
COMPARISON OF SOFTWARE PACKAGES
FOR PERFORMING BAYESIAN INFERENCE

M. Koprivica∗

Abstract: In this paper, we compare three state-of-the-art Python packages for
Bayesian inference: JAGS [14], Stan [5], and PyMC3 [18]. These packages are in
focus because they are the most mature, and Python is among the most utilized
programming languages for teaching mathematics and statistics in colleges [13].
The experiment is based on real-world data collected for investigating the thera-
peutic touch nursing technique [17]. It is analyzed through a hierarchical model
with prior beta distribution and binomial likelihood function. The tools are com-
pared by execution time and sample quality.

Key words: Bayesian statistics, hierarchical model, parameter estimation, Markov
chain Monte Carlo, JAGS, Stan, PyMC3

Received: June 19, 2020 DOI: 10.14311/NNW.2020.30.019
Revised and accepted: October 30, 2020

1. Introduction

The essence of Bayesian inference as a statistical inference method is using Bayes’
rule to update previous knowledge, usually referred to as prior, with new data.
However, as the calculation of the evidence integral in Bayes’ rule can be knotty,
for solving Bayesian inference problems in real-world applications, it is convenient
to use MCMC (Markov chain Monte Carlo) simulation algorithm [2]. This study
evaluates the performance of three Bayesian inference programs, namely JAGS,
Stan, and PyMC3. They are currently state-of-the-art in the field. We aim to rank
packages by execution duration and the quality of samples.

For the duration, the experiment measures the time needed for sampling 20,000
samples and a 1,000-sample warmup. As for quality, we are interested in finding
the independence of information in the posterior distribution, measured by the
effective sample size [8] and Monte Carlo standard error [4], in accessing how stable
the sample mean is. As MCMC is a stochastic process, we collect data from 100
repetitions and draw conclusions from statistics.

In his research, Almond [1] compared JAGS and Stan, called from R program-
ming language, for sampling from a hierarchical mixture model. As opposed to that
paper, our focus is on Python programming language, and we are extending com-
parison by measuring PyMC3 performance. Also, we are interested in evaluating
the stochastic process managed by software packages.

∗Marko Koprivica; Faculty of Organizational Sciences, Department of Software Engineering,
Belgrade University, Jove Ilica 154, Belgrade, Serbia, E-mail: marko.koprivica@hotmail.com

©CTU FTS 2020 283

mailto:marko.koprivica@hotmail.com

Neural Network World 5/2020, 283–294

The rest of the paper is organized as follows: In Section 2, we present software
packages that are compared; Section 3 presents an experiment scenario which is
used for comparison; Section 4 presents experiment results, and Section 5 the
conclusions.

2. Software packages

In this segment we give a summary of the software packages being compared. All of
them are accessible as Python packages that can be easily imported and used. Only
JAGS stands out as independent software that needs to be separately installed on
the computer and for which Python package is just an interface. JAGS [14] is
an abbreviation from “Just another Gibbs sampler”. It is a program written in
C++, to analyze Bayesian models using Markov chain Monte Carlo (MCMC). It
is designed to work closely with the R language and environment for statistical
computation and graphics [15]. We are using the Python library “pyjags” version
1.2.2. Stan [5], named after Stanislaw Ulam, is an open-source C++ program that
performs Bayesian inference or optimization for arbitrary user-specified models and
can be called from the command line, R, Python, MATLAB, or Julia and has great
promise for fitting large and complex statistical models in many areas of applica-
tion [5]. Compared to JAGS, Stan is more flexible because its modelling language
is more general [5]. Our tests are performed with the Python library “pystan”
version 2.18.1.0. PyMC3 [18] is an open-source probabilistic programming frame-
work written in Python that uses Theano [19] to compute gradients via automatic
differentiation and compile probabilistic programs on-the-fly to C programming
language for increased speed. We are using the Python library “pymc3” version
3.7.

Both PyMC3 and JAGS can use several sampling methods (such as Gibbs
[6], Metropolis [10], Slice sampling [11]), and JAGS can choose which one to use
depending on the task [3]. For PyMC3, as advised [18], we are using Hamiltonian
Monte Carlo (HMC) with No-U-Turn Sampler (NUTS) [7]. On the other hand,
Stan’s Markov chain Monte Carlo (MCMC) techniques are solely based on HMC
with NUTS [5,7].

3. Experiment

Therapeutic touch (TT) is a widely used nursing practice rooted in mysticism but
alleged to have a scientific basis. Practitioners of TT claim to treat many medical
conditions by using their hands to manipulate a “human energy field” perceptible
above the patient’s skin [17]. Rosa investigated this claim by conducting research
in which the practitioner was hovering with his hand over the left or right hand of
the experimenter, and the experimenter should guess which hand is it. Results were
collected for 28 practitioners with ten trails for each of them, making 280 records
in total [17]. These records are new data in our Bayesian inference experiment.

