
A DISCRETE BUTTERFLY-INSPIRED
OPTIMIZATION ALGORITHM FOR SOLVING
PERMUTATION FLOW-SHOP SCHEDULING

PROBLEMS

X. Qi∗, Z. Yuan∗, X. Han∗, S. Liu†∗

Abstract: Permutation Flow-Shop Scheduling Problem (PFSP) which exists in
many manufacturing systems is a classic combinatorial optimization problem. Stud-
ies have shown that the PFSP including more than three machines belongs to the
NP-hard problems and is difficult to solve. Based on a new bio-inspired algorithm –
Artificial Butterfly Optimization (ABO) algorithm, this paper presents a Discrete
Artificial Butterfly Optimization (DABO) algorithm to find the permutation that
gives the smallest completion time or the smallest total flow time. The performance
of the proposed algorithm is tested on well-known benchmark suites of Car, Reeves
and Taillard. The experimental results show that the proposed algorithm is able
to provide very promising and competitive results on most benchmark functions.
The DABO algorithm is then employed for one production optimization problem.

Key words: Artificial Butterfly Optimization, artificial bee colony algorithm, parti-
cle swarm optimization, Permutation Flow-Shop Scheduling Problem

Received: June 18, 2019 DOI: 10.14311/NNW.2020.30.015
Revised and accepted: August 30, 2020

1. Introduction

Permutation Flow-Shop Scheduling Problem (PFSP) is a classic combinatorial op-
timization problem. The typical PFSP is described below [8]: A set of n jobs must
be performed on m machines. All jobs have the same order on each machine. One
job is processed by only one machine at any time. One machine processes only one
job at a time. The processing time on any machine is known and deterministic.
The processing time of individual jobs on different machines could be and usually
is different. Travel time between two consecutive machines is negligible. The ob-
jective is to find an optimal permutation for the minimum completion time or the
minimum total flow time.

∗Xiangbo Qi – Corresponding author; Zhonghu Yuan; Xiaowei Han; School of Mechani-
cal Engineering, Shenyang University, Shenyang 110044, China, E-mail: ustcdragon@126.com,
drqixiangbo@gmail.com

†Shixin Liu; School of Information Science and Engineering, Northeastern University, Shenyang
110004, China.

©CTU FTS 2020 211

mailto:ustcdragon@126.com
mailto:drqixiangbo@gmail.com


Neural Network World 4/2020, 211–229

Suppose π = (π1, π2, . . . , πn) is a permutation of n jobs. P (πi, j) denotes the
processing time of job πi on machine j. The completion time of job πi on machine
j is denoted by C(πi, j). The objective function can be the minimization of the
makespan (Cmax) or the total flow time (TFT ), and so on. The completion time
for the n-job and m-machine problem is computed as follows:

C(π1, 1) = P (π1, 1), (1)

C(πi, 1) = C(πi−1, 1) + P (πi, 1), i = 2, . . . , n, (2)

C(π1, j) = C(π1, j − 1) + P (π1, j), j = 2, . . . ,m, (3)

C(πi, j) = max {C(πi−1, j), C(πi, j − 1)}+P (πi, j), i = 2, . . . , n, j = 2, . . . ,m. (4)

The objective is to find the optimal permutation π∗

Cmax(π∗) ≤ C(πn,m) (5)

or

TFT =

n∑
i=1

C (πi,m). (6)

Cmax and TFT are widely used for measuring the quality of a schedule. Makespan
is important for effective utilization of resources. Makespan is defined as the com-
pletion time of the last job to leave the system. TFT is defined as the total time
spent by the jobs in the production system. Total flow time is one of the most im-
portant performance measures. TFT can help to effective utilization of resources,
rapid turn-around of jobs, and minimization of work-in-process inventory costs [3].
A little improvement for makespan or TFT can save much processing time and
enhance production efficiency. Just because of this, PFSP has been studied in
optimization theoretic research and engineering application field [10,20,25].

Studies have shown that the PFSP including more than three machines be-
longs to the NP-hard problems and is difficult to solve. PFSP with the objective
of minimizing makespan has been proven to be a NP-complete problem [1, 7, 17].
PFSP with the objective of minimizing total flow time has been proven to be a
NP-complete problem [4]. Lots of different algorithms have been proposed to solve
the PFSP. The specific algorithms are sensible to the number of machines [22].
So, lots of heuristic algorithms for PFSPs are proposed [4, 5, 10, 11]. Among these
existing heuristics, the Nawaz-Enscore-Ham (NEH) algorithm [10] is a well-known
constructive method. The NEH algorithm was claimed to be good for minimizing
the makespan, but not good for minimizing the total flow time. However, meta-
heuristic algorithms can obtain effective results. In recent decade, an increasing
number of research papers focusing on meta-heuristics for PFSP have been pub-
lished [12, 20, 23, 25]. For example, particle swarm optimization (PSO) algorithm
was inspired by the swarm behavior of birds and fish [6]. Tasgetiren employed
PSO to solve PFSP [20]. In the literature, a very efficient local search, called vari-
able neighborhood search (VNS), was embedded in the PSO algorithm to solve the
well known benchmark suites. Artificial bee colony (ABC) algorithm is a popular
swarm intelligence based algorithm by modeling foraging behaviors of honeybee
colony. In order to find the permutation that gives the smallest total flow time, a

212



Qi X., et al.: A discrete butterfly-inspired optimization algorithm for. . .

discrete artificial bee colony algorithm hybridized with a variant of iterated greedy
algorithms is proposed [23]. Teaching learning based optimization (TLBO) pro-
posed by Rao [14, 15] is a new optimization method simulating a classical school
learning process. Tasgetiren combined a variable neighborhood search method for
fast solution improvement and TLBO for solution evolution and proposed a hy-
brid TLBO algorithm (HTLBO) [25]. Qi in [13] introduced an Artificial Butterfly
Optimization (ABO) algorithm to optimize continuous functions. Numerical com-
parisons demonstrated that the ABO algorithm is able to provide very promising
and competitive results on most benchmark functions. As there is no detailed work
that describes the use of the ABO algorithm to deal with the PFSP, we present a
novel discrete ABO (DABO) algorithm for solving the PFSP in this paper.

The remainder of the article is organized as follows. Section 2 introduces the
original ABO algorithm. Section 3 proposes a novel discrete artificial butterfly op-
timization algorithm, gives the pseudo code and the details of the new algorithm.
Section 4 gives experiment details of the new algorithm on three well-known test
suites and discusses the computational results over the test suites. A real applica-
tion is also presented in Section 4. Finally, section 5 gives the conclusions.

2. Original artificial butterfly algorithm

Artificial Butterfly Optimization (ABO) algorithm is one of recently developed
meta-heuristic algorithms developed by Qi [13]. The ABO algorithm is based on the
mate-finding strategy of some butterfly species. It classifies the artificial butterflies
into two groups. Two groups of artificial butterflies including sunspot group and
canopy group are employed for simulating the flight strategies. The sunspot group
has better fitness and the canopy group has worse fitness. The purpose of all the
artificial butterflies is to find better locations.

