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Abstract: It is one of the fundamental and challenging problems to determine the
node numbers of hidden layers in neural networks. Various efforts have been made
to study the relations between the approximation ability and the number of hidden
nodes of some specific neural networks, such as single-hidden-layer and two-hidden-
layer feedforward neural networks with specific or conditional activation functions.
However, for arbitrary feedforward neural networks, there are few theoretical results
on such issues. This paper gives an upper bound on the node number of each hidden
layer for the most general feedforward neural networks called multilayer perceptrons
(MLP), from an algebraic point of view. First, we put forward the method of
expansion linear spaces to investigate the algebraic structure and properties of the
outputs of MLPs. Then it is proved that given k distinct training samples, for
any MLP with k nodes in each hidden layer, if a certain optimization problem has
solutions, the approximation error keeps invariant with adding nodes to hidden
layers. Furthermore, it is shown that for any MLP whose activation function for
the output layer is bounded on R, at most k hidden nodes in each hidden layer are
needed to learn k training samples.
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1. Introduction

Neural networks can provide models for a large class of natural and artificial phe-
nomena that are difficult to handle using classical parametric techniques. The
widespread popularity of neural networks in many fields is mainly due to their
ability to approximate complex nonlinear mappings directly from the input sam-
ples [1–4,6–10,17]. Then, a fundamental question that is often raised is how large
does the network have to be to perform the approximation task. In particular,
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determining the optimal number of hidden nodes is one of the most challenging
aspects of neural network design.

Various efforts have been made to explore the relations between the approxima-
tion ability and the number of nodes of some specific neural network, such as single-
hidden-layer feedforward neural networks (SLFNs), and two-hidden-layer feedfor-
ward neural networks with specific or conditional activation functions [11–28]. For
example, it was proved that N arbitrary distinct samples can be learned precisely
by standard SLFNs with N hidden neurons (including biases) and the signum ac-
tivation function in [12]. The bounds on the number of the hidden neurons were
derived in [12] by finding particular hyperplanes that separate the input samples.

Sartori [13] presented a new method for the bounds on the size of a multilayer
neural network to exactly implement an arbitrary training, which does not require
the separation of the input space by particular hyperplanes, and the weights for
the hidden layer can be chosen “almost” arbitrarily.

Tamura [14] pointed out that four-layered neural networks by giving any N
input-target relations with a negligibly small error using N

2 + 3 hidden units and
sigmoid activation. Huang [15] later extended the work of Tamura and Tateshi
to prove that the upper bound on the number of hidden nodes Nh for TLFNs
with sigmoid activation function is given by Nh ≤ 2

√
(N0 + 2)Ns, where N0 is the

number of outputs, and Ns is the number of samples.

Huang [16] showed that an SLFN with at most N hidden nodes and with any
arbitrary bounded nonlinear activation function which has a limit at one infinity
can exactly learn N distinct observations.

Later, Huang [17] proved that if the number of hidden nodes is equal to the
number of distinct training samples, SLFNs with random input weight vectors and
hidden biases can approximate the training samples with zero error. Furthermore,
it was proved by [18–20] that for SLFNs, the approximation error is monotonically
decreasing with gradually adding nodes in hidden layer.

However, for arbitrary neural networks, there are few theoretical results on the
relations of approximation ability and hidden node number in the literature.

In this paper, we consider the most popular and general feedforward neural
networks called multilayer perceptrons (MLP). Since in real applications, neural
networks are trained using finite input samples, we focus on the approximation
capabilities of multilayer feedforward neural networks approximation in a finite set
of training samples. More precisely, we consider the question as follows: Given k
training samples, for an s-hidden-layer MLP, how many nodes in each hidden layer
are needed to learn the samples? Here s is an arbitrary positive integer.

To answer the question, we first answer the fundamental questions from the
mathematical point of view: Given k training samples, what is the algebraic struc-
ture and what are the algebraic properties of the outputs of MLPs? In this paper,
the output vectors of an MLP are described by the pre-output combination vector,
and it is proved that the set of all possible pre-output combination vectors of an
MLP by adjusting the weights and bias is a union of expansion linear spaces. Be-
sides, the set is shown to have the property of keeping growing with the increase
of node numbers until the node number in each hidden layer is k.