284

Koprivica M.: Comparison of software packages for performing Bayesian inference

3.1 Model

Let s ∈ 1, . . . , 28 be a set of indexes over practitioners, then for each practitioner:
Ns is the number of trials, zs is the number of good guesses, and θs is a parameter
of distribution that describes the underlying ability. Since the data are binary (0
for wrong and 1 for correct), chance performance is 0.5. As advised by Kruschke [9],
to distinguish how much the group as a whole and any practitioner differed from
chance performance, we are implementing the hierarchical model with binomial
distribution used as likelihood:

zs ∼ Binom(θs, Ns),

and beta distribution applied to the hierarchical model’s first level:

θs ∼ Beta(ω(κ− 2) + 1, (1− ω)(κ− 2) + 1).

The latest is used because Kruschke [9] found that the distribution of proportions
across subjects is essentially unimodal and can be meaningfully described as a beta
distribution. On the second level, we estimate the group’s modal ability and the
consistency of the group with beta distribution for mode:

ω ∼ Beta(1, 1),

and gamma distribution for concentration:

κ+ 2 ∼ Gamma(0.01, 0.01).

We estimate 30 parameters, 28 thetas – one for each practitioner, and omega and
kappa. The model is simple enough to demonstrate what can be expected from
software packages in everyday work, and yet it is not trivial, so differences between
software packages are measurable. The model is depicted as a directed acyclic
graph (DAG) below, in Fig. 1.

3.2 JAGS

JAGS’ model is straightforward; first, we describe theta and binomial likelihood
for each practitioner. Next goes second layer distributions; omega, as a result of
sampling from a beta distribution with shape parameters both equal to 1, and
kappa, as a result of sampling from a gamma distribution with shape parameter
equals to 0.01 and rate parameter equals to 0.01.

1 model {

2 for (s in 1: Nsubj) {

3 z[s] ∼ dbin(theta[s], N[s])

4 theta[s] ∼ dbeta(omega *(kappa -2)+1, (1- omega)*(kappa -2)

↪→ +1)

5 }

6 omega ∼ dbeta (1,1)

7 kappa <- kappaMinusTwo + 2

8 kappaMinusTwo ∼ dgamma (0.01 , 0.01)

9 }

285

Neural Network World 5/2020, 283–294

Fig. 1 DAG contains a hierarchical model with beta distribution on the first level
of the model. The second level is beta and gamma distributions.

Because kappa must be greater than two, we do the trick, add two to the sample
from a gamma distribution.

3.3 Stan

With Stan, we have a bit different situation. First, we have to define data variables:
the number of practitioners (Nsubj), and for each practitioner, the number of
tries (N) and the number of good guesses (z). Next, we define parameters that
are sampled from distributions: theta for each practitioner, omega, and kappa.
Following is a description of the transformed parameter because we are adding two
on the kappa sample so we can be sure that it is greater than two. Finally, we
come to the model in which distributions and likelihood are defined.
Koprivica M.: Comparison of software packages for performing Bayesian inference

1 data {

2 int <lower =1> Nsubj;

3 int N[Nsubj];

4 int z[Nsubj];

5 }

6 parameters {

7 real <lower=0, upper =1> theta[Nsubj];

8 real <lower=0, upper =1> omega;

9 real <lower=0> kappaMinusTwo;

10 }

11 transformed parameters {

12 real <lower=0> kappa;

13 kappa = kappaMinusTwo + 2;

14 }

15 model {

16 omega ∼ beta (1,1);

17 kappaMinusTwo ∼ gamma (0.01 , 0.01);

18 theta ∼ beta(omega *(kappa -2)+1 , (1- omega)*(kappa -2) +1);

19 z ∼ binomial(N, theta);

20 }

3.4 PyMC3

Differently from the previous two software packages, PyMC3 does not have a model,
nor data written as a string that is then passed to the actual executor (program
installed for JUGS or, in the case of Stan, C++ library). With PyMC3, everything
is coded directly in Python. First, we define higher-level distributions and param-
eters: omega and kappa. Next, we do the trick by adding two to kappa. Finally,
we define theta and likelihood. The number of good guesses is stored in the Nz
variable.

1 with pm.Model () as model:

2 omega = pm.Beta(’omega’ , 1, 1, testval=meanThetaInit)

3 kappaMinusTwo = pm.Gamma(’kappa’ , 0.01 , 0.01 , testval=

↪→ kappaInitMinusTwo)

5 kappa = kappaMinusTwo + 2

7 theta = pm.Beta(’theta’, omega * (kappa - 2) + 1 , (1 -

↪→ omega) * (kappa - 2) + 1 , shape=self.Nsubj , testval=

↪→ np.array(ThetaI))

9 self.z = pm.Binomial(’z’, p=theta , n=np.array(N) , observed

↪→ =np.array(Nz))

3.5 Settings

We set three chains for each software package, with 20 thinning and 1000 burn-
in steps. We are saving 20000 steps for PyMC3 and 20001 steps for JAGS and

5

286

Koprivica M.: Comparison of software packages for performing Bayesian inference

Koprivica M.: Comparison of software packages for performing Bayesian inference

1 data {

2 int <lower =1> Nsubj;

3 int N[Nsubj];

4 int z[Nsubj];

5 }

6 parameters {

7 real <lower=0, upper =1> theta[Nsubj];

8 real <lower=0, upper =1> omega;

9 real <lower=0> kappaMinusTwo;

