6,188 63.27 1,974 99.05 4,262 75.00
25 8,184 88.57 8,701 67.90 6,315 63.27 1,910 99.29 4,181 75.00
30 7,492 82.85 8,763 67.90 6,161 63.53 1,939 99.29 4,071 75.00
50 6,542 84.28 8,764 67.28 6,177 63.63 1,865 99.05 3,835 75.00
75 5,916 84.28 8,554 68.51 6,012 63.68 1,817 99.29 3,486 75.00
100 5,397 84.28 8,488 68.51 6,157 63.48 1,706 99.05 3,484 75.00
150 4,916 85.71 8,438 68.51 6,653 63.53 5,341 99.52 3,197 75.00
200 4,748 85.71 8,242 69.75 6,132 63.53 2,591 99.52 3,113 75.00

Tab. V Results of medium-processing experiments.

4.3 Results of standard-processing experiments

Three experiments were performed in SPEX using Palmprint and Coins databases
where the TPEs were between 61,440 and 131,072.

In Experiment 3.1, 256-HN-20 architecture was used and APPN is applied to
Palmprint images to reduce the inputs of BPNN. 240 training and 1200 test images
were considered to identify 20 persons using palm prints. Lowest and highest
accuracy was obtained using 5 and 25 hidden neurons with 13.58 % and 30.41 %,
respectively. BPNN could not converge using 75 and more hidden neurons. 5 and
25 hidden neurons converged in maximum and minimum iterations with a difference
of 94.87 %.

In Experiment 3.2, which the coins images were considered without any pre-
processing, 4096-HN-2 architecture was used with 16 training and 64 test patterns.
20,100 and 150 hidden neurons produced the lowest accuracy with one more mistake
than the rest of the hidden neuron numbers which achieved the highest one by
89.33 %. After linear decrements of iteration numbers, 5 and 200 hidden neurons
reached RMS Error in maximum and minimum iterations.

Similar to Experiment 3.2, coins images were used in Experiment 3.3 with
the same image dimensions, yet input neuron number but with 32 training and
48 testing patterns. All hidden neuron numbers achieved the same accuracy by
75.00 %. Even the recognition rates differed in Experiment 3.2 and 3.3, minimum
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and maximum iterations and change of iterations were similar in 200 and 5 hidden
neurons with 87.30 %.

Tab. VI shows the obtained results of Standard-Processing Experiments for all
hidden neuron numbers.

Experiment 3.1 Experiment 3.2 Experiment 3.3

Hidden
Neuron No. Iterations

Gen.
Ability Iterations

Gen.
Ability Iterations

Gen.
Ability

[%] [%] [%]

5 311,007 13.58 8,287 83.33 4,191 75.00
10 20,904 29.00 4,432 83.33 3,543 75.00
15 18,731 27.41 3,092 83.33 1,794 75.00
20 35,114 28.33 2,811 81.25 1,209 75.00
25 15,939 30.41 1,965 83.33 1,811 75.00
30 20,602 29.83 11,123 83.33 1,121 75.00
50 63,499 28.75 10,905 83.33 748 75.00
75 not converged 1,381 83.33 817 75.00
100 not converged 956 81.25 599 75.00
150 not converged 1,084 81.25 631 75.00
200 not converged 884 83.33 532 75.00

Tab. VI Results of standard-processing experiments.

4.4 Results of high-processing experiments

In HPEX, Coins and Face databases were used with 262,144 and 300,000 TPE
respectively. Coin and Face images fed to BPNN without any pre-processing and
with the dimensions of 128 × 128 and 100 × 100, respectively.

In Experiment 4.1 (Coin images), 16384-HN-2 architecture was used with 16
training and 64 testing patterns and, 5 and 10 hidden neurons could not be con-
verged the training patterns. Similar results were obtained with other neuron
numbers, however, the highest and lowest accuracy was obtained with 20 and 25
hidden neurons. Fluctuations occurred in generalization ability independent of hid-
den neuron number. Minimum and maximum iterations were recorded in 150 and
20 hidden neurons respectively with a change of 79.50 %.

