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Abstract: The prediction and analysis of surrounding rock deformation is a pri-
mary risk assessment method in tunnel engineering. However, the accurate predic-
tion result is not easy to achieve due to the influence of multiple factors such as rock
mass properties, support structure, and the spatial effect of tunnel construction.
In this paper, a multivariate time-series model (MTSM) for tunnel displacement
prediction is studied based on Gaussian process regression (GPR) optimized by
differential evolutionary (DE) strategy, where the spatial effect is intuitively ex-
pressed through an extended time-series model. First, building learning samples
for GPR, in which the inputs is the displacement data of the previous n days and
the output is the data of the day (n + 1). Then, for each sample, an input item
is added successively to form an expanded learning sample, which is the “distance
between the construction face and monitoring section” on the day (n+ 1). Taking
the root mean square error between the regression and measured data as the con-
trol index, the GPR model is trained to express the nonlinear mapping relationship
between input and output, and the optimal parameters of this model are searched
by DE. The displacement multivariate time-series model represented by DE-GPR
is known as MTSM. On this basis, the applicability of GPR for tunnel displacement
prediction and the necessity of DE optimization are illustrated by comparing the
prediction results of several commonly used machine learning models. At the same
time, the influence of GPR and DE parameters on the regression result and the
computational efficiency of the MTSM model is analyzed, the recommendation for
parameter values are given considering both calculation efficiency and accuracy.
This method is successfully applied to the Leshanting tunnel of Puyan express-
way in Fujian province, China, and the results show that the MTSM based on
DE-GPR has a good ability in the deformation prediction of the surrounding rock,
which provides a new method for tunnel engineering safety control.
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1. Introduction

It is an important means to ensure construction safety by the real-time statistics
and effective analysis of the rock displacement, which is an intuitive representation
of tunnel stability. But the traditional displacement monitoring methods are lim-
ited by the information hysteresis and cannot effectively realize the early warning
of tunnel disasters [1]. Time-series prediction is considered to be a good method
to solve this problem [2,3]. This method can estimate the trend of future data ac-
cording to the historical displacement, so as to realize the early warning and timely
treatment of potential risks. However, it is difficult to guarantee the accuracy of
the prediction results, because the historical data sequence of tunnel displacement
is often shown as a complex implicit functional relationship, which is difficult to
be described by the basic mathematical method [4]. Some intelligent algorithms
with strong nonlinear regression ability have been applied to realize this prediction
process in recent researches, such as support vector machine [5], artificial neural
network [6, 7], Gaussian process [8, 9] and so on.

In these studies, the Gaussian process (GP) is a random method based on
probability theory and mathematical statistics. The Gaussian process regression
(GPR) developed from GP is a model with bayesian characteristics, which has good
generalization and resolvability compared with other methods [10, 12]. However,
the accuracy of GPR is obviously affected by its parameters setting, and other
intelligent algorithms also have similar problems. Researchers have tried various
methods to optimize the parameters of the intelligent algorithm, such as particle
swarm optimization (PSO) [13] differential evolution (DE) [14] bacterial foraging
optimization algorithm (BFOA) [15] tabu search (TS) [16] and simulated annealing
(SA) [17] et. al. In these explorations, DE considers the correlation of multiple
variables on the basis of PSO, and its functional advantage has been proved in
several studies [18, 20]. Therefore, it will be a good solution to optimize GPR by
DE.

Tunnel excavation process destroyed the original rock stress state of equilib-
rium, causes a redistribution of surrounding rock stress, deformation and energy.
The radial constraint of the unexcavated area on the surrounding rock makes it
impossible for the rock mass energy to be released completely at one time, the de-
formation of surrounding rock increases continuously and then tends to be stable
with the advance of excavation. This kind of deformation characteristic caused by
the excavation in tunnel construction is called spatial effect [21]. At present, the
prediction of tunnel displacement trend is mainly discussed from the perspective
of the displacement curve feature description. For example, Gao W. [22] combines
grey system method and neural network to decompose the original displacement
sequence into trend sequence and deviation sequence for prediction. Zheng G et
al. [23] established a semi-empirical theory for predicting tunnel displacement by
combining with the hardened soil model with small strain stiffness. Zhang KN
et al. [24] extended the classic kriging spatial interpolation in time and space, es-
tablished the prediction model of surrounding rock displacement of the tunnel by
using the spatio-temporal variation function. These studies have achieved effective
results, but ignore the direct cause of tunnel deformation, that is the spatial effect
of excavation, and there are still the following problems. (1) These research meth-
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ods are relatively complex, and there are few studies that adopt a more concise
and intuitive time-series expansion method to predict the deformation of tunnel
surrounding rock from the perspective of spatial effect. (2) GPR model can realize
the regression analysis of displacement time-series, but its calculation accuracy is
significantly affected by parameter setting. How to develop the coupling algorithm
of displacement prediction with parameter optimization function still remains to
be studied. (3) In the process of parameter optimization of the time-series model,
the influence law of DE parameters on the optimization results is not clear.

