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Abstract: Eight methods of decomposition of a multichannel EEG signal are
compared in terms of their ability to identify the most physiologically significant
components. The criterion for the meaningfulness of a method is its ability to
reduce mutual information between components; to create components that can be
attributed to the activity of dipoles located in the cerebral cortex; find components
that are provided by other methods and for this case; and, at the same time, these
components should most contribute to the accuracy of the BCI based on imagi-
nary movement. Independent component analysis methods AMICA, RUNICA and
FASTICA outperform others in the first three criteria and are second only to the
common spatial patterns method in the fourth criterion. The components created
by all methods for 386 experimental sessions of 27 subjects were combined into
more than 100 clusters containing more than 10 elements. Additionally, the com-
ponents of the 12 largest clusters were analyzed. They have proven to be of great
importance in controlling BCI, their origins can be modeled using dipoles in the
brain, and they have been detected by several degradation methods. Five of the
12 selected components have been identified and described in our previous articles.
Even if the physiological and functional origins of the rest of identified components
are to be the subject of further research, we have shown that their physiological
nature is at least highly probable.

Key words: EEG analysis, independent component analysis, ICA, common spatial
patterns, CSP, principal component analysis, PCA, brain computer
interface, BCI, features selection

Received: September 11, 2020 DOI: 10.14311/NNW.2021.31.020
Revised and accepted: October 30, 2021

1. Introduction

Brain-computer interface (BCI) is a soft-and hard-ware complex that allows to
control external technical devices directly by signals of the brain without commonly
used muscle activity. In recent years, motor imagery based BCI systems have

∗Yaroslav Kerechanin – Corresponding author, Pavel D. Bobrov, Alexander A. Frolov; The In-
stitute of Higher Nervous Activity of RAS, 5A Butlerova st., Moscow RU-117485, Russia Moscow,
Russian Federation, E-mail: leeleekeelee@gmail.com, p-bobrov@yandex.ru
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become widespread in the motor rehabilitation of patients after a stroke or a trauma
[1, 10, 21, 22]. However, as shown [16], BCI technology yields great benefits not
only for practical application, but it can also make a major contribution to brain
research. Via biological feedback the subjects train to stabilize and contrast brain
activity patterns corresponding to specific mental tasks in BCI sessions [33]. This
provides more reliable recognition and extraction of such patterns and facilitates
better understanding of brain functionality while performing relevant mental tasks.
The two main tools that we use in our study to research brain activity during motor
imagery BCI performance are the blind source separation (BSS) methods, mainly
the independent component analysis (ICA) methods, and solution of the inverse
EEG problem, based on individual geometry of brain and its covers [16].

The ICA method, as all BSS methods understands multichannel EEG signal
measured on the scalp as a superposition of brain activity signals (components),
each of them having a specific placement on gray matter, and its activity is time-
dependent.

In recent years, the ICA methods have become widely used in EEG processing,
especially in BCI studies [26]. Leading researchers in this field – S. Makeig and his
group, argue that the ICA methods, combined with the solution of the inverse EEG
problem, “should bring EEG once again to the forefront of brain imaging, merging
its high time and frequency resolution with enhanced cm-scale spatial resolution of
its cortical sources” [31].

However, there is still the question of whether the estimated components reflect
the specific physiological properties of brain activity or rather the mathematical
properties of the ICA method used, where the criterion of statistical independence
(SI) is an important parameter.

This problem is relevant due to the obvious noisy nature of many independent
components, thus early ICA applications to EEG processing were only used to
eliminate noise [9].

In EEG analysis it is supposed that every physiologically meaningful component
corresponds to a singular current dipole [11] on the brain. Current dipoles are a
common tool for modeling sources of brain electrical activity recorded from the
surface of the scalp.

The dipoles have orientation and location on the brain, while component activ-
ity corresponds to a dipole moment varying in time.

The suggestion that each independent component corresponds to single current
dipole is based on the anatomical knowledge that short-range connections between
cortex neurons are much more dense than long-range connections. Thus, locally
synchronized activity in cortex areas of a few square millimeters (which is, for
example, the estimated size of the cortex area responsible for sensorimotor mu–
rhythm generation [25]) can be considered as independent of activities of distant
areas of the same size.

Based on the foregoing, in our previous works [16, 18] we classified the com-
ponents of ICA as physiologically significant based on two main criteria: 1) A
component can be generated by a current dipole model, 2) Component is signifi-
cant for BCI control efficiency. Moreover, we checked on a sample of subjects using
functional magnetic resonance imaging (fMRI) that in the area where the dipole
should take place, an increase in hemodynamic activity appeared.
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The main goals of the present study are, first, to evaluate the ability of the
eight methods of the multi-channel EEG signal decomposition methods to extract
physiologically significant components from multichannel EEG signal, and second
to estimate the physiological significance of components in terms of BCI efficiency.