In Experiment 4.2 (Face images), where 10000-HN-10 architecture, with 30
training and 70 test patterns was used, the minimum and maximum hidden neu-
rons which were considered as 5 and 200 in this research, could not learn the
training patterns. Lowest accuracy was obtained by the minimum hidden neuron
number which could converge by 61.42 %. The highest accuracy was achieved with
50 hidden neuron number by 88.57 %. Minimum and maximum iterations were
obtained by the highest and lowest hidden neuron numbers that could converge
with a difference of 98.66 %.

Tab. VII shows the obtained results of Standard and Over-sized Processing
Experiments for all hidden neuron numbers.
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Experiment 4.1 Experiment 4.2 Experiment 5.1

Hidden
Neuron No. Iterations

Gen.
Ability Iterations

Gen.
Ability Iterations

Gen.
Ability

[%] [%] [%]

5 not converged not converged not converged
10 not converged 60171 61.42 10709 22.91
15 1732 79.16 5804 85.71 7520 21.58
20 2717 83.33 9315 84.28 9527 23.00
25 1852 77.08 3172 84.28 5194 23.58
30 1675 81.25 2604 85.71 8567 21.91
50 1281 79.16 1739 88.57 not converged
75 858 81.25 1165 78.57 not converged
100 766 81.25 949 81.43 not converged
150 557 79.16 806 75.71 not converged
200 725 79.16 not converged not converged

Tab. VII Results of high and over-sized processing experiments.

4.5 Results of over-sized processing experiment

In OPEX, a single experiment with 983,040 TPE, was performed using Palm im-
ages. Images were resized to 64 × 64 and directly fed to NN without any pre-
processing and 4096-HN-20 architecture was used with 240 training and 1200 test-
ing patterns. Only hidden neuron numbers between 10 and 30 could reach de-
fined RMS Error value. The highest accuracy and minimum iteration number was
achieved with 25 hidden neurons by 23.58 % and 5194, respectively. The change
between minimum and maximum iteration numbers was 51.49 %.

Tab. VII shows the obtained results of Over-sized Processing Experiments for
all hidden neuron numbers.

5. Discussions and recommendations

In this section, obtained experimental results will be discussed in detail, and inter-
vals for the hidden neurons of BPNN applications will be suggested.

5.1 Discussions on experimental results

In LPEX, it was observed that the use of over-sized hidden neurons either slightly
decreased the generalization ability of BPNN by over-fitting the training patterns
or produce similar results for any hidden neuron number. Analyses of learning
efficiency of LPEX shows that increment of hidden neuron number in lower value of
TPE requires more iterations to converge, however, the increment of TPE converts
linear relationship between hidden neuron number and iterations.

In MPEX experiments, it was observed that the highest accuracy rates depend
on the number of training patterns and the usage of a large number of training pat-
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terns requires the use of more hidden neuron numbers even TPE is smaller than
other experiments. It should also be noticed that the number of training patterns
are also affects the learning ability of NN. If the number of training patterns is small
enough as in Experiments 2.1, 2.2, and 2.5, the iteration numbers decrease linearly
according to the increment of hidden neuron number and, maximum and mini-
mum number of iterations obtained with minimum and maximum hidden neuron
numbers considered in these research. However, the increment of training patterns
causes fluctuations of iterations during the convergence as in Experiments 2.3 and
2.4 which 200 and 280 training patterns are considered.

In SPEX, even the input neurons were low, the usage of high training patterns
and more output neurons caused inefficient learning with 5 hidden neuron number
during the training and not convergence of BPNN with oversized hidden neuron
numbers. With more input neurons but less training patterns and output neurons,
BPNN produced similar results for all hidden neuron numbers. Iterations decreased
almost linearly with low training patterns and output neurons however, there was
not a linear decrement in iteration numbers according to the hidden neuron in-
crement for high training patterns and output neurons, and serious fluctuations
occurred.

In HPEX, it was observed that even the training patters were low enough, over
or undersized hidden neuron numbers may not learn or have difficulties during the
learning of the training patterns. Also increment of output neurons which depend
on the application, caused BPNN not to converge even with the highest hidden
neuron number considered. Although little fluctuations were observed in 20 hidden
neuron numbers, iterations were generally decreased linearly by the increment of
hidden neuron numbers. However, it should be noticed that, maximum iteration in
Experiment 4.1 is obtained by 20 hidden neurons which also achieved the highest
recognition rate.