There are three flight modes including sunspot flight mode, canopy flight mode
and free flight mode. The sunspot group employs sunspot flight mode. The canopy
group employs canopy flight mode and free flight mode. These three modes can be
given different flight strategies. That is to say, if the flight strategies of artificial
butterflies are redefined, ABO represents a new algorithm. The pseudo code of the
ABO algorithm is given in Algorithm 1.

3. Discrete artificial butterfly algorithm

In order to solve PFSP problems, we redefine the flight strategies of artificial but-
terflies and a discrete artificial butterfly algorithm (DABO) is proposed.

A. Solution representation Firstly, the solution representation is given. The so-
lution is represented by a permutation of jobs π = (π1, π2, . . . , πn). For exam-
ple, the solution [6, 5, 3, 2, 4, 1] for PFSP with six jobs means the processing
sequence 6, 5, 3, 2, 4, 1. This solution representation is simple.

B. Population initialization The initial solutions are constructed according to the
smallest position value (SPV) rule [4]. X = (X1, X2, . . . , Xn) corresponds to

213



Neural Network World 4/2020, 211–229

Algorithm 1 Pseudo code of the ABO algorithm.

Step 1: Initialization phase
Initialize the locations of butterfly population
Evaluate the fitness of every butterfly
Step 2: Division phase
Sort all butterflies by their fitness
Select some butterflies with better fitness to form sunspot group, the rest form
canopy group
Step 3: Sunspot group phase
for For each butterfly in sunspot group do

Fly to one new location according to sunspot flight mode
Evaluate the fitness of the new sunspot
Apply greedy selection on the original location and the new one

end for
Step 4: Canopy group phase
for For each butterfly in canopy group do

Fly to one randomly selected sunspot butterfly according to canopy flight
mode
Evaluate the fitness
if better fitness then

Apply greedy selection on the original location and the new one
else

Fly to new location according to free flight mode
end if

end for
Step 5: If meet termination condition, stop the procedure; otherwise, go to
step 2
Step 6: Post processing phase

a n-dimensional real-valued vector. X is produced randomly according to the
following formula:

Xi = Xmin + (Xmax −Xmin) ∗ rand, i = 1, 2, . . . , n, (7)

where Xmin = −1, Xmax = 1, rand is a uniform random number between 0
and 1.

π = (π1, π2, . . . , πn) corresponds to a permutation of n jobs. SPV represents a
direct relationship between X and π. Tab. I gives an example of converting X

Dimension,j 1 2 3 4 5 6

X 0.28 −0.92 0.98 −0.52 0.69 −0.99
π 6 2 4 1 5 3

Tab. I SPV based solution representation of individual.

214



Qi X., et al.: A discrete butterfly-inspired optimization algorithm for. . .

to π. According to the SPV rule, the smallest position value is X6 = −0.99, so
the dimension j = 6 is assigned to be the first job π1 = 6 in the permutation
π. The second smallest position value is X2 = −0.92, so the dimension j = 2
is assigned to be the second job π2 = 2 in the permutation π, and so on.

C. Sunspot flight mode

According to the original ABO algorithm, the sunspot butterflies have better
fitness and the sunspot butterflies are responsible for exploiting the better
region. According to this, we propose some strategies to enhance the local
search ability of sunspot butterflies. First, each sunspot butterfly generates a
new solution using a crossover operator. Fig. 1 gives an example of crossover

6 
 

Step 2: Copy jobs between the two jobs to the new solution 
Step 3: Copy the rest of the original solution to the rest position of the new solution 

according to the order in the original solution 
 

Algorithm 3  Pseudo code of local search algorithm. 
1. input an initial solution ߨ  
2. Set initial parameters: ܶ, ܶ, ,ܥ ,୫ୟ୶ܭ ݇ ൌ 0 
ଵߨ .3 ൌ  ߨ
4. While (݇ ൏   (୫ୟ୶ܭ
5.    While ( ܶ  ܶ) 
6.      Produce a new solution ߨଶ from the neighborhood of ߨଵ  
7.      If (݂݅ݏݏ݁݊ݐሺߨଶሻ   (ଵሻߨሺݏݏ݁݊ݐ݂݅
ଵߨ		          .8 ൌ  ଶߨ
9.      end if 
10.      ܶ ൌ ܥ ൈ ܶ 
11.    end while 
12.    if(݂݅ݏݏ݁݊ݐሺπଵሻ   (ሺπሻݏݏ݁݊ݐ݂݅
ߨ        .13 ൌ  ଵߨ
14.    else 
15.        k ൌ k  1 
16.    end if 
17.  end while 
18.  return ߨ 

 

 

 Fig. 1 crossover operator. 

D. canopy flight mode 

According to the original ABO algorithm, the canopy butterflies have worse fitness 
and the canopy butterflies are responsible for exploring new regions. The canopy 
butterflies gain experience from the sunspot butterflies. This process also uses the 
method as shown in Fig. 1. 

E. free flight mode 

A mutation operator is employed. Randomly select two different jobs from a 
solution and swap them. Fig. 2 illustrates the mutation process. 

Fig. 1 Crossover operator.

learning. Sunspot butterfly a flies to a new position b towards a neighbor
sunspot butterfly c. Second, two discrete algorithms including inserting al-
gorithm [23] and local search algorithm [25] are applied to the new solution.
Algorithm 2 gives the pseudo code of inserting algorithm. Algorithm 3 gives

Algorithm 2 Pseudo code of inserting algorithm.

Input an initial solution π0
Set i = 1 do
j = i+ 1 do
π1 = π0
Insert the job in the position i to the position j in π1
if (fitness(π1) > fitness(π0)) then
π0 = π1
i = 1
j = i+ 1

else
j = j + 1

end if
while (j < n) do
i = i+ 1

end while
while (i < n) do

return π0
end while

215



Neural Network World 4/2020, 211–229

Algorithm 3 Pseudo code of local search algorithm.

input an initial solution π0
Set initial parameters: T0, Tf , Cr,Kmax, k = 0
π1 = π0
while (k < Kmax) do

while (T0 > Tf ) do
Produce a new solution π2 from the neighborhood of π1
if (fitness(π2) > fitness(π1)) then
π1 = π2

end if
T0 = Cr × T0

end while
if (fitness(π1) > fitness(π0)) then
π0 = π1

else
k = k + 1

end if
end while
return π0

the pseudo code of the local search algorithm. It is worth noting that the
simulating annealing method (SA) [9, 21] is employed in the local search al-
gorithm. SA has several parameters: the initial temperature T0, the final
temperature Tf and the cooling rate Cr. Readers can refer to the literature
we have mentioned for the details of the algorithm.