10 }

11 transformed parameters {

12 real <lower=0> kappa;

13 kappa = kappaMinusTwo + 2;

14 }

15 model {

16 omega ∼ beta (1,1);

17 kappaMinusTwo ∼ gamma (0.01 , 0.01);

18 theta ∼ beta(omega *(kappa -2)+1 , (1- omega)*(kappa -2) +1);

19 z ∼ binomial(N, theta);

20 }

3.4 PyMC3

Differently from the previous two software packages, PyMC3 does not have a model,
nor data written as a string that is then passed to the actual executor (program
installed for JUGS or, in the case of Stan, C++ library). With PyMC3, everything
is coded directly in Python. First, we define higher-level distributions and param-
eters: omega and kappa. Next, we do the trick by adding two to kappa. Finally,
we define theta and likelihood. The number of good guesses is stored in the Nz
variable.

1 with pm.Model () as model:

2 omega = pm.Beta(’omega’ , 1, 1, testval=meanThetaInit)

3 kappaMinusTwo = pm.Gamma(’kappa’ , 0.01 , 0.01 , testval=

↪→ kappaInitMinusTwo)

5 kappa = kappaMinusTwo + 2

7 theta = pm.Beta(’theta’, omega * (kappa - 2) + 1 , (1 -

↪→ omega) * (kappa - 2) + 1 , shape=self.Nsubj , testval=

↪→ np.array(ThetaI))

9 self.z = pm.Binomial(’z’, p=theta , n=np.array(N) , observed

↪→ =np.array(Nz))

3.5 Settings

We set three chains for each software package, with 20 thinning and 1000 burn-
in steps. We are saving 20000 steps for PyMC3 and 20001 steps for JAGS and

5

3.4 PyMC3

Unlike from the previous two software packages, PyMC3 does not have a model, or
data written as a string that is then passed to the actual executor (program installed
for JAGS or, in the case of Stan, C++ library). With PyMC3, everything is coded
directly in Python. First, we define higher-level distributions and parameters:
omega and kappa. Next, we do the trick by adding two to kappa. Finally, we
define theta and likelihood. The number of good guesses is stored in the Nz
variable.

1 with pm.Model () as model:

2 omega = pm.Beta(’omega’ , 1, 1, testval=meanThetaInit)

3 kappaMinusTwo = pm.Gamma(’kappa’ , 0.01 , 0.01 , testval=

↪→ kappaInitMinusTwo)

5 kappa = kappaMinusTwo + 2

7 theta = pm.Beta(’theta’, omega * (kappa - 2) + 1 , (1 -

↪→ omega) * (kappa - 2) + 1 , shape=self.Nsubj , testval=

↪→ np.array(ThetaI))

9 self.z = pm.Binomial(’z’, p=theta , n=np.array(N) , observed

↪→ =np.array(Nz))

3.5 Settings

We set three chains for each software package, with 20 thinning and 1,000 burn-
in steps. We are saving 20,000 steps for PyMC3 and 20,001 steps for JAGS and
Stan. The difference in the numbers of saved steps is due to lack of thinning
implementation in PyMC3, so extraction of every twentieth step is done after steps
from all three chains are collected in one place, whereas JAGS and Stan are doing
thinning on each chain and then merge resulting steps. Initial parameter values
for all three packages are the same. For theta and omega, maximum likelihood
estimation (MLE) is calculated, while kappa is fixed at 98. To calculate MLE for
theta, we randomly pick ten numbers (number of trials for each practitioner) from
data that we have for that practitioner. Next, we sum the numbers and divide
by 10 to get the average. We do a simple trick to keep the theta value inside the

287

Neural Network World 5/2020, 283–294

valid range, away from 0.1 and 1, by multiplying it with 0.998 and after adding
0.001. This trick is preventing the situations in which the chain cannot be started
due to zero density of prior beta distribution [9]. Omega is calculated as the mean
of theta for all practitioners, and for that calculation, we are using NumPy [12]
Python library.

1 import numpy as np

3 for practitioner in range (0 , 28):

5 initList[practitioner] = np.random.choice ((therapeutic -

↪→ thouch -data[practitioner]).values , size =10, replace=

↪→ True , pNone)

7 ThetaInitial[practitioner] = sum(initList[practitioner])

↪→ / len(initList[practitioner])

9 ThetaInitial[practitioner] = 0.001 + 0.998 * ThetaI[

↪→ practitioner]

11 practitioner += 1

13 omegaInitial = np.mean(ThetaI)

We collected execution duration and parameter estimations of 100 runs for each
software package. The computer used for the experiment has 8GB of RAM and an
Intel i7 processor with eight threads.

4. Test results

4.1 Duration

Tab. I reports the mean, median, and standard deviation of execution duration over
100 probes for all three software packages. JAGS has the best results overall with
a mean time of 98.66 seconds. Its median is close to the mean, and the standard
deviation is tiny, so we can say that the mean is a good representation of the time
necessary for JAGS to finish sampling.

Stan is taking second place with a mean time of 182.45 seconds, but its median
is a bit far from the mean, and the standard deviation is considerable compared to
the other values. By inspecting data, we can see one outlier which pulled mean and
standard deviation. Without it, the standard deviation would be just 7.86 seconds.