In OPEX, it was observed that the fluctuations occurred both in generalization
ability and learning efficiency. Increment of TPE even with the same training
patterns causes BPNN not to converge in over-sized hidden neurons.

When we analyze the learning efficiency of BPNN, the obtained results show
that the increment of the hidden neuron numbers generally helps to decrease the
number of iterations during the learning. However, the use of a large number of
training patterns causes small or big fluctuations and unsteady iteration numbers
even with a higher number of hidden neurons. It was observed that the increment
of training patterns caused NN not to converge the training patterns in over-sized
hidden neurons, and the increment of both TPE and training patterns caused NN
not to converge both with over and under-sized hidden neuron numbers. It was not
common for all experiments, but we can conclude that the lowest hidden neuron
number generally needs more iterations to converge, as expected.

Difference between recorded maximum and minimum iteration numbers for the
corresponding experiment varied from 8 % to 98 %, however convergence in min-
imum or maximum iterations does not mean that learning is more effective than
others. Over-fitting training data occurred in many experiments and the analysis
of the generalization ability of NN showed that the effect of the hidden neuron
number was not linearly related to TPE, but related to the number of training
patterns. In experiments, where the training patterns were higher than 60, it was
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observed that the highest accuracy needs higher numbers of hidden neurons that
can converge.

5.2 Recommendations

As can be seen in the obtained results, there is not a linear relationship between
hidden neuron numbers and the generalization ability of BPNN. Therefore, we
can categorize the experiments according to TPE and training patterns as it was
done in this research, to set a non-linear relation between optimum accuracy and
hidden neuron numbers. Thus, researchers will be able to test the neural system
between the recommended minimum and maximum hidden neuron numbers for
their particular applications.

After analyses of fourteen experiments, it can be suggested that, if the training
patterns are less than 60, 5 hidden neurons can be used for low, medium, and stan-
dard processing elements and, hidden neuron numbers between 20 and 50 should
be considered in high-processing elements. For the applications those training pat-
terns are more than 60, researchers should consider 5-10 hidden neurons for low,
75-200 hidden neurons for medium, 20-30 hidden neurons for standard and high
processing elements. For over-sized processing elements, it is not recommended for
any number of training patterns to use hidden neuron numbers higher than 30 and
less than 10. Tab. VIII shows the suggested intervals for hidden neurons.

TrP <60 TrP >60

TPE Min. HN Max. HN Min. HN Max. HN

Low 5 – 5 10
Medium 5 – 75 200
Standard 5 – 20 30

High 20 50 20 30
Over-sized 10 30 10 30

Tab. VIII Suggested hidden neuron intervals.

6. Conclusions

Determination of optimum hidden neuron numbers in shallow neural networks is a
big challenge and based on trial and error during performing the experiments. Low
and high input-output neurons and, limited and increased training patterns should
be considered in different experiments to analyze the effect of hidden neuron num-
bers. In this paper, fourteen varied experiments are performed in order to observe,
analyze, and conclude the effect of the hidden neuron numbers on learning ability
and generalization rates of neural networks. Experiments consist both numerical
datasets and image-based databases and, divided into five categories according to
the total processing elements of neural networks. Eleven different hidden neuron
numbers which can be categorized as over, under, and normal-sized hidden neuron
numbers according to the recent researches, are considered.
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After performing fourteen experiments, it is once again proven that there is not
a linear relationship between the number of hidden neurons and the generalization
ability of BPNN which means an increment of hidden neuron number does not im-
prove the generalization ability directly. However, performed experiments allowed
us to determine hidden neuron intervals according to the total processing elements
and the number of training patterns of the applications to minimize the time loss
during trial and error for the determination of optimum hidden neuron number for
particular application.

In addition to these analyses, it is observed that the effective data preparation
step decreases the need for higher hidden neuron number and increases the recog-
nition rates for specific application even needs higher iteration numbers. Varying
or effective selection of training patterns may increase the accuracy of the neural
system for particular applications, however, the effect of hidden neuron numbers
will not differ in those applications.

Future work will include the analysis of hidden neuron number effect for big data
in shallow neural networks thus; recommendation of universal intervals for hidden
neuron number. Also the effect of hidden layer numbers in deep backpropagation
neural networks to find a linear or non-linear relationships between considered
hidden layers will be analyzed.
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