In the original ABO algorithm, a sunspot butterfly flies to a new position
towards a neighbor sunspot butterfly. For PFSP, a sunspot butterfly employs
a crossover operator to generate a new solution. The crossing process is as
follows:

Step 1: Randomly select two different jobs from the neighbor solution (Sunspot
butterfly)

Step 2: Copy jobs between the two jobs to the new solution

Step 3: Copy the rest of the original solution to the rest position of the new
solution according to the order in the original solution

D. Canopy flight mode

According to the original ABO algorithm, the canopy butterflies have worse
fitness and the canopy butterflies are responsible for exploring new regions.
The canopy butterflies gain experience from the sunspot butterflies. This
process also uses the method as shown in Fig. 1.

E. Free flight mode

A mutation operator is employed. Randomly select two different jobs from a
solution and swap them. Fig. 2 illustrates the mutation process.

216



Qi X., et al.: A discrete butterfly-inspired optimization algorithm for. . .

7 
 

Fig. 2 Mutation operator. 

 

Algorithm 4  Pseudo code of the DABO algorithm. 
Step 1: Initialization phase 

1.1 Initialize the butterfly population using SPV rule 
1.2 Evaluate the fitness of every butterfly  

Step 2: Division phase 
2.1 Sort all butterflies by their fitness 
2.2 Select some butterflies with better fitness to form sunspot group, the rest form 

canopy group 
Step 3: Sunspot group phase 

3.1 For each butterfly in sunspot group 
3.2   Generate a new solution using crossover operator  
3.3   Compute the fitness of the solution 
3.4   Apply greedy selection on the original solution and the new one 
3.5   Generate a new solution using inserting algorithm 
3.6   Generate a new solution using local search algorithm 
3.7 End for 

Step 4: Canopy group phase 
4.1 For each butterfly in canopy group 
4.2   Generate a new solution using crossover operator 
4.3   Compute the fitness of the solution 
4.4   If (better)  
4.5     Apply greedy selection on the original solution and the new one 

  4.6   else 
 4.7     Generate a new solution using mutation operator 
 4.8   End if 
4.9 End for 

Step 5: If meet termination condition, stop the procedure; otherwise, go to step 2 
Step 6: Post processing phase 

 

Algorithm 4 gives the pseudo code of the DABO algorithm. The flowchart of the 
DABO algorithm is shown in Fig. 3. The proposed algorithm is composed of five 
phases: initialization phase, division phase, sunspot group phase, canopy group phase 
and post processing phase. The initialization phase initializes each solution of the 
population and evaluates the fitness of each solution. In the division phase, the 
population is divided into two subpopulations according to the fitness of the solution. 

Fig. 2 Mutation operator.

Algorithm 4 gives the pseudo code of the DABO algorithm. The flowchart
of the DABO algorithm is shown in Fig. 3. The proposed algorithm is com-
posed of five phases: initialization phase, division phase, sunspot group phase,
canopy group phase and post processing phase. The initialization phase ini-
tializes each solution of the population and evaluates the fitness of each solu-

Algorithm 4 Pseudo code of the DABO algorithm.

Step 1: Initialization phase
Initialize the butterfly population using SPV rule
Evaluate the fitness of every butterfly
Step 2: Division phase
Sort all butterflies by their fitness
Select some butterflies with better fitness to form sunspot group, the rest form
canopy group
Step 3: Sunspot group phase
for butterfly in sunspot group do

Generate a new solution using crossover operator
Compute the fitness of the solution
Apply greedy selection on the original solution and the new one
Generate a new solution using inserting algorithm
Generate a new solution using local search algorithm

end for
Step 4: Canopy group phase
for each butterfly in canopy group do

Generate a new solution using crossover operator
Compute the fitness of the solution
if (better) then

Apply greedy selection on the original solution and the new one
else

Generate a new solution using mutation operator
end if

end for
Step 5: If meet termination condition, stop the procedure; otherwise, go to
step 2
Step 6: Post processing phase

217



Neural Network World 4/2020, 211–229

8 
 

The subpopulation with better fitness form sunspot group, while the rest form canopy 
group. The sunspot group is responsible for the exploitation of solutions while the 
canopy group is responsible for the exploration of solutions. Exploitation and 
exploration are two important aspects of meta-heuristic algorithms. There is a the 
balance between the right amount of exploration and the right degree of exploitation. 

Start

Initialize population

Calculate fitness

Form two groups
(sunspot group and canopy group)

Crossover procedure

Does the 
solution 

have better 
fitness?

Calculate fitness of the new 
solution

Replace the solution with the 
new one

Is there any Individual
in sunspot group that hasn't 

been traversed?

Crossover procedure

Calculate fitness of the new 
solution

Does the 
solution 

have better 
fitness?

Replace the 
solution with 
the new one

Mutation 
procedure

Is there any Individual
in canopy group that hasn't 

been traversed?

Meet the 
Termination condition?

No

No

Yes

Yes No Yes

NoYes

No

End

Yes

Sort butterflies by fitness

Inserting procedure

Local search procedure

 Fig. 3 Flowchart of the DABO Algorithm. 
Fig. 3 Flowchart of the DABO Algorithm.

218



Qi X., et al.: A discrete butterfly-inspired optimization algorithm for. . .

tion. In the division phase, the population is divided into two subpopulations
according to the fitness of the solution. The subpopulation with better fitness
form sunspot group, while the rest form canopy group. The sunspot group
is responsible for the exploitation of solutions while the canopy group is re-
sponsible for the exploration of solutions. Exploitation and exploration are
two important aspects of meta-heuristic algorithms. There is a the balance
between the right amount of exploration and the right degree of exploitation.

Exploitation nature of the sunspot group phase is its distinguished feature.
Because the sunspot group is composed of individuals with good fitness, this
phase can concentrate on the local regions or neighborhood of these individ-
uals. So, the solution is generated by a variety of search strategies (crossover,
inserting and local search). These search strategies start from a promising
solution respectively and progressively improve it by applying a series of local
modifications.

In the canopy group phase, sunspot butterflies provide information sharing
for canopy butterflies, in which canopy butterflies can be optimized. Mean-
while, a mutation operator is introduced to enhance the diversity of solutions.
By using mutation operator, the canopy butterfly which is not improved con-
structs a solution to the problem. Mutation operator makes this stage have
the characteristics of exploration.

With the iteration, the division phase, the sunspot group phase and the
canopy group phase are repeated. The use of combination of these three
phases leads to high quality solutions.

4. Validation and Comparison

4.1 Benchmark Problems

To test the performance of the DABO algorithm, computational simulation is car-
ried out with 69 well-known benchmark problems of PFSPs. The benchmark suites
include Car benchmark suite [2], Reeves benchmark suite [16] and Taillard bench-
mark suite [19]. The Car benchmark suite includes 8 problems which are denoted
by car1, car2, till car8. The Reeves benchmark suite includes 21 problems which are
denoted by rec1, rec3, rec5 through rec41. The Taillard benchmark suite includes
40 problems which are denoted by ta001, ta002, till ta040. Reeves instances and
Taillard instances are widely adopted by other researchers to test their algorithms
for solving middle-sized and large-sized problems in many works [24,26].

