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Abstract: The main aim of this paper is to present a new possibility for detection
and recognition of different categories of electric and conventional (equipped with
combustion engine) vehicles. These possibilities are provided by use of thermal
and visual video cameras and two methods of machine learning. The used methods
are Haar cascade classifier and convolutional neural network (CNN). The thermal
images, obtained through an infrared thermography camera, were used for the
training database. The thermal cameras can complement or substitute visible
spectrum of video cameras and other conventional sensors and provide detailed
recognition and classification data needed for vehicle type recognition. The first
listed method was used as an object detector and serves for the localization of
the vehicle on the road without any further classification. The second method
was trained for vehicle recognition on the thermal image database and classifies a
localized object according to one of the defined categories. The results confirmed
that it is possible to use infrared thermography for vehicle drive categorization
according to the thermal features of vehicle exteriors together with methods of
machine learning for vehicle type recognition.
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1. Introduction

The goal of automated video monitoring systems is to substitute the need of hu-
man labour for solving simple vision based tasks, that can be fully performed by a
computer or an automated system [1]. The applications of computer vision systems
are applied in many public areas such as roads, airports and retail areas [1]. One
of the application, which is widely used for the vision systems, is the monitoring of
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highways and city intersections. Effective real time traffic management is required
in these localities for the appropriate reaction to changes in traffic characteristics
in a timely manner. This will allow traffic dispatchers and other authorities to
flexible respond to the traffic situation occurring on roads. Among the advantages
that are offered by vision-based video monitoring systems are vehicle counting, ve-
hicle classification, illegal U-turns etc. Vehicle classification is an important signal
processing task that has wide application from ITS (Intelligent transportation sys-
tems) to the military [2]. The disadvantage of actual video detection systems is the
use limited to visual detection cameras. Hence these detection systems are more
easily influenced by weather conditions and light changes [3]. Infrared cameras
are expected to provide continuous and independent detection of vehicles on any
weather and light conditions in their surroundings [4]. Larger expansion of these
cameras is still limited by their higher price and also lower resolution in comparison
with ordinary visual cameras [5]. Due to the ongoing development and the growing
number of produced thermal cameras it is expected future price reductions and
their wider usage.

The novel method of the battery electric vehicles detection is proposed in this
paper. Every single car generates heat during drive [6]. Even the car equipped
with an electric motor generates heat but when it is compared with conventional
vehicles, it is significantly less heat amount. The heat is emitted to the body of
the vehicle and it is easily visible on the front mask and side of the vehicle. These
features were used to get advantages of the infrared camera together with methods
of machine learning. Principle of the built system is to detect object evaluated as
a vehicle due to Haar Cascade classifier, then to classify vehicles into three types of
vehicle (personal car, van, bus) with support of CNN and prepared vehicle thermal
image database. Recognition of the battery electric vehicles in traffic flow is based
on the measurement of thermal patterns of the vehicle exteriors (grilled area and
front side). Result of measurements establishes the criteria for each category and
differentiates electric and conventional vehicles. The extraction and calculation of
individuals pixels was described in our previous works [7, 8].

2. Related work

The following review of related work is limited due to a small number of papers that
are focused on the application of thermal cameras for vehicle detection with the use
of machine learning methods. However many developers use visual cameras with
the combination of machine learning in their research. Not many authors devote
their work to the possibility of the use of the thermal property for object detection
[6,7], but few papers describe temperature maps of side view profile of vehicles
[9] or detection of humans based on the body temperature [5]. Several numbers
of methods are used for detection of the objects such as pedestrians, cyclists or
vehicles. The authors of the papers [2,9, 10] used principal component analysis
(PCA). Other literature sources refer the principle together with support vector
machine (SVM) for vehicle classification [11]. Iwasaki et al. took advantage of the
horizontal and vertical vectors of the objects in the image recorded by the thermal
camera to detect vehicles [12]. The other authors [3,13] used the principle of the
Viola-Jones detector firstly described in the article [14]. Another systems for vehicle
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detection are based on day and night algorithm that uses as a target of detection the
front and rear lights [14,15]. Paper [3] compares the video technologies, specifically
conventional visual cameras and thermal cameras. Author [3] processed captured
video using object tracker available video in open source project of computer vision
“traffic intelligence” [17]. Individual pixels are firstly detected and tracked from
frame to frame and saved as vehicle body trajectory using Kanade-Lucas-Tomasi
tracking algorithm [18].