In this paper, GPR is used to describe the variation rule of tunnel displacement,
then the regression accuracy and computational efficiency of this model have been
improved by the DE algorithm. Moreover, the “distance between the construction
face and monitoring section” is used as a new input indicator to express the spa-
tial effect of tunnel excavation. Based on this, a multivariate time-series model
is established, namely MTSM. Furthermore, the influence of DE parameter varia-
tion on the regression effect is discussed, and the optimal value considering both
computational efficiency and accuracy is presented. Finally, the MTSM method is
applied to the tunnel construction of the YA15 section of the Puyan expressway,
and the accuracy of this method is verified by the consistency comparison between
the predicted value of surrounding rock displacement and the actual monitoring
results.

2. Multivariate time-series model for tunnel

2.1 Time-series model

For tunnel engineering, the surrounding rock deformation can be predicted by
the time-series model due to it is a continuous process changing along the time se-
quence. However, the deformation characteristic curve does not change monotonously
in the construction process, which leads to the traditional time-series method can
not accurately describe the complete deformation process of surrounding rock. As
illustrated in Fig. 1, the surrounding rock displacement increases (section AB) with
the proximity of the construction face. After the excavation of the target position,
the surrounding rock displacement increases rapidly (section BC) and gradually
becomes stable as the excavation surface gradually moves away (section CD). Such
a change process indicates that the “distance between construction face and moni-
toring section” has a significant influence on the displacement of surrounding rock,
which is called the spatial effect of the tunnel.

In order to reflect the influence of the spatial effect, a multivariate time-series
model (MTSM) is established with the “distance from the construction surface
to the monitoring section” as a new input variable, as shown in Fig. 2. For the
displacement analysis of tunnel engineering, the mapping relationship in the figure
is highly nonlinear and complex, it is difficult to express through curve fitting
and parameter estimation. Use Gaussian process regression (GPR) to solve this
problem.
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Fig. 1 Tunnel deformation curve under the influence of spatial effect.
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Fig.1 Tunnel deformation curve
under the influence of spatial effect

Fig.2 Multivariate sequentially modeling principle
Fig. 2 Multivariate sequentially modeling principle.

2.2 Gaussian process regression

GPR is a probabilistic nuclear learning machine which can achieve probabilistic
interpretation of the predicted output [25]. In this paper, GPR is used to establish
the time-series prediction model for tunnel displacement data.

First, the learning sample is built as D = (X, y), where X are the continuous
displacement values for P days and the “distance between construction face and
monitoring section” on day P+1, X = (x1, x2, . . . , xP , DP+1), y is the displacement
value on day P+1 at the same position. Suppose that the displacement sequence of
a test point is known as (x∗, y∗), the Gaussian distribution formed by the training
samples and test points is shown as formula (1).[

y
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where µ is the input mean of the learning sample and N stands for normal dis-
tribution. σn is the standard deviation of data noise, represents the fitting degree
within the learning sample interval. I is a unit vector. K (X,X) is the positive
definite covariance matrix, representing the correlation measure of any two terms
in the learning sample. For kij in the covariance matrix, the square exponential
covariance function shown in formula (2) is used to solve it.

kij (xi, xj) =
√
πσ2

n exp
(
−σf ∥xi − xj∥2

)
, (2)
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where σf is the local correlation coefficient, representing the correlation degree
between samples.

The mean value and variance of y∗ can be solved as shown in formula (3) and
(4), which is the solution result of tunnel displacement time-series.