Reeves benchmark suite includes 7 groups which are denoted by 20 × 5, 20 ×
10, 20 × 15, 30 × 10, 30 × 15, 50 × 10 and 75 × 20. Each Reeves group includes 3
instances. Taillard benchmark suite include 4 groups which are denoted by 20 ×
5, 20× 10, 20× 20 and 50× 5. Each Taillard group includes 10 instances.

In order to compare the merits of the proposed algorithm with the other algo-
rithms, some parameters are chosen as the reference standard, as shown as follows.

Best Relative Deviation (BRD):

BRD =
min(Cmax − C∗)

C∗ × 100 %, (8)

219



Neural Network World 4/2020, 211–229

Average Relative Deviation (ARD):

ARD =
avg(Cmax − C∗)

C∗ × 100 %, (9)

Worst Relative Deviation (WRD):

WRD =
max(Cmax − C∗)

C∗ × 100 %, (10)

Best Average Relative Percentage Deviation (BARPD):

BARPD =

(
k∑

i=1

min (Cmax)− C∗

C∗

)
/k, (11)

Average Average Relative Percentage Deviation (AARPD):

AARPD =

(
k∑

i=1

avg (Cmax)− C∗

C∗

)
/k. (12)

In Eq. (8), Eq. (9), Eq. (10), Eq. (11) and Eq. (12), C∗ denotes the best known
makespan for the instance and Cmax denotes the makespan of a solution generated
by a given algorithm. It is worth noting that C∗ is replaced with TFT ∗ and Cmax is
replaced with TFT when the objective is to compute the total flow time. k denotes
the number of instances in different groups in a test set. The lower BARPD is,
the higher performance is. The lower AARPD is, the higher performance is.

4.2 Experiment Sets

The population size is 10×m. The termination condition is 0.1× n×m seconds.
In order to do meaningful statistical analysis, each algorithm runs for 10 times
and takes the mean value and the best value as the final result. PSOvns [20],
HTLBO [25] and NEH [10] were employed for comparison. The control parameters
for the comparison algorithms were set according to the original literatures. For
DABO, T0 = 1000, Tf = 1, Cr = 0.9.

In this paper, all algorithms were implemented in Java using computer with Intel
Core i5-2450M CPU, 2.5 GHz processor and 2 GB RAM. The operating system of
the computer is Windows 7.

4.3 Experiment Results and Analysis

1) Results for the Car instances with makespan criterion

Both the DABO algorithm and the HTLBO algorithm generate 8 best BRD
values. The PSOvns algorithm generates 7 best BRD values. The DABO
algorithm generates 8 best ARD values. The HTLBO algorithm generates 6
best ARD values.

Fig. 4 gives the line chart of BARPD with different algorithms on Car in-
stances with makespan criterion. Fig. 5 gives the line chart of AARPD with
different algorithms on Car instances with makespan criterion. It is clear
from Figs. 4 and 5 that the DABO is the winner.

220



Qi X., et al.: A discrete butterfly-inspired optimization algorithm for. . .

11 
 

instances with makespan criterion. Fig. 7 gives the line chart of ܦܴܲܣܣ  with 
different algorithms on Reeves instances with makespan criterion. It is clear from Figs. 
6 and 7 that the DABO is the winner.  

 

Fig. 4 Line chart of ܦܴܲܣܤ with different algorithms on Car instances. Here，1-8 
correspond to 11×5, 13×4, 12×5, 14×4, 10×6, 8×9, 7×7 and 8×8, respectively. 

 

Fig. 5 Line chart of ܦܴܲܣܣ with different algorithms on Car instances. Here，1-8 
correspond to 11×5, 13×4, 12×5, 14×4, 10×6, 8×9, 7×7 and 8×8, respectively. 

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

Car instances

R
el

at
iv

e 
er

ro
r 

(m
ak

es
pa

n)

 

 

BARPD_DABO BARPD_HTLBO BARPD_PSOvns BARPD_NEH

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

4

Car instances

R
el

at
iv

e 
er

ro
r 

(m
ak

es
pa

n)

 

 

AARPD_DABO AARPD_HTLBO AARPD_PSOvns AARPD_NEH

Fig. 4 Line chart of BARPD with different algorithms on Car instances. Here,
1–8 correspond to 11×5, 13×4, 12×5, 14×4, 10×6, 8×9, 7×7 and 8×8, respectively.

11 
 

instances with makespan criterion. Fig. 7 gives the line chart of ܦܴܲܣܣ  with 
different algorithms on Reeves instances with makespan criterion. It is clear from Figs. 
6 and 7 that the DABO is the winner.  

 

Fig. 4 Line chart of ܦܴܲܣܤ with different algorithms on Car instances. Here，1-8 
correspond to 11×5, 13×4, 12×5, 14×4, 10×6, 8×9, 7×7 and 8×8, respectively. 

 

Fig. 5 Line chart of ܦܴܲܣܣ with different algorithms on Car instances. Here，1-8 
correspond to 11×5, 13×4, 12×5, 14×4, 10×6, 8×9, 7×7 and 8×8, respectively. 

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

Car instances

R
el

at
iv

e 
er

ro
r 

(m
ak

es
pa

n)

 

 

BARPD_DABO BARPD_HTLBO BARPD_PSOvns BARPD_NEH

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

4

Car instances

R
el

at
iv

e 
er

ro
r 

(m
ak

es
pa

n)

 

 

AARPD_DABO AARPD_HTLBO AARPD_PSOvns AARPD_NEH

Fig. 5 Line chart of AARPD with different algorithms on Car instances. Here, 1–
8 correspond to 11×5, 13×4, 12×5, 14×4, 10×6, 8×9, 7×7 and 8×8, respectively.

2) Results for the Reeves instances with makespan criterion

The DABO algorithm generates 20 best BRD values. The HTLBO algorithm
generates 8 best BRD values. The DABO algorithm generates 19 best ARD
values. The HTLBO algorithm generates 3 best ARD values.

221



Neural Network World 4/2020, 211–229

Fig. 6 gives the line chart of BARPD with different algorithms on Reeves
instances with makespan criterion. Fig. 7 gives the line chart of AARPD
with different algorithms on Reeves instances with makespan criterion. It is
clear from Figs. 6 and 7 that the DABO is the winner.

12 
 

 

Fig. 6 Line chart of ܦܴܲܣܤ with different algorithms on Reeves instances. Here，1-7 
correspond to 20×5, 20×10, 20×15, 30×10, 30×15, 50×10 and 75×20, respectively. 