The ability, of a total of 22 linear decomposition algorithms (20 ICA or blind
sources separation (BSS) algorithms plus Principal Component Analysis (PCA)
plus sphering decomposition), to perform physiologically plausible EEG decom-
position was evaluated by A. Delorme et al. in [11] by three criteria: 1) mutual
information reduction (MIR), 2) pairwise mutual information reduction and 3) the
method’s ability to extract from EEG signal the largest amount of dipolar compo-
nents.

In the present study we evaluate the ability of 7 BSS methods (5 ICA, second-
order blind identification (SOBI) and PCA) plus a common spatial patterns (CSP)
method to perform meaningful EEG decomposition.

We evaluate these methods in accordance with the degree to which they provide
meaningful components in terms of the four criteria 1) Dipolarity i.e. the ability
create components that can be assigned to the activities of dipoles , 2) MIR i.e.
the ability reduce mutual information between components; 3) Significance i.e. the
component is significant for BCI control efficiency. 4) Physiological significance –
component repeatedly appears in different subjects and in different relations of one
subject and is detected simultaneously by several different ICA methods.

In order to be able to quantify the above criteria, we used the indicators and
other tools that will be introduced in the Section 2.3 “Indicators”.

Next, the results of the analysis we used for the selection of the most physiolog-
ically significant components, which, according to the analysis, are also the optimal
features for the BCI classifier, see Section 3.2 “The components most suitable to
be treated as physio-logically meaningful”

We also compare our results with the relevant results of A. Delorme [11]. All the
BSS methods considered here were included in the analysis carried out in this work.
In contrast to this, we extended our analysis by adding the CSP method, because
its application is the most common [2] in BCI classifiers. Note that both criteria
MIR and dipolarity are common in both of these evaluations. However, let us not
forget, that the main difference between the two analyses is that the experimental
data analyzed in this study correspond to completely different mental tasks, as
compared to [11]. In our study, motor imagery data are analyzed, while in [11]
subjects performed a modified Sternberg visual working memory task [30].

2. Methods

2.1 Experimental procedure

Twenty-seven subjects (20 male and 7 female), aged between 21 and 36 without
visible physical and neurological impairment, participated in the study. All the
subjects were acquainted with the experimental protocol and gave their written
consent to participate in the experiment. The experimental protocol was approved
by the board of ethics at the Institute for the Higher Nervous Activity and Neuro-
physiology RAS.
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There were between 10 and 20 experimental sessions of BCI training for each
subject, 1-2 sessions a day. The gap between experimental days was from 1 to 4
days. The subjects had to execute one of 3 instructions presented on the computer
screen: to relax or to imagine kinesthetically left or right fist extension. The
subjects had to perform one of the 3 instructions presented on the computer screen:
to relax or to imagine opening their left or right fist kinesthetically.

Each instruction was presented for 10 seconds. Two instructions for right arm
and 2 for left arm were presented in a random order and formed a block. Each
session contained 10 such blocks. Each MI instruction was preceded by instruction
to relax. More detailed description of the experimental protocol is given in [5].

The Bayesian classifier described in [7], which has much lower computational
costs, but the classification accuracy comparable to other more complex classi-
fiers [15], was used in our BCI implementation.

EEG recording was carried out by electroencephalograph gUSBamp (g-tec, Aus-
tria) with 48 active electrodes and 256 Hz sampling frequency. Before EEG signal
decomposition recordings were filtered by 5-30 Hz pass-band filter.

2.2 EEG signal decomposition

All the evaluated methods represent multichannel EEG signal X (where compo-
nents of X are electric potentials on N individual electrodes on the scalp/head
surface) as a weighted superposition of N component activities ξi

X = WΞ = w1ξ1 +w2ξ2 + · · ·+wNξN. (1)

In Eq. (1) X is N by M matrix, its each row corresponds to a single electrode
time series and each column is an EEG signal at some time moment. Thus M , is
equal to the whole number of EEG times samples. Column vector wi (N by 1)
represents i-th component potential distribution over EEG electrodes, let us call it
topographic map (TM), and row vector ξi (M by 1) gives i-th component activity
at all moments of time.