The authors used the SVM to learn the appearance of road users (cyclists,
pedestrians) by using histograms of oriented gradients (HOG) [19]. As a result of
this comparison, ordinary video is well functional under sunny or overcast weather
conditions, but with significant weather changes in light conditions, shade etc., the
thermal camera’s performance is much higher [3].

The author [6] presents the possibilities of vehicle classification based on temper-
ature signs. The focus is placed on the different thermal features of various vehicle
categories and distinguish between them by statistical analysis of their thermal im-
ages, the detection area is the entire image of a given height and width. Only a part
of the temperature histogram was taken into account and it was statistically evalu-
ated as a representative part for the specific vehicle category. Author [18] uses the
windshield and its surroundings as a detection area. However, this method proved
to be less accurate under winter conditions due to similar windshield temperatures
and ambient temperatures [20]. Authors [15] used both visual and thermal cameras
for detection and focused on grille areas and headlight as the detection area.

3. Proposed method

The proposed system uses Haar cascade classifier as an object detector that detects
object in the picture. The define object is marked as a car without any further clas-
sification. Vehicle image database was prepared by the use of Flir thermal camera
E5 and built CNN is used for vehicle categorization. An ordinary visual cam-
era [21] was used with high-resolution visual video stream due to lower resolution
of the thermal camera and less quality video stream for vehicle detection by Haar
cascade classifier. Training of CNN was performed by the prepared database of
the thermal pictures of vehicles. The individual steps to train the classifier of pro-
posed methods are described in the diagram see Tab. II. To verify the recognition
functionality of the engine’s thermal signature, image data was captured under two
different temperature conditions specifically in the August and in December. The
smallest difference between the atmospheric temperature and the temperature of
the mask of the vehicle heated by the engine occurs in the summer months and it is
therefore suitable for evaluation. Preliminary measurements carried out in winter
proved that this system could meet with difficulties, especially at higher outdoor
temperatures from May to September as usual in the Central Europe. Different
thermal signs in summer and winter can be seen for comparison in the Fig. 1.
The thermal camera obtains two inputs linked with thermal energy. It is exter-
nal temperature of a body of a vehicle and engine temperature reflected off the road
surface. The values of temperature are contained in each pixel of the image are
represented by the brightness that is indicated by the grey level. It should be noted
that visible contrast of high value pixels is in the tires area in the summer season.
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le Max -1,72CRoE a
min -8,1 °C

Average -6,0°C

Fig. 1 Measurement of vehicles in traffic flow: (a) winter, and (b) summer mea-
surement [22].

The perceptible high value of pixels of the image in the mask area of the vehicle
and emitted thermal energy under the vehicle is noticeable visible in the winter
season. The marked right part of the diagram (see Fig. 2) describes the manual
analysis of the thermal features of the vehicle images. It contains the calculation of
individual pixel values and transforms them into the block of the thermal detector
for further processing. This part is presented in our previous work [7,8]. The paper
is particularly concerning on left side of diagram, especially the vehicle detection
and classification. Following chapters explain individual parts of the diagram such

4 5 -
visualvideo | | object | | neural | thermal 3 h
(thermal video) | |detector| [network detector] ° \
Faa [ /
picture database of| ;| manual detection and 2\
vehicles " | categorization of vehicles \

thermal sample
\ image labelling

\ thermal and /
% visual video data

N -

/

Fig. 2 Diagram of the proposed system.
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as Haar cascade detection algorithm and CNN.

1. Manual label of thermal vehicle image sample and the preparation for step 2.
2. Manual vehicle categorization for vehicle category database.

3. Training of Haar cascade detector (3a) and CNN (3b) and manual analyse of
thermal features of vehicles and computing of pixel values (3c).

4. Object detector sends information of detected vehicle based on database of
vehicle to CNN.

5. CNN trained on vehicle category database select vehicle category for detected
vehicle.

6. Composed information vehicle category and engine type (electric / combus-
tion).

3.1 Haar cascade classifier

The Haar cascade algorithm is a method used to detect objects in an image based
on the concept of characteristics proposed by Paul Viola and Michael Jones [14].
The algorithm consists of four steps:

e Selection of Haar characteristics.
e Integrated image representation.
e Using the AdaBoost algorithm to train the classifier.

e Compilation of the topology of the classifier, which takes the form of a de-
generate decision tree.