 

Fig. 7 Line chart of ܦܴܲܣܣ with different algorithms on Reeves instances. Here，1-7 
correspond to 20×5, 20×10, 20×15, 30×10, 30×15, 50×10 and 75×20, respectively. 

 

1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

8

9

Reeves instances

R
el

at
iv

e 
er

ro
r 

(m
ak

es
pa

n)

 

 

BARPD_DABO BARPD_HTLBO BARPD_PSOvns BARPD_NEH

1 2 3 4 5 6 7
0

2

4

6

8

10

12

Reeves instances

R
el

at
iv

e 
er

ro
r 

(m
ak

es
pa

n)

 

 

AARPD_DABO AARPD_HTLBO AARPD_PSOvns AARPD_NEH

Fig. 6 Line chart of BARPD with different algorithms on Reeves instances. Here,
1–7 correspond to 20 × 5, 20 × 10, 20 × 15, 30 × 10, 30 × 15, 50 × 10 and 75 × 20,
respectively.

12 
 

 

Fig. 6 Line chart of ܦܴܲܣܤ with different algorithms on Reeves instances. Here，1-7 
correspond to 20×5, 20×10, 20×15, 30×10, 30×15, 50×10 and 75×20, respectively. 

 

Fig. 7 Line chart of ܦܴܲܣܣ with different algorithms on Reeves instances. Here，1-7 
correspond to 20×5, 20×10, 20×15, 30×10, 30×15, 50×10 and 75×20, respectively. 

 

1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

8

9

Reeves instances

R
el

at
iv

e 
er

ro
r 

(m
ak

es
pa

n)

 

 

BARPD_DABO BARPD_HTLBO BARPD_PSOvns BARPD_NEH

1 2 3 4 5 6 7
0

2

4

6

8

10

12

Reeves instances

R
el

at
iv

e 
er

ro
r 

(m
ak

es
pa

n)

 

 

AARPD_DABO AARPD_HTLBO AARPD_PSOvns AARPD_NEH

Fig. 7 Line chart of AARPD with different algorithms on Reeves instances. Here,
1–7 correspond to 20 × 5, 20 × 10, 20 × 15, 30 × 10, 30 × 15, 50 × 10 and 75 × 20,
respectively.

222



Qi X., et al.: A discrete butterfly-inspired optimization algorithm for. . .

3) Results for the Taillard instances with makespan criterion

The DABO algorithm generates 34 best BRD values. The HTLBO algorithm
generates 17 best BRD values. The DABO algorithm generates 36 best ARD
values. The HTLBO algorithm generates 5 best ARD values.

Fig. 8 gives the line chart of BARPD with different algorithms on Taillard
instances with makespan criterion. Fig. 9 gives the line chart of AARPD

13 
 

 

Fig. 8 Line chart of ܦܴܲܣܤ with different algorithms on Taillard instances. Here，
1-4 correspond to 20×5, 20×10, 20×20 and 50×5, respectively. 

  

Fig. 9 Line chart of ܦܴܲܣܣ with different algorithms on Taillard instances. Here，
1-4 correspond to 20×5, 20×10, 20×20 and 50×5, respectively. 

 
 

1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Taillard instances

R
el

at
iv

e 
er

ro
r 

(m
ak

es
pa

n)

 

 

BARPD_DABO BARPD_HTLBO BARPD_PSOvns BARPD_NEH

1 2 3 4
0

1

2

3

4

5

6

Taillard instances

R
el

at
iv

e 
er

ro
r 

(m
ak

es
pa

n)

 

 

AARPD_DABO AARPD_HTLBO AARPD_PSOvns AARPD_NEH

Fig. 8 Line chart of BARPD with different algorithms on Taillard instances. Here,
1–4 correspond to 20× 5, 20× 10, 20× 20 and 50× 5, respectively.

13 
 

 

Fig. 8 Line chart of ܦܴܲܣܤ with different algorithms on Taillard instances. Here，
1-4 correspond to 20×5, 20×10, 20×20 and 50×5, respectively. 

  

Fig. 9 Line chart of ܦܴܲܣܣ with different algorithms on Taillard instances. Here，
1-4 correspond to 20×5, 20×10, 20×20 and 50×5, respectively. 

 
 

1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Taillard instances

R
el

at
iv

e 
er

ro
r 

(m
ak

es
pa

n)

 

 

BARPD_DABO BARPD_HTLBO BARPD_PSOvns BARPD_NEH

1 2 3 4
0

1

2

3

4

5

6

Taillard instances

R
el

at
iv

e 
er

ro
r 

(m
ak

es
pa

n)

 

 

AARPD_DABO AARPD_HTLBO AARPD_PSOvns AARPD_NEH

Fig. 9 Line chart of AARPD with different algorithms on Taillard instances. Here,
1–4 correspond to 20× 5, 20× 10, 20× 20 and 50× 5, respectively.

223



Neural Network World 4/2020, 211–229

with different algorithms on Taillard instances with makespan criterion. It is
clear from Figs. 8 and 9 that the DABO is the winner.

4) Results for the Taillard instances with TFT criterion

The DABO algorithm generates 33 best BRD values. The HTLBO algorithm
generates 14 best BRD values. The DABO algorithm generates 39 best ARD
values. The HTLBO algorithm generates 1 best ARD values.

Fig. 10 gives the line chart of BARPD with different algorithms on Taillard
instances with TFT criterion. Fig. 11 gives the line chart of AARPD with

14 
 

  

Fig. 10 Line chart of ܦܴܲܣܤ with different algorithms on Taillard instances (ܶܶܨ). 
Here，1-4 correspond to 20×5, 20×10, 20×20 and 50×5, respectively. 

 

Fig. 11 Line chart of ܦܴܲܣܣ with different algorithms on Taillard instances 
 .Here，1-4 correspond to 20×5, 20×10, 20×20 and 50×5, respectively .(ܶܨܶ)

 

3) Results for the Taillard instances with makespan criterion 
The DABO algorithm generates 34 best ܦܴܤ values. The HTLBO algorithm 

generates 17 best ܦܴܤ values. The DABO algorithm generates 36 best ܦܴܣ values. 
The HTLBO algorithm generates 5 best ܦܴܣ values. 

Fig. 8 gives the line chart of ܦܴܲܣܤ  with different algorithms on Taillard 

1 2 3 4
0

1

2

3

4

5

6

7

8

9

10

Taillard instances

R
el

at
iv

e 
er

ro
r 

(T
F

T
)

 

 

BARPD_DABO BARPD_HTLBO BARPD_PSOvns BARPD_NEH

1 2 3 4
0

1

2

3

4

5

6

7

8

9

10

Taillard instances

R
el

at
iv

e 
er

ro
r 

(T
F

T
)

 

 

AARPD_DABO AARPD_HTLBO AARPD_PSOvns AARPD_NEH

Fig. 10 Line chart of BARPD with different algorithms on Taillard instances
(TFT ). Here, 1–4 correspond to 20× 5, 20× 10, 20× 20 and 50× 5, respectively.