Finally, based on the algebraic properties, we find that given k distinct training
samples, for any s-hidden-layer MLP with k nodes in each hidden layer, if a certain
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optimization problem has solutions, then adding nodes to hidden layers will not
change the approximation error. Furthermore, it is shown that for an s-hidden-
layer MLP whose activation function for the output layer is bounded on R, at most
k hidden nodes in each hidden layer are needed to learn k training samples.

2. Preliminaries and notations

A neural network consists of a number of interconnected neurons. Each neuron
is a simple processing element that responds to the weighted inputs it received
from other neurons. A multilayer perceptron is the most popular and general
feedforward neural network. It is composed of three typical classes of layers: An
input layer, that serves to pass the input vector to the network, hidden layers of
computation neurons, and an output layer composed of at least one computation
neuron to produce the output vector.

In this paper, it is a convention that for any s-hidden-layer MLP (or called s+2
layered MLP, with s ≥ 1), layer 0 denotes the input layer, and layer s+ 1 denotes
the output layer, fq(·) is the activation function which applies to all neurons in
layer q (0 ≤ q ≤ s+ 1). In particular, f0 is an identity mapping.

Notation 1. M{e0,es+1}
s,[f ] denotes the set of (s + 2)-layered MLPs in which the

activation function for layer q is fq(·), and the node numbers of input layer and
output layer are e0 and es+1 respectively, where 0 ≤ q ≤ s+ 1.

M[e]
s,[f ] denotes the (s + 2)-layered MLP in which the activation function for

layer q is fq(·), and the node number of layer q is eq, where 0 ≤ q ≤ s+ 1.

For layer q ≥ 1, W(q) = [w
(q)
ij ]eq×eq−1 denotes the eq × eq−1 weight matrix, and

bq = (bq1, . . . , bqeq )
T denotes the bias vector.

Definition 1. Suppose Γ is an (s+2)-layered MLP in M{e0,es+1}
s,[f ] , and {(ui, ti)}ki=1

⊆ Re0 × Res+1 is a set of k training samples, where ui ∈ Re0 is an input vector

and ti ∈ Res+1 is the desired output vector. Suppose o
(j)
i is the output vector of

layer j − 1 with respect to input ui (j ≥ 1, and in particular, o
(1)
i is ui). Then we

denote W(j)o
(j)
i +bj by dj,i, and call it the pre-output vector of layer j. The vector

(dj,1
T,dj,2

T, . . . ,dj,k
T)T is called the pre-output combination vector of layer j.

3. Expansion linear space

In this section, we define expansion linear spaces, and provide the necessary and
sufficient condition for a vector belonging to an expansion linear space, as a prepa-
ration for exploring the algebraic structure of outputs of MLPs in the next section.

In what follows, we always assume that a1, . . . ,am are column vectors in Rk,
and k,m ∈ N∗.

Definition 2 (Expansion Vector List). Suppose for 1 ≤ i ≤ m, ai = (a1i, . . . ,
aki)

T. First, for each ai, define its p-degree expansion vector list Bonp(ai) by
listing the column vectors of the following kp × p matrix from left to right. In the
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following matrix, each submatrix formed by the elements in the sp+1-th, sp+2-th,
. . . , sp+ p-th rows is a p× p diagonal matrix for s = 0, 1, . . . , k − 1 .

a1i
a1i

. . .

a1i
a2i

a2i
. . .

a2i
...

...
...

aki
aki

. . .

aki


Secondly, define the p-degree expansion vector list of {a1, . . . ,am} by listing the
elements of Bonp(a1), . . . , Bon

p(am) in sequence, denoted by Bonp(a1, . . . ,am).

Remark 1. For 1 ≤ i, j ≤ m, let fi = a1ix
kp−p + a2ix

kp−2p · · · + akix
0 and

fj = a1jx
kp−p + a2jx

kp−2p · · · + akjx
0 be two polynomials in R[x]. Then the

p-degree expansion vector list of {ai,aj} is exactly Syl(fi, fj , x)
T
, where Syl(fi, fj , x)

is the Sylvester matrix of fi, fj.

Example 1. The 2-degree expansion vector list of {(3, 1)T, (2, 4)T} is

{(3, 0, 1, 0)T, (0, 3, 0, 1)T, (2, 0, 4, 0)T, (0, 2, 0, 4)T}.