2.2.1 ICA BSS methods

Before matrix X decomposition the whitening procedure is usually used, which
transforms X by the equality Z = VX so that E{ZZT} = I, where V is the
whitening matrix and E{·} denotes signal expectation. Thus, due to whitening X
becomes decorrelated. It can be shown [24] that V can be found from the covari-

ation matrix C = E{XXT}: V = C−1/2. Due to whitening, Eq. (1) transforms
to:

Z = Uξ, (2)

where U = VW and ξk are uncorrelated and of a unit variance. In contrast to
matrix W, U is orthonormal.

Component activities Ξ can be found by inversion of Eq. (2):

Ξ = AZ, A = UT. (3)

thus
W = (AV)−1. (4)
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Since U is orthonormal then A is also orthonormal, which greatly simplifies the
solution of the ICA problem.

Five ICA methods were used for EEG decomposition.

KURT [24] is based on maximizing deflection of component kurtosis from the
kurtosis of the normal distribution which is equal to 3

ai = argmax
v,∥v∥=1

| E{(vZ)4]}
[E{(vZ)2)}]2

− 3|,

where the row vector ai is supposed to be orthogonal to all previously found vectors
aj (j < i). When all vectors ai are found, W can be found from Eq. (4).

Since distribution of a superposition of independent signals is closer to normal
than distributions of signals themselves then deflection of component kurtosis from
3 is a good index that components are independent. This method evidently fails if
independent signals are normally distributed. However, this is a common property
of all the ICA methods that do not work with a normal distribution of independent
components.

FASTICA [24] is based on minimization of mutual information between com-
ponent activities. Mutual information I between activities ξ1, ξ2, . . . , ξk is defined
as:

I(ξ1, ξ2, . . . , ξk) =
∑
l

H(ξl)−H(Ξ), (5)

where H is the entropy of signals and Ξ = AZ. For any linear transformation of
Z, H(Ξ) = H(Z) + det |A|. Since

det(E{ΞΞT}) = det(E{AZZTAT}) = det(A)2 det(E{ZZT})

and matrices E{ΞΞT} and E{ZZT} are orthonormal, then |det(A)| = 1 and, con-
sequently, H(Ξ) does not depend on A and the minimization of mutual information
is equivalent to finding ai which minimizes the entropy H(ξi):

ai = argmin
v,∥v∥=1

{H(vZ)}.

Exact calculation of the entropy is practically unavailable, and different methods
of its estimation are used. In this particular case, the method approximates the
entropies of component activities as follows:

H(ξi) ∝ const− [E{g(ξi)} − E{g(ν)}]2, (6)

where g(·) = log cosh(·) and ν is Gaussian variable of zero mean and unit variance.
Thus, each row vector of matrix A is found by the equation:

ai = argmax
v,∥v∥=1

{E{g(vZ)}},

where, as in the KURT method, ai is supposed to be orthogonal to all previously
found vectors aj (j < i).
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RUNICA [3] is a modification of FASTICA taking into account that two dif-
ferent functions for estimation of entropy are required for super-Gaussian (kurtosis
> 3) and sub-Gaussian (kurtosis < 3) components. For super-Gaussian compo-
nents, g+(·) = −2 log cosh(·), for sub-Gaussian, g−(·) = log cosh(·)− (·)2/2.

AMICA [32] represents each component ξi as a mixture (j = 1, . . . ,K) of
supergaussian signals. The component activity distribution p(ξi(t)) is given by
following formulae:

p(ξi(t)) =

K∑
j=1

αij · q(ξi(t); ρij , µij , βij),

q(ξi(t); ρ, µ, β) =
ρ

2βΓ(1/ρ)
exp (−| (ξi(t))− µ

β
|ρ).

Where q(ξi(t)) is super-Gaussian probability density function and Γ is gama
function. In this regard, for each component activity ξi several parameters must
be estimated in general. First, these are: mean µij , scale βij , and shape ρij
of super-Gaussian probability density function qij . The next one are αij , which
indicates the relative contribution of each distribution qij to the component activity

distribution. For αij , the following equality must hold:
∑K

j=1 αij = 1.

When µij = 0, βij = 1 and ρij = 2, qij represents zero-mean Gaussian distribu-
tion with unit variance. In our calculations each component activity distribution
p(ξi) was approximated by a mixture of K = 2 super-Gaussian (ρ > 2) distribu-
tions. Likelihood maximization was used to estimate parameters of these mixtures.

CUMUL [24] is similar to the KURT method, but instead of kurtosis the
maximization of the 4-th order cross-cumulant is used:

cum4(y, τ) = E{(y(t)2y(t− τ)2} −E{y(t)2}E{y(t− τ)2} − 2E{y(t)y(t− τ)}2. (7)

In the present paper, the value of time shift τ was set to 80ms, which is equal to
the period of 12Hz signal. Thus, the method is intended to extract components
that have alpha-rhythm frequency.