PyMC3 is much slower than the other two packages, and its standard deviation
shows that results are quite unstable.

4.2 Sample quality

After collecting samples for each software package, we are using the Coda package
[16] to calculate the effective sample size (ESS) [8], where the higher value is better,

288

Koprivica M.: Comparison of software packages for performing Bayesian inference

JAGS Stan PyMC3

Mean 98.66 182.45 1046.44
Median 98.50 157.74 908.05

SD 1.60 238.44 431.10

Tab. I Mean, median, and standard deviation for execution duration over 100
probes. Values are in seconds.

and Monte Carlo standard error (MCSE) [4], where the lower value is better, for
each parameter. Further, we are calculating mean, median, and standard deviation
over the probes.

Fig. 2 is a chart with statistics of an effective sample size for theta parameters.
The solid line presents the value of the mean, and the dotted line presents the
standard deviation. Stan’s values are both, encircling the other two packages’
results in case of mean and are encircled by the other two packages in case of
standard deviation. Also, we can see that the values of PyMC3 standard deviation
significantly stands out. Fig. 3 is a chart with statistics of Monte Carlo standard
error, where again mean is presented with a solid line while the standard deviation
is presented with a dotted line. Here, PyMC3 values of both mean and standard
deviation are encircling values of the other two packages. Finally, in Tab. II are
presented the results of the last two parameters: omega and kappa. They are
following the results of theta parameters; Stan has the highest mean and the lowest

Fig. 2 Mean and standard deviation of effective sample size across theta parameters
for JAGS, Stan, and PyMC3.

289

Neural Network World 5/2020, 283–294

Fig. 3 Mean and standard deviation of Monte Carlo standard error across theta
parameters for JAGS, Stan, and PyMC3.

standard deviation of effective sample size values, and PyMC3 has the highest
values of the mean and standard deviation of Monte Carlo standard error values.
All collected ESS and MCSE statistics for theta, kappa and omega parameters are
presented in Tab. III and Tab. IV in the appendix.

Without question, Stan has the best results. The median of its ESS is equal
to the total number of samples. The mean is sometimes greater than the total
number of samples, indicating a negative estimated autocorrelation. The standard
deviation is low, about 0.025 % of the total number of samples, which signifies that
ESS is clustered around the mean. MCSE is following ESS; its mean and standard
deviation are the lowest among packages. Even though JAGS mean and median
are lower for about two-thirds of parameters from PyMC3 and higher for others,
JAGS standard deviation is much lower than from PyMC3, which means that over
the probes, ESS of JAGS samples is closer to the mean than in the case of PyMC3.
MCSE values are entirely in favour of JAGS over PyMC3. PyMC3 has the highest
MCSE numbers, with the highest standard deviation among packages.

5. Conclusion

This paper discussed the comparison of software packages for performing Bayesian
inference in the Python programming language. We presented sampling results
from the hierarchical model with the use of real data from the Therapeutic Touch
experiment. We conclude that JAGS is the fastest among packages, with fairly
good sampling quality. The standard deviation of both duration and ESS or MCSE
makes JAGS very reliable. The best quality results produced Stan, but it requires

290

Koprivica M.: Comparison of software packages for performing Bayesian inference

OMEGA KAPPA
JAGS Stan PyMC3 JAGS Stan PyMC3

ESS Mean 16541.8 20053.1 18430.2 6927.1 19998.4 10928.0
SD 2171.8 418.0 4202.1 984.5 581.3 4091.2

MCSE Mean 0.000299 0.000269 0.000397 0.681980 0.400802 0.735324
SD 0.000064 0.000011 0.000713 0.064937 0.010338 1.088703

Tab. II Mean and standard deviation of effective sample size and Monte Carlo
standard error of omega and kappa parameters, for JAGS, Stan, and PyMC3.

more time for sampling than JAGS. If quality is the only requirement, then Stan
is the best choice. These findings are aligned with Russel’s for JAGS and Stan,
using the R programming language [1]. PyMC3 acted poorly in this experiment.
Even though it uses the same MCMC algorithm as Stan, as both are using HMC
with NUTS, the standard deviation of its samples is significantly larger than for
the other two competitors. Its only advantage is writing the model directly in
Python and not as string-like for JAGS and Stan. This feature makes it easier to
find modelling errors.

We plan to run more experiments with the objective of getting more parameter
estimates. Also, the plan is to experiment with scenarios for which prior and
likelihood must be expressed with custom functions.

Acknowledgement

The author would like to thank professor D. Djurić for the comments and discussion
provided while preparing this work.

Program availability

The source code of the program written in Python for this experiment and data re-
sults is available from https://github.com/koprivica/MCMC-modules-comparison

under the MIT license.

References

[1] ALMOND R. A Comparison Of Two Mcmc Algorithms For Hierarchical Mixture Models.
In: Proceedings of the 11th Uncertainty in Artificial Intelligence Conference on Bayesian
Modeling Applications Workshop, Quebec City, Quebec, Canada. 2014, pp. 1–19. Retrieved
from: http://ceur-ws.org/Vol-1218/.