Proposition 1. Let V be the linear space spanned by a1, . . . ,am over R. Suppose
that V can be also spanned by b1, . . . ,bm′ . Then Bonp(a1, . . . ,am) spans the same
linear space as Bonp(b1, . . . ,bm′) does, and the dimension of the space is p times
the dimension of V.

Proof. First, directly from the definition of expansion vector list, we get the fol-
lowing statement: Let e1, . . . , eq be vectors in V. If they are linearly independent,
all the vectors in the expansion vector list Bonp(e1, . . . , eq) are linearly indepen-
dent. If they are linearly dependent, without loss of generality, assuming that

e1 =
q∑

i=2

diei, then g1j =
q∑

i=2

digij , where di ∈ R, and gij denotes the j-th column

vector of Bonp(ei), 1 ≤ i ≤ q, 1 ≤ j ≤ p. In other words, each vector in Bonp(e1)
is a linear combination of vectors in Bonp(e2, . . . , eq).

Since ai is a linear combination of b1, . . . ,bm′ , each vector in Bonp(ai) is a linear
combination of vectors in Bonp(b1, . . . ,bm′). Similarly, each vector in Bonp(bi) is
a linear combination of vectors in Bonp(a1, . . . ,am). Therefore Bonp(a1, . . . ,am)
spans the same linear space as Bonp(b1, . . . ,bm′) does.
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Besides, from above, we conclude that for any vectors e1, . . . , eq, they are lin-
early independent if and only if the vectors in Bonp(e1, . . . , eq) are linearly indepen-
dent. This implies that the dimension of the space spanned by Bonp(a1, . . . ,am)
is p times the dimension of V.

By Proposition 1, we can define the unique p-degree expansion linear space for
any finite-dimensional linear space, as follows.

Definition 3 (Expansion Linear Space). Suppose V is a finite-dimensional
linear space, which can be spanned by a1, . . . ,am. Then Span(Bonp(a1, . . . ,am)) is
called the p-degree expansion linear space of V, and denoted by Bonp(V).

Definition 4 (Rotation Vector List). The rotation vector list of {a1, . . . ,am},
denoted by Ro(a1, . . . ,am), is obtained by listing the column vectors of the matrix
(a1,a2, . . . ,am)T from left to right. Each column vector in Ro(a1, . . . ,am) is called
a ro-column-vector of the vector (a1

T,a2
T, . . . ,am

T)T.

From the definition of rotation vector list, the following statement is straight-
forward.

Lemma 1. Suppose the column vectors in Ro(a1, . . . ,am) are v1, . . . ,vk. Then
a1, . . . ,am must be in Ro(v1, . . . ,vk).

Lemma 2. Let d1, . . . ,dk be s-dimensional column vectors. Then the k ×
s-dimensional vector x = (d1

T,d2
T, . . . ,dk

T)T belongs to Bons(Span(a1, . . . ,am))
if and only if each column vector in Ro(d1,d2, . . . ,dk) belongs to Span(a1, . . . ,am).

Proof. Suppose for 1 ≤ i ≤ m, ai = (a1i, . . . , aki)
T.

Assume that x is in Bons(Span(a1, . . . ,am)). Then x is a linear combination
of the vectors in Bons(a1), . . . ,Bon

s(am), and we use pji to denote the coefficient

in front of the i-th vector in Bons(aj). Hence, di =
(∑m

j=1 pj1aji,
∑m

j=1 pj2aji, . . . ,∑m
j=1 pjsaji

)T
. Furthermore, for 1 ≤ i ≤ s, the i-th column vector in Ro(d1,d2, . . . ,

dk) is  m∑
j=1

pjiaj1,

m∑
j=1

pjiaj2, . . . ,

m∑
j=1

pjiajk

T

,

which obviously belongs to Span(a1, . . . ,am).
Conversely, assume that each column vector in Ro(d1,d2, . . . ,dk) is in Span(a1,

. . . ,am), and the i-th column vector in Ro(d1,d2, . . . ,dk) is
m∑
j=1

pjiaj . Then by a

direct computation, x is is a linear combination of the vectors in Bons(a1, . . . ,am),
and the coefficient in front of the j-th vector in Bons(ai) is pij .