2.2.2 Other BSS methods

In addition to the ICA methods we used two other BSS methods: second-order
blind identification (SOBI) and PCA.

SOBI [4] is based on diagonalization of a set of time-shifted cross-covariance
matrices. The function estimates the unmixing matrix in a second order stationary
source separation model by jointly diagonalizing the covariance matrix and several
autocovariance matrices at different lags.

E{ξ(t)ξ(t− τ)} = ACkA
T,
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where Ck = E{X(t)XT(t − τ)}, τ = kδ, k = 0, . . . ,K and δ is a sampling step.
Thus, SOBI minimizes correlation between component activities in a given range
of time shifts:

A = argmin
∑
k

f(ACkA
T
),

where for arbitrary N ×N matrix Y, f(Y) is defined as

f(Y) =
∑

1≤i,j≤N,i̸=j

|Yij |2.

PCA implies that in Eq. (1) columns of W are eigenvectors of covariance
matrix cov(X), thus matrix W is orthonormal, component activities ξi are not
correlated, and their variances are equal to eigenvalues of covariance matrix.

2.2.3 Non BSS method recognized in BCI

CSP does not belong to BSS methods family, we, as mentioned in Section 1
incorporated this method in our study, as it is the most frequently used for BCI
control [2]. We used original CSP, which is intended for separation of EEG signals
only into two classes. To eliminate this drawback, we propose procedure given
below. According to CSP, matrix A = W−1 has to satisfy two equations:

AC1A
T = D(1) A(C1 +C2)A

T = I, (8)

where Ci are covariance matrices for two mental states (i = 1, 2), D(1) is a diagonal
and I is a unit matrix. Then in both mental states component activities are not
correlated and their variances are given by D(1) for the first and D(2) = I −D(1)

for the second mental state. Therefore, if variance is small for one state it is large
for another. Thus, each row vector ai of matrix A defines the direction ai

T in the
signal space so that projection of X on this direction maximizes or minimizes the

ratio of projection variances d
(1)
ii /d

(2)
ii in two mental states. Maximal difference in

these variances determines the high ability of CSP for state recognition during BCI
control.

Matrix A can be found explicitly. It is easy to prove that both equations (8)

satisfy if A = UT
1 D

− 1
2UT, where U is a unitary matrix and D is a diagonal matrix

given by singular value decomposition (SVD) of

C1 +C2 = UDUT

and U1 is a unitary matrix given by SVD of

D− 1
2UTC1UD− 1

2 = U1D
(1)UT

1 .

The definition of CSP is made under the assumption that there are two classes
(states). Since there were three tasks (classes) in our experiments, the CSP de-
composition was performed for each pair of the tasks, resulting in three sets of
components for each of the BCI-control sessions.
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2.3 Indicators

2.3.1 Mutual information reduction

Mutual information reduction (MIR), i.e. the amount of mutual information re-
moved from set of channels, is [11] given by:

MIR = I(x1,x2, . . . ,xN )− I(ξ1, ξ2, . . . , ξN ),

where mutual information I is given by (5). Then

MIR =
∑
i

H(xi)−H(X)−
∑
i

H(ξi) + H(Ξ).

Since X = WΞ, then
H(X) = H(Ξ) + log det |W|.

Hence
MIR =

∑
i

H(xi)−
∑
i

H(ξi)− log det |W|. (9)

Just reminder: Zero mutual information between two random variables means
that the variables are independent, so as a result, MIR is an indicator of a method’s
efficiency.

2.3.2 Dipolarity

The majority of extracted components are noisy components, originated from eye
movements, blinking, myogram, head movements and loss of contact between elec-
trodes and skin. These components were treated as noisy if it was impossible to
approximate their TMs with single current dipole potential distribution. Each TM
was matched to a single current dipole located in brain cortex. The best-fitting
dipole approximation for the component TM w was found using finite element head
model created using the standardized MRI head image provided by the Montreal
Neurological Institute (MNI). The model allows to evaluate the potential distribu-
tion at the electrodes, which results from a single dipolar current source located
at the center of each of the model elements. Thus, for each of the elements it is
possible to find the best dipolar fit TMDi for w. The best-fitting distribution can
then be found as:

TMD = argmin
i=1,...,Nel

(TMDi),

where Nel denotes the total number of elements in the model. Goodness of fit can
be measured by residual variance:

εdip =
∥w − TMD∥2

∥w∥2

Components were treated as noisy if residual variance of dipole approximation was
higher than 10%. It should be noted that eye movement and blink components
can be fitted by a single dipole with high precision but they were also removed as
noisy because their dipole location was not in the brain cortex. As a result of such
filtration, only a third of the whole components were treated as “dipolar”.
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To evaluate the ability of the method to provide dipolar components, we intro-
duce indicator dipolar components ratio:

ND =
Ndip

Nall
, (10)

where Ndip is the number of dipole components and Nall is the number of compo-
nents identified during all the sessions of all subjects.