[2] BESAG J., GREEN P., HIGDON D., MENGERSEN K. Bayesian Computation and Stochas-
tic Systems. Statistical Science. 1995, 10(1), pp. 3–66.

[3] DEPAOLI S., CLIFTON J.P., COBB P.R. Just Another Gibbs Sampler (JAGS): Flexible
software for MCMC implementation. Journal of Educational and Behavioral Statistics. 2016,
41(6), pp. 628–649, doi: 10.3102/1076998616664876.

[4] FLEGAL J.M., HARAN M., JONES G.L. Markov chain Monte Carlo: Can we trust the third
significant figure?. Statistical Science. 2008, 23(2), pp. 250–260, doi: 10.1214/08-STS257.

291

https://github.com/koprivica/MCMC-modules-comparison
http://ceur-ws.org/Vol-1218/
http://dx.doi.org/10.3102/1076998616664876
http://dx.doi.org/10.1214/08-STS257

Neural Network World 5/2020, 283–294

[5] GELMAN A., LEE D., GUO J. Stan: A probabilistic programming language for Bayesian
inference and optimization. Journal of Educational and Behavioral Statistics. 2015, 40(5),
pp. 530–543, doi: 10.3102/1076998615606113.

[6] GEMAN S., GEMAN D. Stochastic relaxation, Gibbs distributions, and the Bayesian
restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence.
1984, 6, pp. 721–741.

[7] HOFFMAN M.D., GELMAN A. The No-U-Turn Sampler: Adaptively Setting Path Lengths
in Hamiltonian Monte Carlo. The Journal of Machine Learning Research. 2014, 15(1), pp.
1593–1623.

[8] KASS R.E., CARLIN B.P., GELMAN A., NEAL R.M. Markov chain Monte Carlo in
practice: A roundtable discussion. The American Statistician. 1998, 52, pp. 93–100,
doi: 10.1080/00031305.1998.10480547.

[9] KRUSCHKE J.K. Doing Bayesian Data Analysis (Second Edition). New York, NY: Aca-
demic Press. 2015.

[10] METROPOLIS, N., ROSENBLUTH A.W., ROSENBLUTH M.N., TELLER A.H., TELLER
E. Equations of state calculations by fast computing machines. Journal of Chemical Physics.
1953, 21, pp. 1087–1091.

[11] NEAL R.M. Slice Sampling. The Annals of Statistics. 2003, 31(3), pp. 705–767, doi: 10.

1214/aos/1056562461.

[12] OLIPHANT T.E. Guide to NumPy. Trelgol Publishing USA. 2006.

[13] OZGUR C., COLLIAU T., ROGERS G., HUGHES Z., MYER-TYSON B. Matlab vs. python
vs. r. Journal of Data Science. 2017, 15(3), pp. 355–372, doi: 10.13140/RG.2.1.2933.8480.

[14] PLUMMER M. JAGS: A Program for Analysis of Bayesian Graphical Models Using Gibbs
Sampling. In: K. HORNIK, F. LEISCH, A. ZEILEIS (eds.) Proceedings of the 3rd Interna-
tional Workshop on Distributed Statistical Computing (DSC 2003), Vienna, Austria; 2003,
Retrieved from: http://www.ci.tuwien.ac.at/Conferences/DSC-2003/.

[15] PLUMMER M. JAGS Version 4.3.0 User Manual. 2017, Retrieved from: https://people.

stat.sc.edu/hansont/stat740/jags_user_manual.pdf.

[16] PLUMMER M., BEST N., COWLES K., VINES K. CODA: Convergence diagnosis and
output analysis for MCMC R News. 2006, 6(1), pp. 7–11.

[17] ROSA L., ROSA E., SARNER L., BARRETT S. A close look at therapeutic touch. Journal
of the American Medical Association. 1998, 279(13), pp. 1005–1010, doi: 10.1001/jama.279.
13.1005.

[18] SALVATIER J., WIECKI T.V., FONNESBECK C. Probabilistic programming in Python
using PyMC3. PeerJ Computer Science. 2016, 2, e55, doi: 10.7717/peerj-cs.55.

[19] The Theano Development Team: Theano: A python framework for fast computation of
mathematical expressions. 2016, arXiv preprint, arXiv: 1605.02688.

292

http://dx.doi.org/10.3102/1076998615606113
http://dx.doi.org/10.1080/00031305.1998.10480547
http://dx.doi.org/10.1214/aos/1056562461
http://dx.doi.org/10.1214/aos/1056562461
http://dx.doi.org/10.13140/RG.2.1.2933.8480
http://www.ci.tuwien.ac.at/Conferences/DSC-2003/
https://people.stat.sc.edu/hansont/stat740/jags_user_manual.pdf
https://people.stat.sc.edu/hansont/stat740/jags_user_manual.pdf
http://dx.doi.org/10.1001/jama.279.13.1005
http://dx.doi.org/10.1001/jama.279.13.1005
http://dx.doi.org/10.7717/peerj-cs.55