ŷ (x∗) = kT (x∗)
(
K + σ2

nI
)−1

y, (3)

σ̂2 (x∗) = k (x∗, x∗)− kT (x∗)
(
K + σ2

nI
)−1

k (x∗) . (4)

So far, the expression and solution of MTSM by GPR have been realized. However,
the local correlation coefficient σf and noise standard deviation σn in formula
(2) have a significant impact on the accuracy of the model, and it is difficult to
optimize these key parameters of GPR. On the one hand, multiple locally optimal
solutions may occur in the process of key parameter solving. On the other hand, the
regression process needs to take into account both the fitting accuracy within the
learning sample interval and the extensibility of the regression model to the outside
of the interval. This research solves this problem through a biological optimization
strategy.

2.3 GPR optimized by DE

Differential evolution (DE) is a population-based parallel random search algorithm
with real number coding. It has good robustness and simple structure, which can
be solved without relying on the characteristic information of the problem. In this
study, adopted the DE strategy to optimize GPR parameters as shown in Fig. 3,
and the specific operation process are as follows.

group, as shown in formula (5).

m
y
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Step 7. Steps 4-6 are a complete DE iteration process. Determine whether the maximum

number of iterations has been reached, and if so, enter step 8. Otherwise, return to step 3.

Step 8. Output the parameters represented by the individuals with the optimal fitness value,

Fig. 3 DE process to searching the optimal parameters of GPR.
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Step 1. Set the initial values of the mutation factor F and the cross factor CR of
the DE algorithm, randomly generate the initial population within the parameter
optimization interval.

Step 2. Based on the training samples, regression training GPR according to
the key parameters in the initial population. The fitness of the regression results
was evaluated with test samples. In this study, the fitness value function is the
relative prediction error of the test sample group, as shown in formula (5).

Fit =

√[∑m
ts=1

(
yts−y′

ts

yts

)2
]

m
(5)

where m is the number of test samples. yts and y′ts are the measured value and the
predicted value, respectively.

Step 3. Enter step 8 if the global minimum fitness of the current population
meets the requirement, otherwise enter step 4. The fitness requirements can be set
according to the calculation requirements, which is set as ≤ 10−2 in this study.

Step 4. Perform mutation operation. Generating variation vectors with two
target individuals as a group, vi = ax1 + bx2. Where a and b are randomly
generated weight coefficients, a, b ∈ [0, 1] and a+ b = 1.

Step 5. Perform crossover operations. Cross the newly generated variation
vector with the original target individual. For the optimization objective of this
paper, the crossover operation is to randomly select the newly generated mutation
vector and the original target individual in two dimensions to form a new vector
individually.

Step 6. Perform select operation. Comparing the new individual and the origi-
nal target individual, and the ones with a smaller fitness value is retained.

Step 7. Steps 4–6 are a complete DE iteration process. Determine whether the
maximum number of iterations has been reached, and if so, enter step 8. Otherwise,
return to step 3.

Step 8. Output the parameters represented by the individuals with the optimal
fitness value, and take them as the final parameters of the GPR model to complete
the optimization process.

3. Engineering application

3.1 Engineering cases

The YA15 section of Puyan expressway connects Zhongxian town to Xinkou town,
Sanming city, Fujian province, China, as shown in Fig. 4. The length of this section
is 9.55 km, including five tunnels, namely Jishan tunnel, Suqiao tunnel, Wugong-
shan tunnel, Mingxi tunnel and Leshanting tunnel respectively. The method in this
paper has been applied to the prediction and early warning of tunnel deformation
during the construction of this area. Take Leshanting tunnel as an example to
introduce the application process of MTSM method.

The Leshanting tunnel is 601 meters in length, all of which are medium-weathered
quartz-gravel. In addition to the entrance section, the tunnel is excavated by step
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method. The “distance between construction face and monitoring section” men-
tioned in this paper refers to the distance between the monitoring section and the
upper step construction surface.

