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Abstract: Knowledge graphs have been playing an important role in many Arti-
ficial Intelligence (AI) applications such as entity linking, question answering and
so forth. However, most of previous studies focused on the symbolic representation
of knowledge graphs with structural information, which cannot deal well with new
entities or rare entities with little relevant knowledge. In this paper, we propose a
new deep knowledge representation architecture that jointly encodes both structure
and textual information. We first propose a novel neural model to encode the text
descriptions of entities based on Convolutional Neural Networks (CNN). Secondly,
an attention mechanism is applied to capture the valuable information from these
descriptions. Then we introduce position vectors as supplementary information.
Finally, a gate mechanism is designed to integrate representations of structure and
text into the joint representation. Experimental results on two datasets show that
our models obtain state-of-the-art results on link prediction and triplet classifica-
tion tasks, and achieve the best performance on the relation classification task.
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1. Introduction

At present, knowledge bases have broad application prospects in the field of ar-
tificial intelligence such as question answering and sentiment analysis [5, 26]. A
knowledge base is usually represented as a network structure, using triplets (Head
Entity, Relation, Tail Entity) to represent knowledge. For instance, we know that
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Moscow is the capital of Russia. In knowledge bases, we will represent this fact
with the triple form as (Moscow, is capital of , Russia). However, network-based
knowledge representation methods face the following challenges: (1) Low computa-
tional efficiency. To make use of the knowledge in network-based knowledge bases,
it is often necessary to design specialized graph algorithms. However, these algo-
rithms are not suitable for knowledge reasoning. As the size of the knowledge base
increases, they usually encounter problems of low computational inefficiency and
the lack of scalability [15]. (2) Severe data sparsity. There are some rare entities in
the knowledge base with less associated knowledge, and their semantic calculation
accuracy is extremely low [24]. To solve the above challenges, researchers have
proposed knowledge representation learning methods based on deep learning, in
which TransE is the most widely used model [3]. However, TransE and most of
its extended models only use the structural information of knowledge bases, which
makes them difficult to deal with new entities or rare entities with little relevant
knowledge. The reason is that these entities have no or little structured information
available [21].

To tackle the data sparsity problem, many studies have begun to introduce tex-
tual information to improve knowledge representation [21, 28, 23]. For new or rare
entities, they employ text descriptions to supplement semantic information, which
can effectively alleviate the data sparsity problem. However, this strategy still has
following shortcomings: (1) Effective ways of combining textual and structural in-
formation have not been proposed. Many studies only align on word level or the
score function. (2) Textual information is not filtered. Not every word in a text
description helps to represent an entity with a specific relation.

Recently, Xu et al. proposed a joint knowledge representation model based on
bi-directional Long Short-Term Memory (LSTM) [24]. The model employs atten-
tion to filter the information in text descriptions, and proposes a gate mechanism
to combine textual and structure representations. It achieves the best performance
in classical tasks such as link prediction and triplet classification. However, the
bi-directional LSTM model needs to input the previous hidden state and position
to generate the next hidden state. This inherently sequential nature prevents the
training process from being parallelized. When processing continuous sequences,
the cross-batch processing of the training set is restricted due to memory constraints
[20].

To address the above problems and challenges, this paper proposes an attention-
based CNN joint knowledge representation model, referred to as ACNNM. The
model accurately captures the most relevant semantics in the text description,
mitigating the sparse problem of knowledge bases. Furthermore, ACNNM exploits
the advantages of convolution kernels for parallelization and efficient computation.
Specifically, we first propose a text encoder based on CNN, and then design a special
attention mechanism to select the semantic information that is most relevant to
the entity in the description. Secondly, ACNNM uses the TransE model to encode
the structure information of knowledge bases. Finally, this paper introduces a
gate mechanism to find a balance between structure and textual information. In
addition, we also propose an extended model PACNNM based on ACNNM. The
PACNNM model attempts to introduce a position vector at the input, so that
the encoder is able to capture the position information of words. Experiments
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on link prediction and triplet classification tasks show that the proposed model
can significantly improve the sparse problem. The results are highly competitive
compared with the state-of-the-art baselines, especially on the relation classification
task. The main contributions of this paper are as follows:

1. This paper proposes an attention-based CNN joint knowledge representation
model ACNNM for combining entity descriptions and structure information.
ACNNM designs a special attention mechanism to capture the most relevant
information in descriptions, which helps to improve the discrimination of
entity representation. To the best of our knowledge, this work is the first
to encode both structural and textual information of entities by using the
attention-based CNN model.