Koprivica M.: Comparison of software packages for performing Bayesian inference

Appendix

JAGS Stan PyMC3
Mean Median SD Mean Median SD Mean Median SD

KAPPA 6927.1 6935.1 984.5 19998.4 20001.0 581.3 10928.0 12057.3 4091.2
OMEGA 16541.8 17060.1 2171.8 20053.1 20001.0 418.0 18430.2 19816.6 4202.1
THETA1 15208.1 15475.0 1769.3 20058.7 20001.0 346.8 17465.0 18809.5 4177.3
THETA2 17080.4 17270.7 1513.6 19996.5 20001.0 434.7 18259.6 19383.3 3915.0
THETA3 18588.1 18661.9 910.6 20045.6 20001.0 488.1 18989.3 20000.0 3828.4
THETA4 18768.7 18786.8 840.9 20092.5 20001.0 392.2 18867.0 20000.0 3865.1
THETA5 18576.2 18554.4 687.5 20016.8 20001.0 284.4 18946.2 20000.0 3852.3
THETA6 18547.2 18658.6 921.4 20032.5 20001.0 415.5 18858.9 20000.0 3853.1
THETA7 18699.3 18865.8 1026.3 20071.6 20001.0 391.2 19013.7 20000.0 3803.0
THETA8 18541.7 18605.9 988.7 20011.5 20001.0 388.0 18922.4 20000.0 3849.2
THETA9 18635.5 18736.4 1067.3 20042.8 20001.0 513.8 19023.8 20000.0 3884.5
THETA10 18605.0 18754.4 994.7 19975.8 20001.0 538.9 18904.2 20000.0 3827.9
THETA11 19548.9 20001.0 663.1 19993.3 20001.0 365.9 19192.8 20000.0 3901.7
THETA12 19517.1 19798.1 664.6 20030.5 20001.0 703.9 19213.2 20000.0 3928.1
THETA13 19562.1 19655.6 645.6 19969.4 20001.0 278.9 19167.1 20000.0 3815.1
THETA14 19676.4 20001.0 726.2 20017.3 20001.0 411.0 19185.5 20000.0 3933.3
THETA15 19658.6 20001.0 653.3 20081.7 20001.0 399.1 19139.5 20000.0 3898.0
THETA16 19478.8 19739.9 685.3 20066.7 20001.0 409.9 19097.8 20000.0 3893.7
THETA17 19542.6 19780.9 706.2 20012.6 20001.0 425.1 19187.1 20000.0 3927.4
THETA18 19479.6 19708.5 736.8 20039.5 20001.0 590.7 19218.4 20000.0 3871.9
THETA19 19535.6 19702.5 611.4 19977.3 20001.0 551.2 19184.7 20000.0 3930.8
THETA20 19480.3 20001.0 966.0 20157.2 20001.0 558.3 19173.2 20000.0 3909.4
THETA21 19555.1 20001.0 699.6 20013.3 20001.0 453.8 19224.1 20000.0 3857.1
THETA22 19638.2 20001.0 616.0 20019.8 20001.0 399.9 19112.7 20000.0 3937.0
THETA23 18368.1 18510.0 944.2 20072.9 20001.0 476.7 18936.1 20000.0 3914.6
THETA24 18293.6 18464.0 1374.9 20018.8 20001.0 407.0 18870.0 20000.0 3881.9
THETA25 16825.5 17161.4 1562.0 19993.4 20001.0 273.1 18137.2 19417.9 4173.3
THETA26 16920.2 17179.9 1690.0 19987.7 20001.0 520.1 17961.0 19232.0 4205.7
THETA27 16871.2 16931.1 1568.8 20074.3 20001.0 354.6 18161.1 19358.2 4162.9
THETA28 15407.5 15676.1 1819.1 20062.1 20001.0 471.2 17441.6 18912.1 4321.2

Tab. III Statistics for effective sample size of JAGS, Stan, and PyMC3 over 100
probes.