3.2 Convolution neural network

The model of the used convolutional neural network is based on the concept pro-
posed by the Simonyan and Zisserman [23]. Fig. 3 describes how architecture of
CNN is constructed according to cited literature [23]. The chosen architecture of
CNN was selected according to suitability to our task of research. The selected
CNN offers quality performance computing compared to the shorter time and dif-
ficulty of the creation. We used deep learning frameworks Keras [24] to built the
CNN, which consists of convolution layers together with pooling layers, perceptron
layers and softmax function. The standard RGB image has a depth consisting of
three channels: red, green and blue. Given these facts, we can imagine the image
as a large matrix and a convolution matrix (also called a kernel) as a smaller di-
mensional matrix, which is used for blurring, sharpening, edge detection and other
image manipulations [25].
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Fig. 3 Network architecture [20].
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Fig. 4 The scheme of the used layers in the CNN [26].

Description of individual layers of the algorithm presented in the Fig. 4:

e an input — image in format 224 (height) x 224 (width) x 3 (depth - RGB
model)

2 convolution layers containing 64 filters with a size of 3 x 3

1 x Maxpooling layer (poolsize 2 x 2)

2 convolution layers containing 128 filters with a size of 3 x 3

1 x Maxpooling layer (poolsize 2 x 2)

3 convolution layers containing 256 filters with a size of 3 x 3

1 x Maxpooling layer (poolsize 2 x 2)

3 convolution layers containing 512 filters with a size of 3 x 3

1 x Maxpooling layer (poolsize 2 x 2)

3 convolution layers containing 512 filters with a size of 3 x 3
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e 1 x Maxpooling layer (poolsize 2 x 2)
e 1 x classic perceptron layer

e 1 x classic perceptron layer

an output layer with a number of neurons equal to the number of categories

e softmax function

The convolution process is a process in which the convolution matrix moves from
left to right and from top to bottom along the original image. For each coordi-
nate (x,y) of the original image, the convolution matrix stops and convolves its
surroundings in the range given by the size of the convolution matrix [27]. Con-
volution is simply the sum of the multiplication of matrices by elements, i.e. the
elements of the convolution matrix and the elements of the matrix formed by the
elements of the original image, in the range given by the size of the convolution
matrix [28]. The output of the convolution is one value that is saved in the output
image at coordinates identical to those occupied at that moment by the core of the
convolution matrix in the original image. The general notation of a convolution
matrix using a matrix called a convolution matrix can be written as follows (1) [20]

11 . Tin Yii 0 Yin
* =
Tm1i o Tmn Ymi o Ymn
m—1n—1
- Z Z L(m—i)(n—j) " Y(1+i)(1+5) (1)
i=0 j=0

Each convolution layer in the convolutional neural network contains k convolu-
tion matrices applied to the matrix entering the convolution layer, see the Fig. 5.

o Image

k * convolution matrix

Each convolution matrix (K) The output of each
is applied to the input matrix convolution operation is
{Image) called activation map

Fig. 5 The convolution matriz [20].
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By applying all k filters to the input matrix, we obtain k& 2D activation maps,
which are placed one behind the other along the depth, coordinate and form the
final output of the convolution process, see the Fig. 6.

By gradually applying convolution, the dimensions of the input image would
begin to shrink rapidly, so “zero padding” [27] see Tab. I is used, which ensures
that the dimensions are maintained.

Widht
| |
| | Height "'x_ S| \
o
3
=
Fig. 6 Final output of the CNN [23].

0 0 0 0O 0 0 O 0 0

0 zu 2 - - — — w1, O

0 - - - — — — - 0

0 - - - — — — - 0

0 - - - — — — - 0

0 - - - — — — — 0

o - - - - — - — 9

0 Tm1l Tm2 - - - - Tmn O

0 0 0 0O 0 0 0O 0 0

Tab. I Zero padding [23, 27].

The size of the image after the application of the convolution process can be
written using Eq. 2 according to [26,27]

(werear) o

into which enter the dimensions of the input image W, the size of the convolution
matrix F, the size of the “padding” P and the size of the displacement S.