An automated Internet of Things (IoT) monitoring system has been established
for some sections of the tunnel as shown in Fig. 4. The vibration wire multi-point
displacement sensor is used to monitor the settlement of the tunnel vault, and the
laser ranging sensor is used to monitor the distance of the tunnel face. The data ob-
tained is processed by the YT-ZD-01 data module and then transmitted via GPRS.
Such IoT monitoring overcomes the problem of insufficient manual measurement
accuracy and is not affected by on-site construction factors. It can perform timing
measurement at specified time intervals and obtain relatively complete isometric
time-series displacement data, which provides a data basis for tunnel displacement
prediction.

Practice shows that the deformation law of two adjacent tunnel monitoring
sections is consistent. In order to obtain a more complete deformation prediction
curve for the prediction effect analysis of the algorithm, section YK214 + 280
monitoring data in Leshanting tunnel was used to establish a learning sample for the
prediction verification of the whole deformation process on section YK214 + 275.

In this process, the best historical points of surrounding rock deformation are
determined as P = 5 through comparative analysis, that is, the input group (input
1 ∼ 5) is the displacement data of the measuring point for 5 consecutive days, and
the output is the predicted displacement of the next day. Considering the spatial
effect caused by the construction face gradually moving away from the monitoring
section in tunnel construction, take the “distance between construction face and
monitoring section” as an input parameter (input6) to construct a multivariate
time-series. A total of 48 groups of learning samples were constructed, as shown
in Tab. I. Among them, 8 groups of samples were randomly selected to form test
samples, and the remaining 40 groups were used as training samples.

In the actual construction process, the displacement of the tunnel vault at
YK214 + 280 position under the influence of space utility is mainly manifested in
the first 48 construction cycles. According to this, the 48 learning samples in Tab. I
are obtained. Related research [26, 27] shows that the number of samples in the
machine learning process of geotechnical engineering needs to be more than 35 to
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ordinal
input 1 input 2 input 3 input 4 input 5 input 6 output
(mm) (mm) (mm) (mm) (mm) (m) (mm)

1 5.70 6.45 7.20 7.75 8.30 4.80 8.90
2 6.45 7.20 7.75 8.30 8.90 5.20 9.50
3 7.2 7.75 8.30 8.90 9.50 5.60 10.60
4 7.75 8.30 8.90 9.50 10.60 6.00 11.70
5 8.30 8.90 9.50 10.60 11.70 6.40 11.90
...

...
...

...
...

...
...

...
21 17.30 17.50 17.70 18.40 19.10 12.80 19.25
22 17.50 17.70 18.40 19.10 19.25 13.20 19.40
23 17.70 18.40 19.10 19.25 19.40 13.60 19.55
24 18.40 19.10 19.25 19.40 19.55 14.00 19.70
25 19.10 19.25 19.40 19.55 19.70 14.40 20.40
...

...
...

...
...

...
...

...
44 24.80 25.10 25.95 26.80 27.45 22.00 28.10
45 25.10 25.95 26.80 27.45 28.10 22.40 28.35
46 25.95 26.80 27.45 28.10 28.35 22.80 28.60
47 26.80 27.45 28.10 28.35 28.60 23.20 28.70
48 27.45 28.10 28.35 28.60 28.70 23.60 28.80

Tab. I Partial learning samples.

ensure the training accuracy. The samples in Tab. I meet this requirement, but it
should be noted that the expansion of learning samples will effectively improve the
training effect of machine learning. Therefore, as many learning samples as possible
should be collected when conditions permit. For example, when the consistency of
the rock mass properties in the target area is good, it can consider comprehensively
researching the data of multiple sections near the target to construct learning
samples.

3.2 Prediction result analysis

The DE-GPR model described in Chapter 2 is programmed on the MATLAB plat-
form, and after training it with the learning samples in Tab. I, the time-series
prediction of the vault displacement on the YK214 + 275 segment is carried out.
During the process of DE optimizing GPR key parameters, the adaptive values of
the populations in the 30th, 50th, 70th and 100th generation are shown in Fig. 5.
The final key parameters optimization results are σf = 1.74 and σn = 0.46.