2. This paper also proposes an extended model PACNNM based on ACNNM.
The model introduces a position vector that enables CNN to capture posi-
tional information in text descriptions.

3. Experimental results demonstrate that the proposed models achieve compa-
rable performance against the state-of-the-art baselines on link prediction and
triplet classification tasks, and achieve the best performance on the relation
classification task.

2. Related work

Knowledge representation learning aims to learn the distributed representations of
entities and relations in knowledge graph, and project their representations into
a low-dimensional continuous semantic space, which has been widely utilized in
many knowledge-driven tasks. Unlike traditional representation methods, knowl-
edge representation learning provides much dense representations of entities and
relations, thereby reducing the computational complexity of its applications.

Attention mechanisms in neural networks (also called neural attention or at-
tention only) have been successfully applied to various natural language processing
tasks. The attention mechanism provides a neural network with the ability to fo-
cus on a subset of its inputs (or features), that is, it can select specific inputs to
improve the performance of the neural network.

In this section, we briefly summarize the related work from the following two
perspectives: knowledge representation learning and knowledge representation by
introducing textual information.

2.1 Knowledge representation learning

In recent years, knowledge representation learning has been a research hotspot
due to its excellent performance in various tasks such as knowledge acquisition,
integration, reasoning and topic evolution analysis [16, 10, 7, 9].

Bordes et al. proposed an unstructured model, which embed head and tail enti-
ties (h, t) into a vector space. The model assumes that head and tail entity vectors
are similar (i.e., ||h − t||22 ≈ 0), and relation vectors are set to zero in the score
function [1]. Therefore, it is impossible to distinguish different relations. Based on
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the unstructured model, Bordes et al. proposed a structured embedding model,
which assumes that head and tail entity vectors are similar only in the semantic
space of correlated relations [4]. Furthermore, Bordes et al. proposed a seman-
tic matching energy model, which uses a projection matrix to represent entities
and relations, and divides them into linear and bilinear forms according to a score
function [2]. After that, Bordes et al. proposed the TransE model, which is very
efficient while achieving the state-of-the-art predictive performance [3]. TransE has
therefore gradually become the most concerned knowledge representation model.

TransE represents the relation as a translation vector from the head entity to the
tail entity, aiming to project entities and relations into the same low-dimensional
vector space. However, entities cannot have different representations under differ-
ent relations in the TransE model. To solve the problem, Wang et al. proposed
the TransH model, which models the relation as a hyperplane and projected the
head and tail entity to a hyperplane with a specific relation [21]. Unlike TransE
and TransH assuming that entities and relations are in the same vector space, Lin
et al. proposed the TransR model, which represents entities and relations in differ-
ent semantic spaces, and embeds entities into corresponding relational spaces [14].
Based on TransR, Lin et al. further proposed the CTransR model, which uses the
clustering relationship to learn the representation vector for each relation [14]. To
solve the problem of too many parameters in TransR, Ji et al. proposed the TransD
model [11]. By considering the diversity of both entities and relations, TransD cre-
ates a dynamic mapping matrix for each entity-relation pair. In addition, Ji et al.
proposed the TranSparse model, replacing the dense matrix in the TransR model
with a sparse matrix [12]. Both head and tail entities have projection matrices,
where the number of connected entities determines the sparsity of the matrix.