Each convolution layer accepts enter about dimensions (Winput X Hinput X Dinput)
and specification of these parameters:
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e Number of the convolution matrices K (which indicate the depth of output
from the convolution layer).

The size of the convolution matrices F' used for convolution is usually square,
ie. FxF.

Shift of the convolution matrix S.

Padding P.

The output of the convolution layer has dimensions (Wousput X Houtput X Doutput)
[28], where:

Winouwt — F + 2P
Woutput = < put S )+17

Hiypue — F +2P
Houtput:< put S )"‘1)

Doutput =K. (5)

3.3 Activation layer

After each convolution layer in the convolutional neural network is followed by a
nonlinear activation function, in our case the Rectified Linear Unit (ReLu function)
(Fig. 7) was chosen. Following the Krizhevsky et. al. [29] we chose this function
due to the reason that convolutional neural networks with ReLUs train several
times faster than their equivalents with tanh units. This function can be expressed
as:

f(z) = 2% = max(0, z). (6)

=100 =75 =20 =13 0.0 2.2 2.0 1.5

Fig. 7 ReLu function [26, 28], where y axis is output, f(x) = max(0,z) and = azis
18 input.
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Activation layer accept input image of dimensions (Winput X Hinput X Dinput) [23].

Winput * Hinput * Dinput = Woutput * Houtput * Doutput- (7)

3.4 Pooling layer

Pooling layers are located between convolution layers. Their main function is to
reduce the size of the input to the next convolution layer and at the same time help
prevent network re-learning. The layer accepts input of size (Winput * Hinput * Dinput )
and specification of these parameters [28]

e Size of the receptive field F.

e Shift of the receptive field S.

We get the output of dimension (Winput * Hinput * Dinpus) [30] by application of
pooling layers, where:

Win ut — F
Woutput = (p;) + 1a (8)
Hin ut — r
Houtput = (pg) + 1; (9)
Doutput = Dinput- (10)

Algorithm uses type of pooling, which takes maximal value from convolution
area.

3.5 Perceptron

Rosenblat [31] defined a Perceptron as a system that learns using labeled examples
of feature vectors (or raw pixel intensities), mapping these inputs to their corre-
sponding output class labels. The perceptron is placed at the end of the convolu-
tional neural network, before applying the softmax classifier. Following equations
and expression were described in [26].

Perceptron — Forward signal propagation with activation function

Input layer: vq,va,..., v,

Hidden layer: wi,wa, ..., Waopnt1

Output layer: x;

The activation function f is applied in the hidden layer and the output layer [28].
We demonstrate its application at the output of a hidden layer. The output from
the hidden layer without using the activation function looks like this:

n

W = Gj,1-V1+a;52V2+F - 05 nVUp = Zi:l Qj ;Ui for je {1, ey 27’L+1}. (11)

The output from the hidden layer using the activation function looks like this:
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W = f (ij,l"ljl—‘rajg-’l)g—l— s +aj7n'vn> = f (Zz:l aj)i-vi) for jE {1, - ,27’L+1} .
(12)
Possible described as:

w = f(w) = f(Av). (13)

The vectors of the individual layers after applying the activation function, look
as follows:

Input layer vector: v = (vy,va, ... ,vn)T

Hidden layer vector: W = (1, W, . .., Wans1) gets as w = f (w) = f(AV)
Output layer vector: x = (1) gets as x = f (x) = f(Bw)

Forward signal propagation three layers CNN can be described as:

% = f(Bf (Av)). (14)

3.6 Softmax classifier

The algorithm uses Softmax classifier desribted in literature [26] to normalize out-
put of CNN, which is written as:

(15)

where y; is output of perceptron.

4. Analysis and results

4.1 Detection and classification of the vehicles

The first step of the object detector (Haar cascade classifier) is to indicate objects
— vehicle in the video scene without further classification. Output is presented in
Fig. 8. The average success of detecting of the Haar cascade classifier is 0.9793
(car: 0.9792, van: 0.9777, bus: 0.9810).

The object (car_object) detected by the cascade algorithm (OD) is after that
passed to the convolutional neural network (NS) prediction module in the form of
a data matrix of dimensions 224 % 224 % 3 (height * width % depth).