Fig. 6 shows the displacement prediction results and their relative error statis-
tics. It can be found that the MTSM method is basically consistent with the tradi-
tional time-series in the initial stage of the prediction process. With the increase of
rolling times, the prediction curve of the ordinary time-series model approximately
presents a straight line, and the error accumulation is obvious. The predicted re-
sults of MTSM are in good agreement with the measured displacement curve, with
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14 16 18 20 22 24
-1

0

1

2

3

4

5

6

7

8

A
bs

ol
ut

e 
er

ro
r 

[m
m

]

Distance from construction section [m]

 Historical 2-days

 Historical 3-days

 Historical 4-days

 Historical 5-days

 Historical 6-days

 

Fig.7 

Fig. 5 Individual fitness value distribution in the iterative process of DE-GPR.

the maximum absolute error of 0.65mm and the relative error of 3.45% in the
overall prediction process.

Under the action of spatial effect, the deformation rate of surrounding rock
gradually decreases and finally tends to be stable. It is difficult for the traditional
time-series to obtain the change process of deformation rate through simple regres-
sion of displacement data. Therefore, in the late stage of rolling prediction, the
deformation prediction curve shows a continuous rise of nearly equal rate.

For the MTSM established in this paper, the new input item “distance between
construction face and monitoring section” enables the machine learning model to
understand the spatial effect interval more accurately. The nonlinear mapping
model established by MTSM is no longer a simple displacement data, but contains
a relatively independent reference term, effectively characterizing the deformation
rate of the surrounding rock under different excavation footage under the action
of spatial effect. Therefore, MTSM can effectively identify the real deformation
process and predict the displacement curve closer to the actual situation.
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Fig. 6 Time-series prediction results contrast.

3.3 Discussion

The above research proves that the multivariate time-series model (MTSM) estab-
lished in this paper can accurately describe the deformation process of the spatial
tunnel effect. Based on this, the performance of the DE-GPR algorithm used in
the research process is further verified in this section.

3.3.1 Impact of historical data volume

Adjust the learning samples and set the number of historical data in MTSM as
2 ∼ 6, respectively, the calculated error statistics of the prediction results are
shown in Fig. 7. It can be seen that when the amount of historical data used
exceeds 4 days, the calculation error is significantly reduced, and the predicted
results are in good agreement with the actual results. When the historical data
rises from 5 days to 6 days, the error changes are not obvious. Therefore, the
historical data input volume is selected as 5 days in this study.
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Fig.5 Individual fitness value distribution in the iterative process of DE-GPR 
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3.3.2 Necessity of GPR optimization

Adjusting the values of hyperparameters σf and σn of the GPR model, the cal-
culated regression error is shown in Fig. 8. It can be seen that the relative error
distribution of the predicted results presents an irregular surface under different
key parameters combination conditions. The results show that the two key param-
eters have a significant influence on the calculation accuracy of GPR, which proved
that it is necessary to optimize these two parameters by DE.
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Fig. 8 Key parameters sensitivity analysis of GPR.

3.3.3 DE parameter selection

In order to obtain better calculation results, the key parameter settings of DE are
compared. Control the variation factor F and cross factor CR as a single variable
respectively, the influence of these two parameters on DE algorithm is analyzed
according to the recorded convergence curve of the iterative process.

First, based on the relevant research experience of DE strategy [28], fixed F as
0.6, and CR is 0.3 ∼ 0.9 in turn. As shown in Fig. 9, the convergence effect of the
iterative convergence curve is the best when CR = 0.7. The value of F at this time
is determined based on experience, because the law of convergence characteristics
with the change of CR value under different F value conditions is consistent, so
this approach can effectively obtain the optimal CR value [29,31].

Then, CR was fixed as 0.7, and F was valued from 0.3 to 0.9, respectively. F
represents the single search shrinkage range. As shown by the curve on the right
of Fig. 9, the convergence effect was best when F = 0.7.

Keeping CR = 0.7 and F = 0.7 unchanged, using different DE evolution strate-
gies in formula (6) to optimize the parameters of GPR, among them, νi is the
vector after mutation. xbest is the individual with the smallest fitness value in the
current population. xr1 ∼ xr4 are the random vectors in the process of DE. The
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Fig.9 The iterative convergence curves under a variety of F、CR value changed conditions

First, based on the relevant research experience of DE strategy[28], fixed F as 0.6, and CR is

0.3 ~ 0.9 in turn. As shown in Fig.9, the convergence effect of the iterative convergence curve is the

best when CR=0.7. The value of F at this time is determined based on experience, because the law

of convergence characteristics with the change of CR value under different F value conditions is

consistent, so this approach can effectively obtain the optimal CR value[29~31].