However, the above methods only utilize the structural information of knowl-
edge bases, and fail to employ other information related to the knowledge base,
such as entity descriptions. By the contrast, the proposed models combine entity
descriptions with structural information to mitigate the sparse problem of knowl-
edge bases.

2.2 Knowledge representation by introducing textual
information

At present, many researchers try to integrate textual information to alleviate data
sparseness and improve knowledge representation. For instance, Socher et al. pro-
posed a knowledge representation model that represents an entity as the average of
word embeddings in the entity name [18]. By aligning entity names with Wikipedia
anchors, Wang et al. proposed a novel method that embeds knowledge and texts
into the same space to improve the accuracy of predicting facts [22]. Based on this
method, Zhong et al. extended the model to relate the knowledge and vocabulary
in entity descriptions [28]. However, the above methods align the two kinds of
embeddings on word level, resulting in the loss of semantic information on phrase
or sentence level. Zhang et al. use entity names or the average of word embeddings
in descriptions to represent entities, which ignores word order information in the
sentence [27].
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Xie et al. jointly learn knowledge graph embeddings with entity descriptions
[23]. They utilize CNN and continuous bag-of-words to encode semantics of entity
descriptions, and divides the score function into two parts based on structure and
description information, respectively. Although their method also exploits CNN
to encode textual information, its CNN only includes a convolution layer, a non-
linear layer and a pooling layer, which is very different from the CNN structure of
the proposed models. Xu et al. proposed a joint representation model based on
bi-directional LSTM [24]. An attention mechanism is used to select the relevant
text in entity descriptions, and a gate mechanism is designed to control the weight
of structural information and textual information. However, the hidden state of
the bi-directional LSTM model needs to be generated sequentially, and cannot be
processed in parallel during the training process, which limits the computational
efficiency of long sequences. In contrast, our models employ an attention-based
CNN to model both structure and textual information. Since the weights of neurons
on the same feature map are the same, CNN is very suitable for parallel processing.
To the best of our knowledge, this work is the first to encode both structural and
textual information of entities by using the attention-based CNN model.

3. Methodology

The joint model of this paper is mainly divided into three parts: structure rep-
resentation based on TransE, text representation based on CNN/ACNN/PACNN
and multi-source information fusion based on the gate mechanism. We first uti-
lize TransE to encode the structure information of triplets. Secondly, three text
encoders encoding the entity description are designed: CNN, CNN with an atten-
tion mechanism (ACCN) and ACCN with position information (PACNN). Finally,
a gate mechanism is used to determine the weight of the joint representation of
structure representation and text representation. Fig. 1 shows the overall frame-
work of the joint knowledge representation model. The functions of each layer of
the model are described in detail below.

3.1 Structure representation based on TransE

TransE-based representation models perform well in tasks such as knowledge rea-
soning, relationship extraction and so forth [6, 25]. Given a triplet (Head Entity,
Relation, Tail Entity), it is represented as (h, r, t). The vector corresponding to
triplet (h, r, t) is represented as (h, r, t). TransE is designed to represent enti-
ties and relations as low-dimensional continuous vectors. The vector of a positive
triplet should satisfy the formula h + r ≈ t, and negative triplets are not satisfied.
A score function fr(h, r, t) is used to distinguish whether two entities h and t are in
a certain relationship r, and to model the correctness of the triplet (h, r, t). For a
positive triplet (h, r, t) corresponding to a true fact in real world, fr(h, r, t) should
be larger, otherwise for an negative triplet, fr(h, r, t) should be lower. Therefore,
TransE defines the following score function to measure the quality of triplets:

fr(h, r, t) = ||h + r− t||L1/L2
, s.t., ||h||22 6 1; ||t||22 6 1. (1)
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Fig. 1 The overall framework of our joint knowledge representation model.

Eq. 1 is the L1 or L2 distance of vectors h + r and t. For a reasonable score
function, the scores of positive triplets are lower than negative triplets. For a
triplet (h, r, t), we denote hs and ts to be its head and tail embeddings of structure
information learned by the TransE model, respectively.