4. Upper bounds on the node numbers

By Definition 1, the pre-output combination vector can be used to describe the
outputs of an MLP with respect to given inputs. Hence, in this section, we inves-
tigate the algebraic structure and properties for the set of all possible pre-output
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combination vectors of an MLP by adjusting the weights and bias. Given k distinct
training samples, the set is shown to be a union of some expansion linear spaces,
and keep growing with the increase of node numbers until the node number in
each hidden layer is k. Then, based on the algebraic properties, we prove that at
most k nodes in each hidden layer are needed to learn k training samples when the
activation function for the output layer is bounded on R.

In what follows, we will use these notations frequently.

Notation 2. (1) We denote the k-dimensional vector (1, 1, . . . , 1)T by (1)k. Sup-
pose G ⊆ Rk. G

⋃
(1)k is denoted by G.

(2) Let G be a subset of Rk. For i ⩾ 1, we use δi to denote an operation of
choosing i vectors from G, all such operations consist a set denoted by ∆i,
where i is less than the element number of G.

(3) Let 2R
k

be the power set of Rk, i.e., the set of all subsets of Rk. For any

mapping f : 2R
k −→ 2R

k

and G ⊆ Rk, Span(δif(G)) is also a subset of Rk,

hence, Span(δif(·)) is a mapping of 2R
k

into 2R
k

. Denote Span(δif(·)) by
Ψδi

f (·).

Similarly, denote the mapping Span(f(·)) by Θf (·).

Example 2. Suppose G is {(2, 3)T, (4, 1)T, (5, 9)T} ⊆ R2. Then δ1G can be (2, 3)T

or (4, 1)T or (5, 9)T, choosing one vector from G.

The following proposition shows that a pre-output combination vector set is a
union of linear subspaces. The proof is given in Appendix.

Proposition 2 (Algebraic Structure). Given k input vectors {ui}ki=1 ⊆ Re0 ,

all the j-layer pre-output combination vectors of M[e]
s,[f ] consist a set denoted by

OP
[e]
j , 1 ≤ j ≤ s+ 1. Then OP

[e]
j is a union of linear subspaces, as follows:⋃

δi∈∆i

Bonej
(
Ψ

δej−1

fj−1
◦ · · · ◦Ψδe0

f0
(Ro (u1, . . . ,uk))

)
,

denoted by
⋃

δi∈∆i

Bonej
(

j−1∏
i=0

Ψ
δei
fi

(Ro (u1, . . . ,uk))

)
, where ◦ denotes the composi-

tion of mappings.

We directly have the following statement from Proposition 2.

Corollary 1. Given k input vectors {ui}ki=1 ⊆ Re0 , all the j-layer pre-output

combination vectors of MLPs in M{e0,es+1}
s,[f ] consist a set denoted by OP

{e0,ej}
j ,

1 ≤ j ≤ s+ 1. Then

OP
{e0,ej}
j = Bonej

(
Θfj−1

◦ · · · ◦Θf0(Ro(u1, . . . ,uk))
)
,

which is a linear space.

The pre-output combination vectors have the following properties.
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Proposition 3 (Algebraic Property). Given k input vectors {ui}ki=1 ⊆ Re0 ,
and j ≥ 1.

(1) If ei ≤ ẽi for 1 ≤ i ≤ j − 1 and ej = ẽj, then OP
[e]
j ⊆ OP

[ẽ]
j .

(2) If ẽ1, . . . , ẽj−1 ≥ e1, . . . , ej−1 ≥ k and ej = ẽj, then OP
[e]
j is a linear space,

and

OP
[e]
j = OP

[ẽ]
j = OP

{e0,ej}
j ,

Proof. (1) Straightforward from Proposition 2.

(2) It suffices to prove that OP
{e0,ej}
j ⊆ OP

[e]
j .

Since the vectors contained in f1(Span(Ro(u1, . . . ,uk))) are k-dimensional, at
most k vectors are linearly independent. If e1 ≥ k, there exists δe1 ∈ ∆e1 , such
that in f1(Span(Ro(u1, . . . ,uk))), a set of vectors which are maximally linearly
independent is contained in δe1f1(Span(Ro(u1, . . . ,uk))). Therefore,

Span(δe1f1(Span(Ro(u1, . . . ,uk)))

= Span(f1(Span(Ro(u1, . . . ,uk)))),

i.e.,

Θf1 ◦Θf0(Ro(u1, . . . ,uk)) = Ψe1
f1

◦Ψe0
f0
(Ro(u1, . . . ,uk)).