14 
 

  

Fig. 10 Line chart of ܦܴܲܣܤ with different algorithms on Taillard instances (ܶܶܨ). 
Here，1-4 correspond to 20×5, 20×10, 20×20 and 50×5, respectively. 

 

Fig. 11 Line chart of ܦܴܲܣܣ with different algorithms on Taillard instances 
 .Here，1-4 correspond to 20×5, 20×10, 20×20 and 50×5, respectively .(ܶܨܶ)

 

3) Results for the Taillard instances with makespan criterion 
The DABO algorithm generates 34 best ܦܴܤ values. The HTLBO algorithm 

generates 17 best ܦܴܤ values. The DABO algorithm generates 36 best ܦܴܣ values. 
The HTLBO algorithm generates 5 best ܦܴܣ values. 

Fig. 8 gives the line chart of ܦܴܲܣܤ  with different algorithms on Taillard 

1 2 3 4
0

1

2

3

4

5

6

7

8

9

10

Taillard instances

R
el

at
iv

e 
er

ro
r 

(T
F

T
)

 

 

BARPD_DABO BARPD_HTLBO BARPD_PSOvns BARPD_NEH

1 2 3 4
0

1

2

3

4

5

6

7

8

9

10

Taillard instances

R
el

at
iv

e 
er

ro
r 

(T
F

T
)

 

 

AARPD_DABO AARPD_HTLBO AARPD_PSOvns AARPD_NEH

Fig. 11 Line chart of AARPD with different algorithms on Taillard instances
(TFT ). Here, 1–4 correspond to 20× 5, 20× 10, 20× 20 and 50× 5, respectively.

224



Qi X., et al.: A discrete butterfly-inspired optimization algorithm for. . .

different algorithms on Taillard instances with TFT criterion. It is clear from
Figs. 10 and 11 that the DABO is the winner.

4.3.1 Engineering optimization example

The aluminum extrusion products are widely applied in transportation industry
and civil construction industry recently because they have the advantages of light
weight, high strength and attractive appearance. The optimization of extrusion
production line can bring good economic benefits. During a production period, a
variety of extrusion products passes through extruding machine, drawing machine,
sawing machine, shaping machine, finished product saw and packing machine in
turn. Tab. II gives the processing time of 10 kinds of extrusion products. According
to the results of the computational evaluation given by Ruiz and Maroto [18], the
NEH algorithm has been proved one of the most successful constructive heuristics
which can obtain comparable results against some modern constructive methods.
In this section, the NEH algorithm is employed as comparison.

Batch Flag
Extruding Drawing Sawing Shaping Finished Packing
machine machine machine machine product saw machine

PC15061902-1 1 174 121 183 102 190 150
PC15061903-1 2 120 176 174 199 160 115
PC15061904-1 3 167 148 160 166 138 130
PC15061905-1 4 97 76 64 110 181 173
PC15061906-1 5 87 86 80 90 83 75
PC15061907-1 6 80 42 99 70 90 93
PC15061908-1 7 69 72 54 80 90 160
PC15061909-1 8 69 120 24 96 89 62
PC15061910-1 9 50 88 46 63 76 150
PC15061911-1 10 95 61 53 82 74 97

Tab. II The processing time for 10 kinds of extrusion products.

Fig. 12 shows the optimal job sequence with makespan criterion obtained by
DABO over 10 independent runs. The job sequence is 4, 9, 6, 1, 7, 2, 10, 3, 8, 5. The
makespan of the job sequence is 1796. Fig. 13 shows the optimal job sequence with
makespan criterion obtained by NEH over 10 independent runs. The job sequence
is 9, 6, 7, 1, 4, 2, 10, 3, 5, 8. The makespan of the job sequence is 1802.

Fig. 14 shows the optimal job sequence with TFT criterion obtained by DABO
over 10 independent runs. The job sequence is 9, 8, 10, 6, 5, 7, 4, 1, 3, 2. The TFT of
the job sequence is 10299. Fig. 15 shows the optimal job sequence with TFT crite-
rion obtained by NEH over 10 independent runs. The job sequence is 9, 6, 8, 10, 7, 5,
4, 1, 3, 2. The TFT of the job sequence is 10366.

225



Neural Network World 4/2020, 211–229

16 
 

makespan criterion obtained by NEH over 10 independent runs. The job sequence is 
9,6,7,1,4,2,10,3,5,8. The makespan of the job sequence is 1802.  

 

Fig. 12 Gantt chart using DABO under makespan criterion. 
 

 

Fig. 13 Gantt chart using NEH under makespan criterion 

Fig. 14 shows the optimal job sequence with ܶܶܨ	criterion obtained by DABO 
over 10 independent runs. The job sequence is 9,8,10,6,5,7,4,1,3,2. The ܶܶܨ of the 
job sequence is 10299. Fig. 15 shows the optimal job sequence with ܶܶܨ criterion 
obtained by NEH over 10 independent runs. .The job sequence is 9,6,8,10,7,5,4,1,3,2. 
The ܶܶܨ of the job sequence is 10366.  

 

Fig. 14 Gantt chart using DABO under ܶܶܨ criterion. 

 

 

Fig. 15 Gantt chart using NEH under ܶܶܨ criterion. 

5. Conclusion 

This paper proposes a new discrete artificial butterfly optimization (DABO) 

Fig. 12 Gantt chart using DABO under makespan criterion.

16 
 

makespan criterion obtained by NEH over 10 independent runs. The job sequence is 
9,6,7,1,4,2,10,3,5,8. The makespan of the job sequence is 1802.  

 

Fig. 12 Gantt chart using DABO under makespan criterion. 
 

 

Fig. 13 Gantt chart using NEH under makespan criterion 

Fig. 14 shows the optimal job sequence with ܶܶܨ	criterion obtained by DABO 
over 10 independent runs. The job sequence is 9,8,10,6,5,7,4,1,3,2. The ܶܶܨ of the 
job sequence is 10299. Fig. 15 shows the optimal job sequence with ܶܶܨ criterion 
obtained by NEH over 10 independent runs. .The job sequence is 9,6,8,10,7,5,4,1,3,2. 
The ܶܶܨ of the job sequence is 10366.  

 

Fig. 14 Gantt chart using DABO under ܶܶܨ criterion. 

 

 

Fig. 15 Gantt chart using NEH under ܶܶܨ criterion. 

5. Conclusion 

This paper proposes a new discrete artificial butterfly optimization (DABO) 

Fig. 13 Gantt chart using NEH under makespan criterion.

16 
 

makespan criterion obtained by NEH over 10 independent runs. The job sequence is 
9,6,7,1,4,2,10,3,5,8. The makespan of the job sequence is 1802.  