3.2 Text representation based on CNN/ACNN/PACNN

Currently, entities in large knowledge bases usually have their corresponding entity
description information. Entity descriptions contain semantic information of enti-
ties in various scenarios, which help to improve entity representations and make
them more discriminative. In this paper, we need to encode textual information
from entity descriptions of different lengths. Convolution kernels can capture the
local features of textual information, and CNN can be parallelized and efficiently
calculated. This paper therefore chooses the CNN-based text encoding method.

3.2.1 Text representation based on CNN

Preprocessing. The proposed model first removes the punctuation in entity de-
scriptions, and then each word is represented as a pre-trained word2vec embedding
[17].
Convolution layer. Let x1:n = x1, x2, . . . , xn be the words of a sentence of
length n. xi ∈ Rd denotes the word vector corresponding to the ith word in the
d-dimensional space. For a sentence x, the convolution layer selects a sequence of
words using a sliding window with size h to perform a convolution operation, and
outputs a feature map c. Due to the length of sentences is not fixed, this paper
takes the maximum length N as the standard. Zero paddings are added at the end
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of a sentence if it has less than N words. The sequence of words processed by the
sliding window is defined as:

xi:i+h−1 = xi, xi+1, . . . , xi+h−1. (2)

A convolution operation involves a filter w ∈ Rh×d, which is applied to a window
of h words to generate a new feature. For instance, a feature ci is generated from
a window of words xi:i+h−1 by:

ci = f(w · xi:i+h−1 + b), (3)

where b ∈ R is a bias term and f is an activation function. In this paper, we choose
ReLU activation function, which has the merits of a non-saturating form compared
to Sigmoid.

We use the same zero-padding strategy as in [13]. The output of the convolu-
tional layer is:

c = [c1, . . . , cn−h+1]. (4)

Pooling layer. Pooling (max, min, average etc.) is commonly used to extract
robust features from convolution. In this paper, average pooling is applied to each
feature map to induce a fixed-length vector. The ith vector of the pooling layer
output with window size h is:

ĉi = average(ci·1, . . . , ci·n−h+1). (5)

The output of the pooling layer is ĉ = [ĉ1, . . . , ĉm], where m denotes the number
of convolutional filters.

Dropout. Dropout is a technique to prevent neural networks from overfitting and
approximate a way to combine exponentially different neural network architectures
[19]. When training the model, the hidden unit has a probability to be temporarily
removed from the network, which can be sampled by a Bernoulli distribution. The
output of the dropout layer is defined as:

ĉ∗ = r� ĉ, r ∼ Bernoulli(ρ), (6)

where � is the element-wise multiplication operator, and r is a vector of 0 or 1
generated by a Bernoulli distribution with parameter ρ. These dropout units will
be ignored when computing input and output both in the progress of forward and
backward propagation.

Fully connected layers. Neurons in this layer have full connections with all
neurons in the previous layer to obtain the final output vector of the network. The
output of CNN is defined as:

ed = wo · ĉ∗ + bo, (7)

where wo is the convolution weights, bo is the bias. We denote hd and td to be
head and tail embeddings of textual information.
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3.2.2 Text representation based on ACNN

CNN encodes the whole text description, without considering that the description
information contains different semantics of the entity under various relations. This
means that given a triplet including a particular relation, information about other
relations contained in the description will be disturbed. Therefore, we proposes a
new text encoder ACNN based on CNN. ACNN designs an attention mechanism
that utilizes the relation of triplets to capture the most relevant information in the
description.