293

Neural Network World 5/2020, 283–294

J
A

G
S

S
ta

n
P

y
M

C
3

M
ea

n
M

ed
ia

n
S

D
M

ea
n

M
ed

ia
n

S
D

M
ea

n
M

ed
ia

n
S

D

K
A

P
P

A
0
.6

8
1
9
8
0

0
.6

7
3
9
0
0

0
.0

6
4
9
3
7

0
.4

0
0
8
0
2

0
.3

9
9
7
8
8

0
.0

1
0
3
3
8

0
.7

3
5
3
2
4

0
.5

1
0
2
2
1

1
.0

8
8
7
0
3

O
M

E
G

A
0
.0

0
0
2
9
9

0
.0

0
0
2
8
6

0
.0

0
0
0
6
4

0
.0

0
0
2
6
9

0
.0

0
0
2
6
6

0
.0

0
0
0
1
1

0
.0

0
0
3
9
7

0
.0

0
0
2
7
0

0
.0

0
0
7
1
3

T
H

E
T

A
1

0
.0

0
0
7
2
3

0
.0

0
0
7
0
7

0
.0

0
0
0
9
7

0
.0

0
0
6
2
2

0
.0

0
0
6
2
3

0
.0

0
0
0
0
7

0
.0

0
1
0
5
4

0
.0

0
0
6
4
2

0
.0

0
2
9
2
7

T
H

E
T

A
2

0
.0

0
0
6
4
1

0
.0

0
0
6
3
2

0
.0

0
0
0
4
8

0
.0

0
0
5
8
9

0
.0

0
0
5
8
9

0
.0

0
0
0
0
7

0
.0

0
1
1
8
6

0
.0

0
0
5
9
8

0
.0

0
4
6
7
2

T
H

E
T

A
3

0
.0

0
0
5
9
0

0
.0

0
0
5
8
8

0
.0

0
0
0
1
7

0
.0

0
0
5
6
7

0
.0

0
0
5
6
7

0
.0

0
0
0
0
7

0
.0

0
1
1
2
6

0
.0

0
0
5
7
0

0
.0

0
4
1
6
3

T
H

E
T

A
4

0
.0

0
0
5
8
7

0
.0

0
0
5
8
6

0
.0

0
0
0
1
6

0
.0

0
0
5
6
7

0
.0

0
0
5
6
8

0
.0

0
0
0
0
6

0
.0

0
0
7
6
9

0
.0

0
0
5
7
2

0
.0

0
1
0
2
3

T
H

E
T

A
5

0
.0

0
0
5
9
0

0
.0

0
0
5
8
8

0
.0

0
0
0
1
2

0
.0

0
0
5
6
7

0
.0

0
0
5
6
7

0
.0

0
0
0
0
5

0
.0

0
0
9
4
5

0
.0

0
0
5
7
1

0
.0

0
2
5
7
8

T
H

E
T

A
6

0
.0

0
0
5
9
0

0
.0

0
0
5
8
8

0
.0

0
0
0
1
8

0
.0

0
0
5
6
8

0
.0

0
0
5
6
8

0
.0

0
0
0
0
7

0
.0

0
0
7
0
7

0
.0

0
0
5
7
1

0
.0

0
0
7
1
3

T
H

E
T

A
7

0
.0

0
0
5
8
8

0
.0

0
0
5
8
5

0
.0

0
0
0
2
1

0
.0

0
0
5
6
7

0
.0

0
0
5
6
8

0
.0

0
0
0
0
6

0
.0

0
0
8
8
2

0
.0

0
0
5
7
1

0
.0

0
2
1
1
6

T
H

E
T

A
8

0
.0

0
0
5
9
0

0
.0

0
0
5
8
7

0
.0

0
0
0
1
9

0
.0

0
0
5
6
8

0
.0

0
0
5
6
7

0
.0

0
0
0
0
6

0
.0

0
0
8
7
2

0
.0

0
0
5
7
1

0
.0

0
2
0
1
3

T
H

E
T

A
9

0
.0

0
0
5
8
9

0
.0

0
0
5
8
6

0
.0

0
0
0
2
0

0
.0

0
0
5
6
8

0
.0

0
0
5
6
8

0
.0

0
0
0
0
8

0
.0

0
0
8
0
4

0
.0

0
0
5
7
0

0
.0

0
1
4
4
5

T
H

E
T

A
1
0

0
.0

0
0
5
8
9

0
.0

0
0
5
8
6

0
.0

0
0
0
2
0

0
.0

0
0
5
6
9

0
.0

0
0
5
6
8

0
.0

0
0
0
0
8

0
.0

0
0
7
4
2

0
.0

0
0
5
7
1

0
.0

0
0
9
7
6

T
H

E
T

A
1
1

0
.0

0
0
5
6
6

0
.0

0
0
5
6
3

0
.0

0
0
0
1
0

0
.0

0
0
5
6
0

0
.0

0
0
5
6
0

0
.0

0
0
0
0
6

0
.0

0
0
9
8
8

0
.0

0
0
5
6
0

0
.0

0
2
5
4
0

T
H

E
T

A
1
2

0
.0

0
0
5
6
7

0
.0

0
0
5
6
5

0
.0

0
0
0
1
0

0
.0

0
0
5
5
9

0
.0

0
0
5
6
0

0
.0

0
0
0
1
0

0
.0

0
0
8
8
3

0
.0

0
0
5
6
0

0
.0

0
1
9
5
9

T
H

E
T

A
1
3

0
.0

0
0
5
6
6

0
.0

0
0
5
6
5

0
.0

0
0
0
0
9

0
.0

0
0
5
6
1

0
.0

0
0
5
6
0

0
.0

0
0
0
0
5

0
.0

0
0
6
6
7

0
.0

0
0
5
6
1

0
.0

0
0
5
7
4

T
H

E
T

A
1
4

0