 

Fig. 12 Gantt chart using DABO under makespan criterion. 
 

 

Fig. 13 Gantt chart using NEH under makespan criterion 

Fig. 14 shows the optimal job sequence with ܶܶܨ	criterion obtained by DABO 
over 10 independent runs. The job sequence is 9,8,10,6,5,7,4,1,3,2. The ܶܶܨ of the 
job sequence is 10299. Fig. 15 shows the optimal job sequence with ܶܶܨ criterion 
obtained by NEH over 10 independent runs. .The job sequence is 9,6,8,10,7,5,4,1,3,2. 
The ܶܶܨ of the job sequence is 10366.  

 

Fig. 14 Gantt chart using DABO under ܶܶܨ criterion. 

 

 

Fig. 15 Gantt chart using NEH under ܶܶܨ criterion. 

5. Conclusion 

This paper proposes a new discrete artificial butterfly optimization (DABO) 

Fig. 14 Gantt chart using DABO under TFT criterion.

16 
 

makespan criterion obtained by NEH over 10 independent runs. The job sequence is 
9,6,7,1,4,2,10,3,5,8. The makespan of the job sequence is 1802.  

 

Fig. 12 Gantt chart using DABO under makespan criterion. 
 

 

Fig. 13 Gantt chart using NEH under makespan criterion 

Fig. 14 shows the optimal job sequence with ܶܶܨ	criterion obtained by DABO 
over 10 independent runs. The job sequence is 9,8,10,6,5,7,4,1,3,2. The ܶܶܨ of the 
job sequence is 10299. Fig. 15 shows the optimal job sequence with ܶܶܨ criterion 
obtained by NEH over 10 independent runs. .The job sequence is 9,6,8,10,7,5,4,1,3,2. 
The ܶܶܨ of the job sequence is 10366.  

 

Fig. 14 Gantt chart using DABO under ܶܶܨ criterion. 

 

 

Fig. 15 Gantt chart using NEH under ܶܶܨ criterion. 

5. Conclusion 

This paper proposes a new discrete artificial butterfly optimization (DABO) 

Fig. 15 Gantt chart using NEH under TFT criterion.

5. Conclusion

This paper proposes a new Discrete Artificial Butterfly Optimization (DABO) algo-
rithm to address the Permutation Flow-Shop Scheduling Problem (PFSP) with the
minimization of makespan and total flow time. In order to solve PFSPs, the flight
strategies of artificial butterflies are redefined. The sunspot butterflies employed
three strategies based on crossover, inserting and local searching. The canopy
butterflies employed two strategies based on crossover and mutation.

Exploitation and exploration are two important aspects of meta-heuristic al-
gorithms. There is a the balance between the right amount of exploration and

226



Qi X., et al.: A discrete butterfly-inspired optimization algorithm for. . .

the right degree of exploitation. Firstly, with the iteration, the DABO algorithm
has the structure of dynamically dividing two subpopulations. Moreover, the two
subpopulations are divided according to individual fitnesses. Secondly, the pro-
posed algorithm let the high fitness subpopulation concentrate on the exploitation
of solutions and the low fitness subpopulation concentrate on the exploration of
solutions. In the sunspot group phase, the crossover procedure produces better
solutions between solutions with better fitness. The inserting procedure is an en-
hanced search for the high-quality solutions found previously. The local searching
is reintensification of search around previously encountered high-quality solutions.
In the canopy group phase, each individual achieves diversification of search by
crossing with randomly selected high fitness individuals and mutation operation.
With these strategies, DABO produce better solutions under the same evaluation
times.

For makespan criterion, the DABO algorithm has been tested against the other
3 algorithms based on Car suite, Reeves suite and Taillard suite. For total flow time
criterion, the DABO algorithm has been tested against the other 3 algorithms based
on Taillard suite. All experimental results show the effectiveness of the DABO
algorithm. Then DABO is employed to solve a practical engineering problem.
The proposed algorithm can be applied to independent scheduling software or job
scheduling module of manufacturing execution system (MES) software. The actual
application environment is more complex than the model in this paper, but as far
as the algorithm itself is concerned, it does not need to be modified much when the
algorithm is applied to the optimization problem. For the PFSP, we should find
out the processing time of different jobs on different machines, which can be used
to calculate the objective function. It should be noted that using the knowledge of
experienced personnel can improve the quality of the initial solutions.

Future research efforts will be focused on finding new flight strategies to build
more effective algorithms for multi-objective flow shop scheduling problems and
applying the proposed algorithm to solve practical engineering problems.

Acknowledgement

This work is supported by the National Key R&D Program of China (2017YFB0306-
401) and National Natural Science Foundation of China (61573089). And the au-
thors are very grateful to the anonymous reviewers for their valuable suggestions
and comments to improve the quality of this paper.

References

[1] BLAZEWICAZ J., LENSTRA J.K., KAN A. Scheduling subject to resource constraints:
classification and complexity. Discrete Applied Mathematics. 1983, 5(1), pp. 11–24, doi: 10.
1016/0166-218x(83)90012-4.

[2] CARLIER J. Ordonnancements a contraintes disjunctives. RAIRO – Operations Research.
1978, 12(4), pp. 333–350, doi: 10.1051/ro/1978120403331.

[3] FRAMINAN J.M., LEISTEN R. An efficient constructive heuristic for flowtime minimisa-
tion in permutation flow shops. Omega-International Journal of Management Science. 2003,
31(4), pp. 311–317, doi: 10.1016/S0305-0483(03)00047-1.

227

http://dx.doi.org/10.1016/0166-218x(83)90012-4
http://dx.doi.org/10.1016/0166-218x(83)90012-4
http://dx.doi.org/10.1051/ro/1978120403331
http://dx.doi.org/10.1016/S0305-0483(03)00047-1


Neural Network World 4/2020, 211–229

[4] GAREY M.R., JOHNSON D.S., SETHI R. The complexity of flowshop and jobshop schedul-
ing. Mathematics of Operations Research. 1976, 1(2), pp. 117–129, doi: 10.2307/3689278.

[5] GUPTA J. A functional heuristic algorithm for the flow shop scheduling problem. Journal
of the Operational Research Society. 1971, 22(1), pp. 39–47, doi: 10.2307/3008015.

[6] KENNEDY J., EBERHART R. Particle swarm optimization. In: Proceedings of IEEE Int.
Conference on Neural Network. 1995, pp. 1942–1948.

[7] LENSTRA J.K., Kan, RINNOOY KAN A.H.G., BRUCKER P. Complexity of machine
scheduling problems. Annals of Discrete Mathematics. 1977, 1, pp. 343–362, doi: 10.1016/
S0167-5060(08)70743-X.

[8] LIU Y.F., LIU S.Y. A hybrid discrete artificial bee colony algorithm for permutation flowshop
scheduling problem. Applied Soft Computing. 2013, 13, pp. 1459–1463, doi: 10.1109/CEC.
2010.5586300.