For a word sequence of the entity description x1:n = x1, x2, . . . , xn, when rela-
tion r ∈ Rd is given, the attention of the description is defined as:

a(r) = Softmax(x1:n · r). (8)

Suppose the output of the convolutional layer is c, and after adding the attention
weight, the output becomes c∗, which will be used as the input to the pooling layer.
c∗ is defined as follow:

c∗ = c · a(r). (9)

3.2.3 Text representation based on PACNN

Since ACNN encodes a text without considering the sequential feature of words,
word order information is lost. This paper proposes PACNN based on ACNN,
which introduces the positional encoding of words as supplementary information.
The jth component Ij of the input vector I consists of the component pj of the
position vector and the component xj of the word vector. The position vector pj
is a column vector with the following structure:

pij = (1− j/n)− (i/d)(1− 2j/n), (10)

where n is the number of words in the sentence, d is the dimension of the position
vector, i denotes the ith component of pj . Position vectors use the same dimension
as word vectors, which makes it easy to add them together.

Given a sequence of words x1:n = x1, x2, . . . , xn, the position vector is p1:n =
p1, p2, . . . , pn. After adding the position information, the new input of the encoder
is I1:n = x1 + p1, x2 + p2, . . . , xn + pn.

3.3 Multi-source information fusion

Both structural information and textual description provide effective information
for entities. In this paper, we employ a gate mechanism to integrate two information
sources into a joint representation ej , which is treated as the weighted summation
of structure representation es and text representation ed. Joint representation ej

is defined as:

ej = gs � es + gd � ed, s.t.,gd = 1− gs; gd,gs ∈ [0, 1], (11)

where gs and gd are the gates that balance two sources of information, � denotes
an element-wise multiplication. We use logistic sigmoid function σ to calculate the
gate g.

g = σ(g̃), (12)
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where g̃ ∼ Uniform(0, 1) is a real-valued vector and stored in a lookup table. σ is
employed to constrain the value of each element between [0, 1]. Once g̃ is learned
on training dataset, it will remain unchanged during the test. Similar to TransE,
the joint representation of the score function is defined as:

fr(h, r, t) = ||(ghs � hs + ghd � hd) + r− (gts � ts + gtd � td)||2L1/L2
, (13)

where ghs and ghd are the gates of head entities, and gts and gtd represent the
gates of tail entities.

3.4 Training

Following [3], we also exploit the maximum interval method [3, 18] to train our
model. In this paper, score function fr(h, r, t) is used to evaluate the quality of
triplets. The main idea is that each triplet from the training corpus should receive
a higher score than a triplet with one element replaced by a random element.
Therefore, we minimize the following objective function:

L =
∑

(h,r,s)∈X

∑
(h′ ,r′ ,s′ )∈X ′

max(0, fr(h, r, t) + γ − fr(h
′
, r

′
, t

′
)), (14)

where X is a set of positive triplets, X ′
denotes a set of negative triplets and γ > 0

is a margin hyperparameter between positive triplets and negative triplets. We use
stochastic gradient descent (SGD) to optimize the objective function.

The triplets in knowledge bases are all positive samples, and thus negative
triplets need to be generated. Following the sampling strategy described in [22],
we set different probabilities for replacing the head or tail entity, when corrupting
the triplet. This method divides the relationship into four types: 1-to-1, 1-to-N, N-
to-1 and N-to-N according to the number of connected entities at both ends. If the
relation is 1-to-N, we tend to give more chance to replace the head entity, and give
more chance to replace the tail entity if the relation is N-to-1. The rationale behind
this approach is that the chance of generating false negative labels is reduced.

For each triplet, positive samples are represented by X = {(hi, ri, ti)|yi = 1}
and negative samples are represented by X ′

= {(h′

i, r
′

i, t
′

i)|yi = −1}. The negative
samples in the training set are generated as follows:

X
′

= {(hneg, rk, tk)|hneg 6= hk ∧ yk = −1} ∪ {(hk, rk, tneg|tneg 6= tk ∪ yk = −1)}.
(15)

4. Experiment

In this section, we conduct experiments to demonstrate the effectiveness of our
proposed models against the state-of-the-art baseline methods on two benchmark
tasks: link prediction and triplet classification.