.0

0
0
5
6
4

0
.0

0
0
5
6
2

0
.0

0
0
0
1
2

0
.0

0
0
5
5
9

0
.0

0
0
5
5
9

0
.0

0
0
0
0
7

0
.0

0
1
0
2
4

0
.0

0
0
5
6
2

0
.0

0
2
6
1
8

T
H

E
T

A
1
5

0
.0

0
0
5
6
4

0
.0

0
0
5
6
2

0
.0

0
0
0
1
0

0
.0

0
0
5
5
9

0
.0

0
0
5
5
9

0
.0

0
0
0
0
6

0
.0

0
0
9
6
0

0
.0

0
0
5
6
0

0
.0

0
2
3
7
0

T
H

E
T

A
1
6

0
.0

0
0
5
7
3

0
.0

0
0
5
7
0

0
.0

0
0
0
1
1

0
.0

0
0
5
6
4

0
.0

0
0
5
6
5

0
.0

0
0
0
0
6

0
.0

0
0
8
3
1

0
.0

0
0
5
6
6

0
.0

0
1
6
0
7

T
H

E
T

A
1
7

0
.0

0
0
5
7
2

0
.0

0
0
5
7
0

0
.0

0
0
0
1
2

0
.0

0
0
5
6
6

0
.0

0
0
5
6
5

0
.0

0
0
0
0
7

0
.0

0
0
9
3
5

0
.0

0
0
5
6
6

0
.0

0
2
1
4
7

T
H

E
T

A
1
8

0
.0

0
0
5
7
3

0
.0

0
0
5
7
1

0
.0

0
0
0
1
2

0
.0

0
0
5
6
5

0
.0

0
0
5
6
5

0
.0

0
0
0
0
9

0
.0

0
0
6
8
5

0
.0

0
0
5
6
7

0
.0

0
0
6
1
0

T
H

E
T

A
1
9

0
.0

0
0
5
7
3

0
.0

0
0
5
7
1

0
.0

0
0
0
1
0

0
.0

0
0
5
6
6

0
.0

0
0
5
6
6

0
.0

0
0
0
0
8

0
.0

0
1
3
2
7

0
.0

0
0
5
6
6

0
.0

0
5
4
3
8

T
H

E
T

A
2
0

0
.0

0
0
5
7
4

0
.0

0
0
5
6
8

0
.0

0
0
0
1
8

0
.0

0
0
5
6
3

0
.0

0
0
5
6
5

0
.0

0
0
0
0
8

0
.0

0
0
7
8
4

0
.0

0
0
5
6
6

0
.0

0
1
1
0
8

T
H

E
T

A
2
1

0
.0

0
0
5
7
2

0
.0

0
0
5
7
0

0
.0

0
0
0
1
2

0
.0

0
0
5
6
5

0
.0

0
0
5
6
5

0
.0

0
0
0
0
8

0
.0

0
0
8
4
5

0
.0

0
0
5
6
6

0
.0

0
1
8
3
1

T
H

E
T

A
2
2

0
.0

0
0
5
7
1

0
.0

0
0
5
6
8

0
.0

0
0
0
1
0

0
.0

0
0
5
6
6

0
.0

0
0
5
6
6

0
.0

0
0
0
0
6

0
.0

0
0
9
9
9

0
.0

0
0
5
6
8

0
.0

0
2
5
4
2

T
H

E
T

A
2
3

0
.0

0
0
6
1
1

0
.0

0
0
6
0
7

0
.0

0
0
0
1
9

0
.0

0
0
5
8
4

0
.0

0
0
5
8
4

0
.0

0
0
0
0
8

0
.0

0
0
8
0
6

0
.0

0
0
5
8
8

0
.0

0
1
1
2
6

T
H

E
T

A
2
4

0
.0

0
0
6
1
4

0
.0

0
0
6
0
7

0
.0

0
0
0
3
8

0
.0

0
0
5
8
5

0
.0

0
0
5
8
5

0
.0

0
0
0
0
7

0
.0

0
1
1
9
3

0
.0

0
0
5
8
9

0
.0

0
3
9
4
8

T
H

E
T

A
2
5

0
.0

0
0
6
7
6

0
.0

0
0
6
6
4

0
.0

0
0
0
6
3

0
.0

0
0
6
1
7

0
.0

0
0
6
1
6

0
.0

0
0
0
0
6

0
.0

0
1
1
2
2

0
.0

0
0
6
2
7

0
.0

0
2
7
8
4

T
H

E
T

A
2
6

0
.0

0
0
6
7
5

0
.0

0
0
6
6
6

0
.0

0
0
0
7
6

0
.0

0
0
6
1
7

0
.0

0
0
6
1
7

0
.0

0
0
0
0
9

0
.0

0
1
3
2
2

0
.0

0
0
6
2
8

0
.0

0
4
6
0
2

T
H

E
T

A
2
7

0
.0

0
0
6
7
6

0
.0

0
0
6
6
9

0
.0

0
0
0
6
9

0
.0

0
0
6
1
6

0
.0

0
0
6
1
6

0
.0

0
0
0
0
6

0
.0

0
0
9
2
3

0
.0

0
0
6
2
6

0
.0

0
1
5
0
3

T
H

E
T

A
2
8

0
.0

0
0
7
6
1

0
.0

0
0
7
4
3

0
.0

0
0
1
2
0

0
.0

0
0
6
5
8

0
.0

0
0
6
5
8

0
.0

0
0
0
1
0

0
.0

0
1
1
0
0

0
.0

0
0
6
7
7

0
.0

0
2
2
0
6

T
a
b
.
IV

S
ta

ti
st

ic
s

fo
r

M
o
n

te
C

a
rl

o
st

a
n

d
a
rd

er
ro

r
fo

r
J

A
G

S
,

S
ta

n
,

a
n

d
P

yM
C

3
o
ve

r
1
0
0

p
ro

be
s.

294