Analogously, there exist δe2 ∈ ∆e2 , δe3 ∈ ∆e3 , . . . , δej−1 ∈ ∆ej−1 , such that

Θfj−1 ◦ · · · ◦Θf0(Ro(u1, . . . ,uk)) = Ψ
ej−1

fj−1
◦ · · · ◦Ψe0

f0
(Ro(u1, . . . ,uk)),

implying

Bonej (Θfj−1 ◦· · ·◦Θf0(Ro(u1, . . . ,uk))) = Bonej (Ψ
ej−1

fj−1
◦· · ·◦Ψe0

f0
(Ro(u1, . . . ,uk))).

Hence, OP
{e0,ej}
j ⊆ OP

[e]
j by Corollary 1 and Proposition 2.

The following lemma can be easily verified by the definition of Euclidean norm
of a vector.

Lemma 3. Suppose ci, ti (i = 1, . . . , k) are column vectors of the same dimension,
then

k∑
i=1

∥ti − ci∥22 = ∥(tT1 , tT2 , . . . , tTk )T − (cT1 , c
T
2 , . . . , c

T
k )

T∥22.

Remark 2. Suppose {(ui, ti)}ki=1 ⊆ Re0 × Res+1 is a set of training samples.
Lemma 3 implies that if min

d∈OP
[e]
s+1

∥t− fs+1(d)∥22 exists, the approximation error of

M[e]
s,[f ] equals to min

d∈OP
[e]
s+1

∥t− fs+1(d)∥22, where t denotes (tT1 , . . . , t
T
k )

T.

The following relation between node numbers and approximation errors is straight-
forward from Proposition 3.
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Theorem 1. Suppose {(ui, ti)}ki=1 ⊆ Re0 × Res+1 is a set of training samples.
Then

min
d∈OP

[e(0)]
s+1

∥t− fs+1(d)∥2 ≥ min
d∈OP

[e(1)]
s+1

∥t− fs+1(d)∥2,

and

min
d∈OP

[e(2)]
s+1

∥t− fs+1(d)∥2 = min
d∈OP

[e(3)]
s+1

∥t− fs+1(d)∥2,

where for 1 ≤ i ≤ s, e
(0)
i ≤ e

(1)
i , e

(2)
i ≥ k, e

(3)
i = k, and t denotes (tT1 , . . . , t

T
k )

T.

Remark 3. Theorem 1 and Remark 2 show that given k distinct training samples,

for M[e]
s,[f ] with e1 = e2 = · · · = es = k, if min

d∈OP
[e]
s+1

∥t − fs+1(d)∥2 exists, adding

nodes to hidden layers will not change the approximation error.

From Remark 3, a natural question arises: When does min
d∈OP

[e]
s+1

∥t− fs+1(d)∥2

exist? In the rest of the paper, we will show that if the activation function fs+1

for the output layer is bounded on R, then min
d∈OP

[e]
s+1

∥t− fs+1(d)∥2 exists.

First, the topological property of the pre-output combination vector set fs+1(OP[e]
s )

is presented as follows.

Lemma 4. Suppose {(ui, ti)}ki=1 ⊆ Re0 ×Res+1 is a set of training samples. If the

activation function fs+1 for the output layer is bounded on R, then fs+1(OP[e]
s ) is a

sequentially compact set, i.e., there exists a convergence subsequence in fs+1(OP[e]
s ).

Proof. Since fs+1 is bounded, fs+1(OP[e]
s ) is a bounded subset in Rkes+1 . Then by

Bolzano-Weierstrass Theorem (see e.g., [29]), every bounded infinite set in Rkes+1

has a convergence subsequence, which completes the proof.

Finally, it will be shown that if fs+1 is bounded, then min
d∈OP

[e]
s+1

∥t − fs+1(d)∥2

exists.

Lemma 5. Given {(ui, ti)}ki=1 ⊆ Re0×Res+1 , define the function h : fs+1(OP[e]
s ) →

R,
h(x) = ∥x− t∥,

where t = (t1
T, . . . , tk

T)T. If fs+1 is bounded, then h is a continuous bounded

function, and there exists x0 ∈ fs+1(OP[e]
s ), such that h(x0) = inf

x∈fs+1(OP
[e]
s )

h(x).

Proof. h(x) is bounded, since |h(x)| ≤ ∥x∥+∥t∥ and fs+1(OP[e]
s ) is a bounded set.