4.1 Datasets

In our experiments, we use two popular knowledge bases: WordNet and Freebase,
which have been used in a few studies [3, 4]. Specifically, we use WN18 (a subset
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of WordNet) and FB15K (a relatively dense subgraph of Freebase) because their
text descriptions are easily publicly available1. Please see Tab. I for more details
of the two datasets. #Rel and #Ent represent the number of relations and enti-
ties. #Train, #Vaild and #Test represent the size of training, validation and test
datasets, respectively.

Dataset #Rel #Ent #Train #Valid #Test

WN18 18 40,493 141,442 5,000 5,000
FB15K 1,345 14,951 483,142 50,000 59,071

Tab. I Statistics of datasets used in the experiments.

4.2 Baseline methods

Baseline methods are divided into three categories: (1) The models proposed
in this paper: CNNM, ACNNM and PACNNM. (2) Knowledge representation
models using only structural information: TransE [3], TransH [22], TransR [14],
CTransR [14], TransD [11], TranSparse [12], SME(linear) [2], SME(Bilinear) [2]
and Unstructured [1]. (3) Knowledge representation models using textual informa-
tion: Jointly(LSTM) [24], Jointly(A-LSTM) [24] and CNN+TransE [8]. Since the
datasets are the same, we directly copy experimental results of several baselines
from [24].

We set the embedding dimension d in {50, 100, 150}, the margin γ in {0.1, 1, 3, 5,
10}, the learning rate λ in {0.000001, 0.0001, 0.01, 0.1, 1}, the number of filters f in
{16, 32, 64, 128}, the size of kernel s in {1, 2, 3, 4, 5}. The dropout rate is set to 0.5
and the similarity measure L is set either to the L1 or L2 distance. To accelerate
convergence and avoid overfitting, the results of TransE are used to initialize the
structure embeddings of entities and relations.

In the experiment, CNNM, ACNNM and PACNNM share the same set of op-
timal hyperparameters. In the link prediction task, the optimal hyperparameters
of the proposed models are: d = 150, γ = 2, λ = 0.0001, f = 64, s = 5, L = L1 on
FB15K; d = 50, γ = 5, λ = 0.0001, f = 64, s = 5, L = L1 on WN18. In the triplet
classification task, the optimal hyperparameters are: d = 150, γ = 1, λ = 0.1, f =
16, s = 1, L = L1 on FB15K; d = 50, γ = 0.1, λ = 0.1, f = 64, s = 5, L = L1 on
WN18.

4.3 Link prediction

The link prediction task is designed to predict missing head or tail entities in
triplets. For each valid triple, we first replace its head or tail entity with other
entities. Then we calculate the scores of corrupted triplets, sort the scores in
ascending order, and finally record the rank of triplets. Following [3], two measures
as our evaluation metrics are reported. (1) Mean: the averaged rank of valid
entities; (2) Hits@10: the proportion of correct entities ranked in top 10 predictions.

1https://github.com/xrb92/DKRL
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A good representation model should have a lower Mean and a higher Hits@10 value
under this task.

Following [22], the above evaluation setting is called “Raw”. Triplets may also
be valid after replacing head or tail entities. It is unreasonable that such corrupted
triplets may be ranked in front of positive triplets. Therefore, such false predicted
triplets in training, test and validation sets should be removed before ranking.
This evaluation setting is called “Filt”. Experimental results on both datasets
under these two settings are shown in Tab. II.

Datasets WN18 FB15K

Metric
Mean Hits@10 Mean Hits@10
Raw Filt Raw Filt

TransE (Baseline) 263 251 75.4 89.2 243 125 34.9 47.1
TransH 401 388 73.0 82.3 212 87 45.7 64.4
TransR 238 225 79.8 92.0 198 77 48.2 68.7
CTransR 231 218 79.4 92.3 199 75 48.4 70.2
TransD 224 212 79.6 92.2 194 91 53.4 77.3
SME(linear) 545 533 65.1 74.1 274 154 30.7 40.8
SME(Bilinear) 526 509 54.7 61.3 284 158 31.3 41.3
Unstructured 315 304 35.3 38.2 1074 979 4.5 6.3

Jointly(LSTM) 117 95 79.5 91.6 179 90 49.3 69.7
Jointly(A-LSTM) 134 123 78.6 90.9 167 73 52.9 75.5
CNN+TransE – – – – 181 91 49.6 67.4

CNNM 110 101 75.6 89.1 181 70 52.4 72.4
ACNNM 105 94 78.8 90.3 166 68 53.1 74.6
PACNNM 104 94 77.5 89.0 171 69 52.0 71.5

Tab. II Results on link prediction on two datasets.