[9] NADERI B., TAVAKKOLI-MOGHADDAM R., KHALILI M. Electromagnetism-like mech-
anism and simulated annealing algorithms for flowshop scheduling problems minimizing the
total weighted tardiness and makespan. Knowledge-Based Systems. 2010, 23(2), pp. 77–85,
doi: 10.1016/j.knosys.2009.06.002.

[10] NAWAZ M., ENSCORE E.E., HAM I.A. A heuristic algorithm for the m-machine, n-job flow
shop sequencing problem. OMEGA. 1983, 11(1), pp. 91–95, doi: 10.1016/0305-0483(83)

90088-9.

[11] PALMER D.S. Sequencing jobs through a multistage process in the minimum total time:
Aquick method of obtaining a near optimum. Journal of the Operational Research Society.
1965, 16(1), pp. 101–107, doi: 10.1057/jors.1965.8.

[12] PAN Q ., TASGETIREN M.F., LIANG Y. A discrete differential evolution algorithm for
the permutation flowshop scheduling problem. Computers & Industrial Engineering. 2008,
55(4), pp. 795–816, doi: 10.1016/j.cie.2008.03.003.

[13] QI X.B., ZHU Y.L., ZHANG H. A new meta-heuristic butterfly-inspired algorithm. Journal
of Computational Science. 2017, 23, pp. 226–239, doi: 10.1016/j.jocs.2017.06.003.

[14] RAO R., SAVSANI V., VAKHARIA D. Teaching–learning-based optimization: a novel
method for constrained mechanical design optimization problems, Computer-Aided Design.
2011, 43(3), pp. 303-315, doi: 10.1016/j.cad.2010.12.015.

[15] RAO R., SAVSANI V., VAKHARIA D. Teaching–learning-based optimization: an optimiza-
tion method for continuous non-linear large scale problems. Information Sciences. 2012,
183(1), pp. 1–15, doi: 10.1016/j.ins.2011.08.006.

[16] REEVES C.R. A genetic algorithm for flowshop sequencing. Computers & Operations Re-
search. 1995, 22(1), pp. 5–13, doi: 10.1016/0305-0548(93)E0014-K.

[17] RINNOOY KAN A.H.G. Machine Scheduling Problems: Classification, Complexity, and
Computations. The Hague: Martinus Nijhoff, 1976.

[18] RUIZ R., MAROTO C. A comprehensive review and evaluation of permutation flowshop
heuristics. European Journal of Operational Research. 2005, 165(2), pp. 479–494, doi: 10.
1016/j.ejor.2004.04.017.

[19] TAILLARDd E. Benchmarks for basic scheduling problems. European Journal of Operational
Research. 1993, 64(2), pp. 278-285, doi: 10.1016/0377-2217(93)90182-m.

[20] TASGETIREN M.F., LIANG Y.C., SEVKLI M., GENCYILMAZ G. A particle swarm op-
timization algorithm for makespan and total flow time minimization in the permutation
flow shop sequencing problem. European Journal of Operational Research. 2007, 177(3), pp.
1930–1947, doi: 10.1016/j.ejor.2005.12.024.

[21] TIAN P., MA J., ZHANG D.M. Application of the simulated annealing algorithm to the
combinatorial optimization problem with permutation property: An investigation of gen-
eration mechanism. European Journal of Operational Research. 1999, 118(1), pp. 81–94,
doi: 10.1016/s0377-2217(98)00308-7.

[22] TSENG F.T., STAFFORD E.F., GUPTA J.N. An empirical analysis of integer programming
formulations for the permutation flowshop. OMEGA. 2004, 32(4), pp. 285–293, doi: 10.1016/
j.omega.2003.12.001.

228

http://dx.doi.org/10.2307/3689278
http://dx.doi.org/10.2307/3008015
http://dx.doi.org/10.1016/S0167-5060(08)70743-X
http://dx.doi.org/10.1016/S0167-5060(08)70743-X
http://dx.doi.org/10.1109/CEC.2010.5586300
http://dx.doi.org/10.1109/CEC.2010.5586300
http://dx.doi.org/10.1016/j.knosys.2009.06.002
http://dx.doi.org/10.1016/0305-0483(83)90088-9
http://dx.doi.org/10.1016/0305-0483(83)90088-9
http://dx.doi.org/10.1057/jors.1965.8
http://dx.doi.org/10.1016/j.cie.2008.03.003
http://dx.doi.org/10.1016/j.jocs.2017.06.003
http://dx.doi.org/10.1016/j.cad.2010.12.015
http://dx.doi.org/10.1016/j.ins.2011.08.006
http://dx.doi.org/10.1016/0305-0548(93)E0014-K
http://dx.doi.org/10.1016/j.ejor.2004.04.017
http://dx.doi.org/10.1016/j.ejor.2004.04.017
http://dx.doi.org/10.1016/0377-2217(93)90182-m
http://dx.doi.org/10.1016/j.ejor.2005.12.024
http://dx.doi.org/10.1016/s0377-2217(98)00308-7
http://dx.doi.org/10.1016/j.omega.2003.12.001
http://dx.doi.org/10.1016/j.omega.2003.12.001


Qi X., et al.: A discrete butterfly-inspired optimization algorithm for. . .

[23] TASGETIREN M.F., PAN Q.K., SUGANTHAN P.N., CHEN A.H.L. A discrete artificial bee
colony algorithm for the total flowtime minimization in permutation flow shops. Information
Sciences. 2011, 181(16), pp. 3459–3475, doi: 10.1016/j.ins.2011.04.018.

[24] WANG L., PAN Q.K., SUGANTHAN P.N. A novel hybrid discrete differential evolution
algorithm for blocking flow shop scheduling problems. Computers & Operations Research.
2010, 37(3), pp. 509–520, doi: 10.1016/j.cor.2008.12.004.

[25] XIE Z.P., ZHANG C.Z., SHAO X.Y., LIN W.W., ZHU H.P. An effective hybrid teaching–
learning-based optimization algorithm for permutation flow shop scheduling problem. Ad-
vances in Engineering Software. 2014, 77, pp. 35–47, doi: 10.1016/j.advengsoft.2014.07.
006.

[26] ZHANG Y., LI X., WANG Q. Hybrid genetic algorithm for permutation flowshop scheduling
problems with total flowtime minimization. European Journal of Operational Research. 2009,
196(3), pp. 869–876, doi: 10.1016/j.ejor.2008.04.033.

229

http://dx.doi.org/10.1016/j.ins.2011.04.018
http://dx.doi.org/10.1016/j.cor.2008.12.004
http://dx.doi.org/10.1016/j.advengsoft.2014.07.006
http://dx.doi.org/10.1016/j.advengsoft.2014.07.006
http://dx.doi.org/10.1016/j.ejor.2008.04.033