NS learned for vehicle category recognition assigns one of the categories to the
image. NS returns the output of the softmax function, in the form of a probability
assigned to the individual vehicle categories. The most likely category is the classi-
fication for a specific case and is assigned to the object detected in the image. The
detected and classified object in the image then has the following form see Fig. 9.
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A

Fig. 9 Detected and classified objects — car and van [21].

4.2 Training of CNN — categorization of the vehicles

The training of CNN for vehicle categorization was performed through database of
thermal pictures of the vehicles. The examples of sample pictures in the database
see Fig. 10, Fig. 10, Fig. 12.

Proposed category of vehicles:

e personal car
e van
e bus
Dataset:
e personal car (1334 frames, training set: 1264, test set: 70)
e van (319 images, training images: 296, test set: 23)

e bus (32 images, training set: 26, test set: 6)
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Example of sample of data:

e personal car

DEEEOEE S

QA 28534 DA_133734 QA_M36800 DA_D13R334 CHA_(M 40600 4_M43600 02 _[146534 DA _1 54600

Fig. 10 Ezample of sample personal vehicles images [22].

e van
: = - e
™.
. - v
VAN 20422600 WAN 20423334 VAN 20638600 VAN 20641934 VAN 20639667 AN 20719000 VAN 20879000 AN 20830734
Fig. 11 Ezample of sample van images [22].
e bus
2 o p—
i b BN SN R
BUS_10213200 BUS_10534800 BUS_10609334 BLIS 11142334 BLIS_ 11945734 BUS_12637400 BUIS_1344467 BUS5_14256267

Fig. 12 Ezample of sample bus images [22].

Training of the network:
e time of training: 4.5 h
e number of epoch: 200
e learning coefficient: 0.0001

e momentum: 0.9

The most important metric from the above is the validation loss (val loss),
which is defined as:

1
val loss = N (cross entropy) , (16)
where cross entropy is calculated as
cross entropy = — Z L; - log(S;), (17)
K3
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where S represents the softmax output for each record that is defined in Eq. 15
and L represents the vector of values for each record for each category.

Network evaluation, see Tab. II.

The classification algorithm correctly classified 99 % of thermal images of cars,
95 % of thermal images of vans and 100 % of thermal images of buses. The weighted
accuracy of the algorithm (weighted average of the classification precisions for indi-
vidual categories with respect to the number of records) is 98 %. The images used
for the classification were not used in its training phase by the algorithm.

Training of CNN

= 1.0
8
s
gJos
(1]
.: —— train loss
= 0.6 —— wal loss
E — train acc
— wal acc
[H] 0.9
= O
S,
]
b 0.2
=
L
0.0

O 25 S0 75 100 125 150 175 200

Learning era

Fig. 13 Result of the CNN training.

precision recall fl-score support

car 0.99 0.96 0.97 70
van 0.95 0.96 0.90 23
bus 1.00 0.83 0.91 6

Tab. II Network evaluation.

5. Discussion

The proposed detection and classification system proved the possibility of the use
of CNN together with the Haar cascade classifier. CNN was trained for vehicle
classification through the thermal image database of the vehicles. The proposed
system worked well under different conditions such as changes in atmospheric tem-
perature and intensity of light. What is possible to conclude the system pitfalls
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was in resolution of used thermal camera that was not sufficiently high for the de-
tection of the object from the thermal video stream. Therefore, a high-resolution
visual video stream was used to help with reliable detection by the Haar cascade
classifier. The presented system and its functionality of cooperation between ob-
ject detector and classification block of CNN suggests a very successfuly working
method for vehicle detection and classification even with lower resolution quality
of thermal cameras. The suggested system proved that thermal pictures can be
used for vehicle classification and for reliable detection but it is necessary to use
sharper images. Compared to standard feedforward neural networks with similarly
sized layers, CNN have much fewer connections and parameters and so they are
easier to train, while their theoretically best performance is likely to be only slightly
worse. The completed presented system prospectively offers a robust approach for
vehicle detection and categorization of conventional and electric vehicles. The fol-
lowing research must be focused on the tests of the Haar cascade classifier with
the higher resolution thermal stream of higher quality thermal camera with include
our experience of testing [8].
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