2.3.3 Methods similarity indicator

All the methods used to decompose the EEG signal are clearly based on different
approaches, as described above in Section 2.2, they may be implicitly similar. Thus,
it is reasonable to evaluate their internal ability to give similar results. Therefore
we introduce similarity indicator MS:

MS = ns/(n1 + n2 − ns) (11)

where ns is a number of identical components, ni is the total number of components
revealed by the i-th method. If there are no identical components MS = 0, if all
components are identical MS = 1.

2.3.4 Component rank indicator

Different methods are based on different assumptions, so it is reasonable to sup-
pose that a component that is extracted by several methods contains information
about the EEG signal and it is not an artefact of the method. Thus, in addition to
the dipolarity criterion, only components that were extracted in each experimental
session at least by two decomposition methods were considered physiologically sig-
nificant and used for analysis. As a measure of this, we introduce component rank
(R) indicator:

R = Nm,ξi (12)

where R is component rank and Nm,ξi number of methods that extracted the same
component.

2.3.5 Components identity criterion

As mentioned earlier, the resulting components are never exactly the same, so we
must introduce the criterion of component identity. It is supposed that components
extracted by different methods are identical if their TM, i.e. w1 and w2 and
activities ξ1 and ξ2 respectively, obtained by two methods, 1 and 2 are close. The
closeness of TMs activities is given by the formulae:

S1,2 = |wT
1 w2|/|w1||w2|, (13)

and closeness ξ1 and ξ2 by the formulae:

C1,2 = |ξ1ξ
T
2 |/

√
(ξ1ξ

T
1 )(ξ2ξ

T
2 ). (14)
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It was supposed that components are identical if S1,2 > 0.9 and C1,2 > 0.8.
According to this two criteria approximately half of the total components had rank
R > 1.

Components that were recognized as identical were combined into a single com-
ponent with mean TM, and mean activity.

2.3.6 The selection of components most relevant for BCI control

To evaluate the relevance of the components for BCI control we used the approach
described in [16, 18]. According to this approach, the components belonging to
the component combination providing the highest efficiency of BCI control were
treated as the most relevant. For all the methods except CSP the components are
activities ξi, i = 1, . . . , N directly obtained by EEG decomposition Eq. (1).

For CSP, the components are obtained by combining the components obtained
by 3 decompositions applied to each pair of mental states. For each pairwise
decomposition 6 components with highest and 6 with smallest eigenvalues were
taken and then combined. The optimal combination of components was selected
from these 36 combined components.

The efficiency of BCI control was evaluated off-line by cross-validation of each
experimental session. Ten blocks of a session were randomly split into sets of seven
and three blocks. The first set was used for BCI classifier training and the second
one for its testing. Thus, non-overlapping data sets were used for training and
testing of the classifier.

We used a Bayesian classifier that compare covariance matrices for three mental
tasks performed by the subject in accordance with the instructions [7,15]. The BCI
training actually consists in calculating the three EEG covariance matrices for each
of the mental tasks on data from the selected seven blocks. Missing features are
therefore taken into account automatically compared to [29].

The classifier was tested by extracting epochs lasting one second from the three
remaining blocks and calculating the covariance matrix for each epoch. The clas-
sifier selected the task for which a covariance matrix was closest to that calculated
for the epoch [7, 15]. As a result of averaging over 50 such splits, the confusion
matrix P = pij) was obtained, where pij is the probability estimate for recognizing
the i-th mental task if the j-th mental task is to be performed. The efficiency of
BCI control was evaluated by Cohen’s kappa [28] indicator. Given the confusion
matrix P, this indicator is calculated as

κ =
Σipiipi0 − Σip0ipi0

1− Σip0ipi0
, (15)

where p0j is a probability of the j-th instruction to be presented and pi0 = Σjpijp0j
is a probability of the i-th mental state to be recognized. The probabilities p0j were
estimated by dividing the number of epochs corresponding to the j-th state by the
number of all epochs. Thus, p0j were equal or very close to 1/3. The better the
classifier performs the more the confusion matrix P is close to identity matrix I.
If classification is perfect (P = I) and the κ = 1. If classification is random, i.e.
pij = pi0 for all j, then κ = 0.
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For each experimental session and each method of signal decomposition, an
optimal combination of components was found, where the value of the index κ was
considered as a criterion of optimality. The higher the κ, the better.