Then, CR was fixed as 0.7, and F was valued from 0.3 to 0.9, respectively. F represents the

single search shrinkage range. As shown by the curve on the right of Fig.9, the convergence effect

was best when F=0.7.

Keeping CR=0.7 and F=0.7 unchanged, using different DE evolution strategies in formula (6)

to optimize the parameters of GPR, among them, i is the vector after mutation. bestx is the

individual with the smallest fitness value in the current population. 41 ~ rr xx are the random

vectors in the process of DE. The convergence curve is shown in Fig.10, it can be seen that the

convergence effect is best when strategy 2 is adopted.
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Fig. 9 The iterative convergence curves under a variety of FCR value changed
conditions.

convergence curve is shown in Fig. 10, it can be seen that the convergence effect is
best when strategy 2 is adopted.

Evolution strategy 1 : νi = xr1 + F (xr2 − xr3)
Evolution strategy 2 : νi = xbest + F (xr2 − xr3)

Evolution strategy 3 : νi = xr1 + F (xr2 − xr3 + xr4 − xr5)
Evolution strategy 4 : νi = xbest + F (xr1 − xr2 + xr3 − xr4)
Evolution strategy 5 : νi = xr1 + F (xbest − xr2 + xr3 − xr4)

. (6)

Fig.10 Impact of evolutionary strategy on convergence Fig.11 Comparative validation of different algorithms

3.3.4 GPR performance verification
According to the learning samples in Tab. 1, three methods: Artificial Neural Network (ANN),

Support Vector Machine (SVM) and Gaussian Process Regression (GPR) are used to predict the
tunnel displacement at YK214+275, the prediction curves are shown in Fig.11. In this process, SVM
uses the least squares value function, and its kernel function is selected as the radial basis function:

}/exp{),( 22
kk xxxxK  , the kernel parameter setting of the algorithm obtained by the conjugate

gradient method are set as: 39.6 、 13.12  . ANN uses a BP feed-forward neural network with a hidden

layer of 1, in which the number of hidden layer nodes 5fN , the number of iterations 100pE , and the

learning rate 1.0rL .

It can be seen that compared with other machine learning methods (taking ANN and SVM as

examples), the prediction curve of GPR is closer to the actual measurement results, indicating that

GPR has better applicability in the prediction of time-series of surrounding rock displacement.

3.3.5 DE performance verification
In order to verify the performance of the DE-GPR algorithm established in this paper, a

performance evaluation index 2R is used to evaluate the predictive effect of GPR and DE-GPR,

respectively, as shown in formula (7).
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Where ix is the measured value and ipx is the corresponding predicted value. meanx is the

average value of the measurement.

Fig.12 shows the 2R evaluation of the predicted results of these two models. It can be seen

that the key parameter value of GPR changed after DE optimization, and the predicted result

( 9897.0R 2  ) of DE-GPR is significantly improved compared with the predicted result

Fig. 10 Impact of evolutionary strategy on convergence.

3.3.4 GPR performance verification

According to the learning samples in Tab. I, three methods: artificial neural net-
work (ANN), support vector machine (SVM) and Gaussian process regression
(GPR) are used to predict the tunnel displacement at YK214 + 275, the pre-
diction curves are shown in Fig. 11. In this process, SVM uses the least squares
value function, and its kernel function is selected as the radial basis function:
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Fig. 11 Comparative validation of different algorithms.

K(x, xk) = exp(−∥x− xk∥ 2
/σ2), the kernel parameter setting of the algorithm

obtained by the conjugate gradient method are set as: γ = 6.39σ2 = 1.13. ANN
uses a BP feed-forward neural network with a hidden layer of 1, in which the num-
ber of hidden layer nodes Nf = 5, the number of iterations Ep = 100, and the
learning rate Lr = 0.1.

It can be seen that compared with other machine learning methods (taking
ANN and SVM as examples), the prediction curve of GPR is closer to the actual
measurement results, indicating that GPR has better applicability in the prediction
of time-series of surrounding rock displacement.