From the results, we make the following observations. One observation is that
compared with CNN+TransE, which is also based on CNN, all proposed models
achieve better performance on all metrics. The reason may be that the CNN struc-
ture chosen by our models is more suitable for encoding the semantic information
of descriptions. Furthermore, we introduces a gate mechanism to strengthen the
semantic relation between two information sources, which is better than using only
weights. The proposed models employ an attention mechanism to filter the ef-
fective information of texts, which in turn enhances the discrimination of entity
representations.

As for Jointly(A-LSTM), which is the best state-of-the-art method, the per-
formance of ACNNM is relatively competitive on both datasets, and significantly
higher than baseline methods on the Mean metric. The experimental results indi-
cate that ACNNM can effectively capture the semantic information of texts and
integrate two kinds of entity representation.

Compared with the TransD model that only uses structural information, the
proposed models are much better in terms of the Mean metric and are slightly worse
on the Hits@10 metric. The reason is that introducing text description information
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can effectively alleviate data sparsity. Nevertheless, it may affect frequent entities
during the training process, leading to its poorer results on the Hits@10 metric.
Although our models perform worse than TransD on the Hits@10 metric, it is worth
noticing that the proposed models are based on TransE rather than TransD. If we
expand on other excellent representation models such as TransD, we should be able
to further improve the performance of our models.

In addition, ACNNM always performs better than CNNM, which validates that
the attention mechanism can enhance the semantic difference of text representa-
tion, further improving the discrimination of entity representation. On the FB15k
dataset, PACNNM performs worse than ACNNM. This may be because the length
of sentences on the dataset is seriously differentiated, and fixed position coding
cannot effectively fit this difference. As a result, it could incur some noise into the
training process. On the WN18 datasets, PACNNM and ACNNM perform simi-
larly. The reason is that the sentences of the dataset are short and the length of
sentences is close to each other. The position vector of PACNNM is more suitable
for fitting the dataset.

Relation classification. To further demonstrate the performance of the models,
we divides the relation into four types: 1-to-1, 1-to-N, N-to-1 and N-to-N, and
compares the results of Hit@10(Filt) on FB15k under different kinds of relations.

Task Prediction Head (Hits@10) Prediction Tail (Hits@10)
Relation Category 1-to-1 1-to-N N-to-1 N-to-N 1-to-1 1-to-N N-to-1 N-to-N

TransE (Baseline) 43.7 65.7 18.2 47.2 43.7 19.7 66.7 50.0
TransH 66.7 81.7 30.2 57.4 63.7 30.1 83.2 60.8
TransR 78.8 89.2 34.1 69.2 79.2 37.4 90.4 72.1
CTransR 81.5 89.0 34.7 71.2 80.8 38.6 90.1 73.8
SME(linear) 35.1 53.7 19.0 40.3 32.7 14.9 61.6 43.3
SME(Bilinear) 30.9 69.6 19.9 38.6 28.2 13.1 76.0 41.8
Unstructured 34.5 2.5 6.1 6.6 34.3 4.2 1.9 6.6

Jointly(LSTM) 81.3 88.9 18.8 45.2 80.1 25.4 89.6 52.4
Jointly(A-LSTM) 83.8 95.1 21.1 47.9 83 30.8 94.7 53.1

CNNM 82.4 94.8 35.9 72.2 80.0 45.5 94.7 75.3
ACNNM 84.9 95.5 39.6 74.5 84.6 49.9 94.9 77.8
PACNNM 81.4 95.3 37.0 71.0 82.7 45.3 94.4 74.6

Tab. III Results on the FB15k dataset by relation classification.