Because the total number of possible combinations of 2N components is ex-
tremely large, we have found an optimal combination of only 3 components using
an exhaustive search first.

Then, in finding the optimal set of components, we used a “greedy” algorithm
that added more components one by one, starting with these 3 components. In each
step, a new component was added that provided the maximum increment to the
coefficient κ. The significance of each component was evaluated as the frequency
of cases where such a component was included in the optimal combination.

2.3.7 Topographic map clustering

Functionally identical components, when they are identified on different subjects,
never have identical TM, and this fact is true even if these components are identified
at different experimental sessions, where the subject participating in the experiment
remains the same. This is due to anatomical differences in the structure of the
subjects’ brains, different electrode settings during the sessions, and specific noise
in each session. However, it can be assumed that these TMs maps should be at
least somehow similar. This task does not have an unambiguous solution because
the maps smoothly transit into each other, so boundaries of clusters depend on
the clustering method. Due to this peculiarity we used attractor neural network
with increasing activity (ANNIA) as a clustering method [13, 14, 17]. The method
was elaborated for the Boolean factor analysis. According to this method, each
TM which satisfied dipolarity and rank criteria was matched with a single binary
neuron whose states were 1 (active) or 0 (not active). Neurons were connected
into the neural network by “synaptic” connections equal to similarities between
corresponding TMs. The similarity Sij between TMs i and j (that is the synaptic
connection between neurons i and j) was specified by Eq. (13) as Si,j [8]. To reveal
each cluster we used the two-run procedure. The network dynamics was initialized
by the presentation of a random initial binary pattern of the network activity X(0)
at the moment t = 0. The number of active neurons kinit in the initial pattern was
taken to be much smaller than the supposed size of the cluster. On the presentation
of X(0), network activity evolves to an attractor. This evolution is determined by
the synchronous discrete time dynamics. At each time step

Xi(t+ 1) = Θ(hi(t)− T (t)), i = 1, . . . , Nn,

where hi are components of the vector of synaptic excitations h(t) = SX(t), Θ is
a step function, T is activation threshold, and Nn the number of neurons in the
network.

At each time step of the searching process the threshold T (t) was taken to
provide constant number kinit of active neurons in X(t+1). As shown in [12], this
choice of the activation threshold provides the permanent increase of the Lyapunov
function

Λ = XTSX
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until the network activity stabilizes in point or cyclic attractor of length two. The
Lyapunov function actually corresponds to the total sum of connections between
active neurons. Thus, the searching process with a fixed number of active neurons
provides the choice of neurons with maximal connections, i.e. TMs with maximal
similarities.

When activity stabilizes at the initial level kinit a new neuron with maximal
synaptic excitation is added to the neurons active at the previous step and network
activity evolves to attractor at the new level of activity and so on until the number
of active neurons reaches some value kfin. Thus, to find one cluster, kfin − kinit
external steps and several steps inside each external step required to reach an
attractor for a given level of activity.

Usually we begun the recall process starting from 5 randomly chosen active neu-
rons and ended it when the mean value of synaptic connections between neurons
in the cluster decreases to 95% of its maximal value over the neurodynamic tra-
jectory. After one cluster was found, all its neurons were deleted from the network
and new searching procedure was initiated, while the network was not depleted.

2.3.8 Rate of appearance indicator

In the introduction, however, we set a tougher criterion of physiological significance
– the component has to appear repeatedly in different subjects and in different
relations of one subject. In addition, this pattern should be detected simultaneously
by several different ICA methods simultaneously.

So we introduced indicator rate of appearance indicator:

RA = Nclust/Nsessions · 100 [%], (16)

where Nclust is the total number of component TM in the cluster associated with
this component, and Nsessions is the total number of all experimental sessions.

3. Results

Experimental data include 386 sessions for 27 subjects, approximately 10 − 20
sessions for each subject. Each session was processed by 6 ICA, 2 other BSS
methods and CSP.

3.1 Methods comparison

The signal decomposition methods were compared according to the 6 main indica-
tors described above: mutual information reduction MIR – Eq. 9, dipolar compo-
nent extraction coefficient ND – Eq. 10, methods similarity MS – Eq. 11, component
rank R see Eq. 12, then component significance hereupon κ – Eq. 15 is used as a
BCI control quality criterion, and rate of appearance RA Eq. 16.