3.3.5 DE performance verification

In order to verify the performance of the DE-GPR algorithm established in this

paper, a performance evaluation index R2 is used to evaluate the predictive effect
of GPR and DE-GPR, respectively, as shown in formula Eq. (7).

R2 =
[
∑n

i=1 (xi − xmean)
2]− [

∑n
i=1 (xi − xip)

2]

[
∑n

i=1 (xi − xmean)2]
, (7)

where xi is the measured value and xip is the corresponding predicted value. xmean

is the average value of the measurement.

Fig. 12 shows the R2 evaluation of the predicted results of these two models. It
can be seen that the key parameter value of GPR changed after DE optimization,
and the predicted result (R2 = 0.9897) of DE-GPR is significantly improved com-
pared with the predicted result (R2 = 0.9687) of GPR, indicating that the GPR
model after DE optimization has a better computational performance.

4. Conclusion

In this paper, the DE-GPR model is used to express the time-series of surrounding
rock deformation, and an MTSM method is established to improve the accuracy
of tunnel displacement prediction. This method was applied to the construction of
Leshanting tunnel, and the following conclusions were obtained.
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computational performance.

Fig.12 2R evaluation of the predicted results of the GPR and DE-GPR model

4. Conclusion
In this paper, the DE-GPR model is used to express the time series of surrounding rock

deformation, and an MTSM method is established to improve the accuracy of tunnel displacement

prediction. This method was applied to the construction of Leshanting tunnel, and the following

conclusions were obtained.

(1) The two key parameters of local correlation coefficient f and noise standard deviation

n of GPR have a significant influence on the regression prediction results, so it is necessary to

select the appropriate parameters when using GPR for data mapping.

(2) In the application process, in order to obtain a better optimization effect, the initial

parameters of DE are recommended to be set as: variation factor F=0.7 and cross factor CR=0.7.

(3) Comparative analysis shows that GPR has better applicability to tunnel displacement

prediction than other intelligent algorithms. The predictive ability of GPR after DE optimization is

significantly improved. The evaluation coefficient 2R increased from 0.9687 to 0.9897, indicating

that the DE-GPR model established in this paper is effective.

It should be noted that this study mainly considers the influence of spatial effects in the process

of tunnel excavation. At this time, accurate measurement of the “distance between construction

face and monitoring section” is necessary. Therefore, this method is mainly suitable for tunnels

excavated by the full-section or step method, and the IoT monitoring system described in the article

is also designed for this kind of tunnel. For other types of tunnels, it can refer to the extended time

series method of this study, but the existing models are difficult to directly apply. For example, for

shield tunnels, the influence of the supporting force of the tunnel face on the tunnel deformation

should be mainly considered; for tunnels excavated in blocks using the double-side heading method,

the center diaphragm method, etc., the transition logic of the construction steps should be focused

on.
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Fig. 12 R2 evaluation of the predicted results of the GPR and DE-GPR model.

(1) The two key parameters of local correlation coefficient σf and noise standard
deviation σn of GPR have a significant influence on the regression prediction
results, so it is necessary to select the appropriate parameters when using
GPR for data mapping.

(2) In the application process, in order to obtain a better optimization effect,
the initial parameters of DE are recommended to be set as: variation factor
F = 0.7 and cross factor CR = 0.7.

(3) Comparative analysis shows that GPR has better applicability to tunnel dis-
placement prediction than other intelligent algorithms. The predictive ability
of GPR after DE optimization is significantly improved. The evaluation co-

efficient R2 increased from 0.9687 to 0.9897, indicating that the DE-GPR
model established in this paper is effective.

It should be noted that this study mainly considers the influence of spatial
effects in the process of tunnel excavation. At this time, accurate measurement
of the “distance between construction face and monitoring section” is necessary.
Therefore, this method is mainly suitable for tunnels excavated by the full-section
or step method, and the IoT monitoring system described in the article is also
designed for this kind of tunnel. For other types of tunnels, it can refer to the
extended time-series method of this study, but the existing models are difficult to
directly apply. For example, for shield tunnels, the influence of the supporting
force of the tunnel face on the tunnel deformation should be mainly considered;
for tunnels excavated in blocks using the double-side heading method, the center
diaphragm method, etc., the transition logic of the construction steps should be
focused on.
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