Tab. III reports the Hits@10(Filt) results of the different models on these
groups. From Tab. III, we can see that the improvement of ACNNM over the
baseline TransE on all groups are very promising, especially in the head entity
prediction under N-to-1 and N-to-N relations and the tail entity prediction under
1-to-N and N-to-N. The results demonstrate that text descriptions benefit not only
simple relations, but also complex relations.

156



Gao W. et al.: Representation learning of knowledge graphs using convolutional. . .

4.4 Triplet classification

Triplet classification aims to confirm whether a given triplet (h, r, t) is a correct
fact or not, which is a binary classification task. In this experiment, we continue
to use the two datasets FB15K and WN18 to evaluate our approach. The two test
sets only contain correct triplets, which requires us to construct negative triplets.
In this paper, we construct negative triplets following the same setting used in
[18]. The method randomly replaces the head entity of a positive triplet to form
a negative sample, and the replaced entity can only be selected from an entity set
corresponding to the relation of the triplet. Therefore, the method avoids obvious
unrelated triplets in the negative set, which makes the semantic difference between
the negative triplet and the positive triplet smaller. As a result, it increases the
difficulty of the triplet classification task.

Accuracy is used as the evaluation metric of the task. Specifically, for triplet
classification, we set a threshold εr for each relation r. For a triplet (h, r, t), if
its score is less than εr, it will be classified as a negative triplet, otherwise a
positive triplet. The task first reaches the maximum accuracy of the validation set
and obtains the threshold εr of each relationship. On the FB15k dataset, some
relations appear in the validation set but not in the test set. The average value of
thresholds of the relations that have occurred in the validation set is used as the
missing threshold. The triplet classification accuracy on the two datasets is shown
in Tab. IV. We highlight the best results in bold.

Datasets WN18 FB15k

TransE (Baseline) 92.9 79.8
TransH – 79.9
TransR – 82.1

CTransR – 84.3
TransD – 88.0

TranSparse – 88.5

Jointly(LSTM) 97.7 90.5
Jointly(A-LSTM) 97.8 91.5

CNNM 96.8 87.4
ACNNM 97.7 87.2

PACNNM 98.1 90.3

Tab. IV Results on triplet classification on two datasets.

The results reveal that our joint encoding models perform better than the base-
line method TransE, and the performance of ACNNM is relatively competitive
compared with the state-of-the-art methods. The results indicate that the pro-
posed text encoding method can effectively encode semantic information, and can
be well integrated into the entity representation, which enhances the semantic dis-
tinction of triplets.

Compared with CNNM and ACNNM, PACNNM achieves the best performance
on both dataset. The results indicate that the PACNNM model, which intro-
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duces position information, can find more precise thresholds for complex relations.
Therefore, the gap between positive and negative sample scores is enhanced. On
the FB15K dataset, ACNNM is slightly worse than CNNM. However, ACNNM
achieves a better performance than CNNM on the WN18 dataset. This may be
because the length of descriptions in FB15k is longer than WN18, and the num-
ber of relations is much larger than WN18. The attention mechanism of ACNNM
weakens the difference of scores when simulating such semantic information.

5. Conclusions and future work

This paper proposes a joint knowledge representation model based on CNN with
an attention mechanism, and improves knowledge representation by introducing
entity descriptions. Firstly, we proposes a text encoder based on CNN. Secondly,
we design an attention mechanism to filter the text description most relevant to
the relation. Furthermore, position information is introduced to extend the model.
Finally, a gate mechanism is used to combine structure and textual information
to obtain the final joint representation. Extensive experiments on the tasks of
link prediction and triplet classification show that our models bring promising im-
provements to TransE. In particular, the propose model outperforms all baseline
methods on the relation classification task. In the future, we will extend the model
based on other excellent knowledge representation models such as TransD. Addi-
tionally, we will extend our model to encode category information, using categories
as constraints on entities.
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