Besides, |h(x1)− h(x2)| ≤ ∥(x1 − t)− (x2 − t)∥ = ∥x1 − x2∥. We claim that h(x)

is continuous for the following reason: for any x ∈ OP[e]
s and ε > 0, let δ = ε, when

x′ ∈ OP[e]
s and ∥x − x′∥ < δ, we have |h(x)− h(x′)| ≤ ∥x− x′∥ < ε. Note that

fs+1(OP[e]
s ) is sequentially compact by Lemma 4. Therefore the statement holds

according to Theorem 1.2 of Chapter 2 in [30], for which the proof is following.
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Let c = inf
x∈fs+1(OP

[e]
s )

h(x), then there is a sequence {xn} ⊂ fs+1(OP[e]
s ), such

that lim
n→+∞

h(xn) → c. Since fs+1(OP[e]
s ) is sequentially compact, there exists a

convergence subsequence {xnk
}. Let x0 be the limit of {xnk

}. Since h is continuous,
c = lim

k→+∞
h(xnk

) = h(x0), implying h(x0) = inf
x∈fs+1(OP

[e]
s )

h(x).

Theorem 2. Lemma 5 and Theorem 1 imply that given k distinct training samples,
for any MLP, if the activation function for the output layer is bounded on R, then
the approximation error keeps decreasing with the increase of node numbers until
the node number in each hidden layer is k, i.e., at most k nodes in each hidden
layer are needed to learn k training samples.

Remark 4. Parts of the conclusions presented in [12, 16] are the special cases
of Theorem 2, i.e,. in the single-hidden-layer feedforward neural networks (SLFN)
with the signum activation function or bounded nonlinear activation function which
has a limit at one infinity, at most k hidden nodes are needed to learn k training
samples.

Conclusion

An upper bound on the node number of each hidden layer for MLPs has been de-
rived by algebraic methods, such as the method of expansion linear spaces. Mean-
while, the basic algebraic structure and properties of the outputs of MLPs are
presented. First, we use the pre-output combination vector to describe the outputs
of an MLP. Then it is proved that given k input vectors, the set of all possible
pre-output combination vectors of an MLP by adjusting the weights and bias is a
union of expansion linear spaces. Besides, the set is found to keep growing with the
increase of node numbers until the node number in each hidden layer is k. Finally,
we reach the conclusions that given k training samples, for any MLP with k nodes
in each hidden layer, if the activation function for the output layer is bounded on
R, then min

d∈OP
[e]
s+1

∥t − fs+1(d)∥2 exists, which is exactly the approximation error

and keeps invariant with the increase of node numbers.
This paper provides a general theoretical criterion for determining the hidden

node numbers of MLPs from the perspective of minimizing the mean square dis-
tance between outputs and desired outputs, without considering certain issues such
as convergence speed improvement and over-fitting problem arising from some cer-
tain practical applications.

The algebraic approach (especially Proposition 2) can be further used to com-
pare approximation errors of MLPs with different numbers of layers and may help
to design layer numbers for MLPs.
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Appendix

Proof of Proposition 2. The statement can be verified by an induction.

When j = 1, from Definition 1, we have the equations

W(1)u1 + b1 = d1,1, . . . ,W
(1)uk + b1 = d1,k,
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which can be rewritten as
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=


d1,1

d1,2

...
d1,k

 . (1)

It follows that the 1-layer pre-output combination vector (d1,1
T,d1,2

T, . . . ,d1,k
T)T

is a linear combination of the column vectors of the first matrix in (1). Note
that the column vectors in the first matrix in (1) consist the e1-degree expan-

sion vector list of Ro(u1, . . . ,uk). Hence, OP
[e]
1 = Bone1(Span(Ro(u1, . . . ,uk))).

Since δe0(Ro(u1, . . . ,uk)) = Ro(u1, . . . ,uk) and f0 is an identity mapping, we have

OP
[e]
1 = Bone1(Ψ

δe0
f0

(Ro(u1, . . . ,uk))). The statement holds for j = 1.

Analogously, from the equations W(j+1)F (dj,i) + bj+1 = dj+1,i, i = 1, . . . , k,
we have

OP
[e]
j+1 =

⋃
(dj,1

T,...,dj,k
T)T∈OP

[e]
j

Bonej+1(Span(Ro(fj(dj,1), . . . , fj(dj,k)))). (2)

Assume that Proposition 2 holds for j. Now we prove that it holds for j + 1.