To evaluate the ability of the method to provide dipolar components (dipolarity)
the ND indicator Eq. 10 was calculated.

Its value ranged from 0.36 for AMICA to 0.08 for PCA method – see Fig. 1 –
Dipolar components extraction ratio. Therefore, dipolarity is highest for the ICA
methods. The PCA method is the worst. This result agrees with those obtained
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in [11] for the task related to visual memory. It is, therefore, reasonable to assume
that they really reflect the property of the method, and do not depend on the
mental task. In addition, we obtained three values for pairwise analysis of CSPs:
CSP12, CSP13, and CSP23, which correspond to pairs of mental states: 1 for
left-hand movement, 2 for right-hand, and 3 for relaxation. As these values are
relatively close, instead of these three pairs of values, we give only their average
value.

Mutual information reduction was also calculated for each method. The final
numbers were obtained as an average over all the sessions of all the subjects. The
results are shown in Fig. 1–MIR. Values ranged from 918 bps for AMICA to 897
bps for CUMUL, CSP and PCA. And once again, the highest MIR values are
provided by ICA methods. And, again, the results are in good agreement with
those presented in [11].
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Fig. 1 Dipolar components extraction ratio ND and mutual information reduction
MIR averaged over all the method.

Although all the methods used to decompose the EEG signal are clearly based
on different approaches, as described in Section 2, they may be implicitly similar.
Thus, before assessing the ability of the methods to create components with a high
rank, it is reasonable to evaluate their internal ability to give similar results. The
results of such assessment are given in Tab. I. Methods similarity was estimated
by Eq. 11.

The MS values below the diagonal were obtained for all the components found.
In this case, n1 = n2 = N , where N is the number of EEG electrodes. The MS
values above the diagonal were obtained only for dipole components. In this case
n1 and n2 are generally not equal and are smaller then N . MS were obtained by
averaging over all the sessions of all the subjects.

The highest MS was obtained between AMICA and RUNICA in spite of the
fact that these methods are based on completely different approaches as described
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AMICA RUNICA FASTICA KURT SOBI CUMUL CSP PCA

AMICA 0.56 0.44 0.24 0.10 0.11 0.03 0.006
RUNICA 0.42 0.48 0.22 0.08 0.11 0.02 0.004
FASTICA 0.33 0.36 0.20 0.09 0.09 0.03 0.007
KURT 0.20 0.20 0.17 0.06 0.06 0.02 0.004
SOBI 0.08 0.07 0.07 0.05 0.02 0.02 0.01
CUMUL 0.08 0.08 0.07 0.05 0.02 0.007 0.002
CSP 0.02 0.02 0.02 0.01 0.01 0.003 0.002
PCA 0.004 0.004 0.004 0.003 0.005 0.001 0.001

Tab. I Similarity of the MS methods in producing identical components when all
the components (below diagonal) and only dipole components (above diagonal) are
taken into account.

in Section 2 “Methods”. This is explained by their ability to reveal the largest
amount of dipole components (see above) which are supposed to have physiological
significance. This is also shown in Tab. I: for all components MS between AMICA
and RUNICA amounts to 0.42, and for only dipole components – 0.56. Thus, the
great similarity of the results of these methods reflects not their common internal
property to reveal identical components but their ability to find the proper compo-
nents corresponding to the signal nature. Since MS is higher for dipole components
than for all the components also for other methods, this is true for all the methods.
Hence, it is possible to calculate the rank of the components when ignoring the
methods internal ability to produce identical components due to implicit similarity
of the MIR criteria.

AMICA RUNICA FASTICA KURT SOBI CUMUL CSP PCA
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Fig. 2 index MS for all (light bars) and dipolar only (dark bars)components.
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We estimated the global ability of the methods to produce components with
a high rank by calculating the index MS by the Eq. (11) but where ns is the
number of identical components found by one of the methods and by all other
methods. For all the components found (dipole and not dipole), the MS ranged
from 0.48 for RUNICA to 0.007 for PCA. For only dipole components MS ranged
from 0.81 to 0.05, respectively. Thus, in terms of dipolarity and MIR, the three
methods AMICA, RUNICA and FASTICA are superior to the other methods in
their ability to produce components with a high rank. For dipole components, each
of them reveals almost the same number of components with the rank exceeding 2
as all the other components together.