First, it will be verified that if x ∈ OP
[e]
j+1, then

x ∈
⋃

δi∈∆i

Bonej+1

(
j∏

i=0

Ψ
δei
fi

(Ro(u1, . . . ,uk))

)
.

By Lemma 2, it suffices to prove that each ro-column-vector of x belongs to

⋃
δei∈∆ei

j∏
i=0

Ψ
δei
fi

(Ro(u1, . . . ,uk)).

Since x ∈ OP
[e]
j+1, there exists (d̃T

j,1, . . . , d̃
T
j,k)

T ∈ OP
[e]
j+1, such that each ro-

column-vector of x belongs to Span(Ro(fj(d̃i,1), . . . , fj(d̃i,k))), according to Equa-

tion (2) and Lemma 2. Since Proposition 2 holds for j, there exist δ̃e1 ∈ ∆e1 , . . . ,
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δ̃ej−1
∈ ∆ej−1

, such that

(
d̃T
j,1, . . . , d̃

T
j,k

)T
∈ Bonej

(
j−1∏
i=0

Ψ
δ̃ei
fi

(Ro(u1, . . . ,uk))

)
.

Each column vector in Ro(d̃j,1, . . . , d̃j,k) belongs to
j−1∏
i=0

Ψ
δ̃ei
fi

(Ro(u1, . . . ,uk)) due

to Lemma 2. Therefore, each column vector in Ro(fj(d̃j,1), . . . , fj(d̃j,k)) belongs
to

fj

(
j−1∏
i=0

Ψ
δ̃ei
fi

(Ro(u1, . . . ,uk))

)
.

Notice that Ro(fj(d̃j,1), . . . , fj(d̃j,k)) has ej column vectors, therefore, there exists

δ̃ej ∈ ∆ej such that

Ro(fj(d̃j,1), . . . , fj(d̃j,k)) ⊆ δ̃ejfj

(
j−1∏
i=0

Ψ
δ̃ei
fi

(Ro(u1, . . . ,uk))

)
,

implying

Span(Ro(fj(d̃j,1), . . . , fj(d̃j,k))) ⊆
j∏

i=0

Ψ
δ̃ei
fi

(Ro(u1, . . . ,uk)).

Consequently, each ro-column-vector of x belongs to
j∏

i=0

Ψ
δ̃ei
fi

(Ro(u1, . . . ,uk)).

Secondly, if x ∈
⋃

δi∈∆i

Bonej+1

(
j∏

i=0

Ψ
δei
fi

(Ro(u1, . . . ,uk))

)
, then x ∈ OP

[e]
j+1,

which is proved as follows.

Since x ∈
⋃

δi∈∆i

Bonej+1

(
j∏

i=0

Ψ
δei
fi

(Ro(u1, . . . ,uk))

)
, there exist δ̃e1 ∈ ∆e1 , . . . ,

δ̃ej ∈ ∆ej , such that each ro-column-vector of x belongs to
j∏

i=0

Ψ
δ̃ei
fi

(Ro(u1, . . . ,uk))

by Lemma 2.

Let δ̃ejfj

(
j−1∏
i=0

Ψ
δ̃ei
fi

(Ro(u1, . . . ,uk))

)
be {fj(m1), . . . , fj(mej )}, with m1, . . . ,

mej∈
j−1∏
i=0

Ψ
δ̃ei
fi

(Ro(u1, . . . ,uk)). Let{y1, . . . ,yk}be the column vectors in Ro(m1, . . . ,

mej ). Then by Lemma 1, the column vectors in Ro(y1, . . . ,yk) are {m1, . . . ,mej},

and belong to
j−1∏
i=0

Ψ
δ̃ei
fi

(Ro(u1, . . . ,uk)). Consequently, each ro-column-vector of

x belongs to Span(fj(m1), . . . , fj(mej ))=Span(Ro(fj(y1), . . . , fj(yk))). Besides,

(y1
T, . . . ,yk

T)T ∈ Bonej
(

j−1∏
i=0

Ψ
δ̃ei
fi

(Ro(u1 . . . ,uk))

)
⊆ OP

[e]
j by Lemma 2. Thus,

x ∈ Bonej+1(Span(Ro(fj(y1), . . . , fj(yk)))) ⊆ OP
[e]
j+1

by Lemma 2.
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