The ability of the methods to produce components most relevant to control BCI
is depicted in Fig. 3. The mean values of κ for each subject evaluated by the original
multi-channel EEG signal (light bars) and optimal (darker bars) components are
shown. The subjects in Fig. 3 are sorted over κ obtained by the original EEG
signal. The figure demonstrates the wide subject distribution over BCI control
quality that was noted earlier in [20] and is consistent with the results of other
studies [6].
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0.6

0.7
FASTICA
RUNICA
AMICA
KURT
CUMUL
SOBI
CSP
PCA
ALL ELECTRODES

subject

Fig. 3 Over all the sessions the mean BCI control quality index κ achieved by
the subjects in depending on the signal decomposition method. The dark green bars
indicate the quality of control achieved by the subjects based on the original EEG
signal. The other colored bars are quality indicators for the optimal component
sets obtained by different methods for a given subject. The correspondence of the
decomposition method to the color of the bar is shown in the upper right part of the
figure.

Generally BCI, control quality significantly increases when removing noise com-
ponents. On average for all the subjects, κ increased from value 0.17 obtained using
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the original EEG signal to the following values 0.38 for AMICA, 0.38 – RUNICA,
0.37 – FASTICA, 0.37 – KURT, 0.37 – SOBI, 0.33 – CUMUL, 0.4374 – CSP, 0.32
– PCA. The improvement compared to the value obtained for the original EEG
signal amounted to 0.20 for AMICA, 0.20 – RUNICA, 20 – FAST ICA, 19 – KURT,
0.20 – SOBI, 0.16 – CUMUL, 0.264 – CSP, 0.15 – PCA 0.37 – for optimal com-
ponents. ANOVA analysis did not reveal any statistically significant differences
between κ values obtained by different ICA methods however, pairwise compar-
isons by Mann-Whitney test showed that the CUMUL method was inferior to the
majority of the other ICA methods. The closeness of κ values obtained by different
ICA method shows that wide distribution of subjects in BCI control quality most
likely reflects their physiological differences rather than parameters of classification
and EEG analysis methods.

The increase in the quality of control by choosing the optimal components com-
pared to those obtained using the original EEG signal was the highest for CSP.
This is not surprising since this method is the most effective in BCI for recogniz-
ing two mental states. Its modification to recognize the three states described in
Section 2 “Methods” may be effective for a multiclass BCI, but it must be studied
in real-time experiments.

3.2 The components most suitable to be treated as physio-
logically meaningful

After removing the components which do not satisfy the criteria of dipolarity and
rank, approximately 10,000 components were left for further analysis. ANNIA
clustering divided these TMs into 200 clusters larger than 10 in size.

Fig. 4 depict topoplots and spectral activity densities of the relative activities
of components in the first 12 largest clusters, i.e. the components which most
regularly appear in all experimental sessions of all the subjects.

Fig. 5 depict the main characteristics for the selected clusters: (A) – rate of ap-
pearance, i.e. the percentage of sessions where cluster components were extracted,
(B) – the mean rank of cluster components, (C) – the percent of sessions where
the cluster components were identified as significant, and D – the mean dipolarity
of the cluster components. As shown, the components of the first 5 clusters ap-
peared in more than 50% of sessions and the 12-th cluster components – in 5%.
For almost all clusters, the mean value of component rank was higher then 3, ie
on average these components were extracted by more than three decomposition
methods. The components were identified as significant in more than 20% sessions
and dipolarity was less than 5%. Thus, all components shown in Fig. 4 should be
treated as physiologically significant.

4. Conclusions

A comparison was made of eight methods for decomposition of a multichannel EEG
signal by the main indicators that determine their ability to extract physiologically
significant components from the signal; mainly: 1) mutual information reduction,
2) dipolarity of the selected component, 3) the average number of methods retriev-
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Fig. 4 Topoplots and spectral activity densities of components for the 12 largest
clusters ordered by cluster size. Topoplots and relative spectral densities were av-
eraged over all the components in each cluster. Spectral densities are shown in
arbitrary units in the frequency range from 5 to 30 Hz for three tasks: blue lines –
relax, red and green lines – imagination of right-hand and left-hand movement.
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Fig. 5 Indicators of component meaningfulness for the first 12 components. A –
rate of appearance RA. B – average rank of component R. C – the frequency of
cluster components to be optimal for BCI control in percent of the total number of
cluster components. D – average εdip of component.

ing the same component; and 4) the ability to produce components most suitable
for BCI control.

The three ICA methods – AMICA, RUNICA and FASTICA – are superior to
the other methods in the first three indicators. This result is consistent with the
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results obtained in [11], where 22 EEG decomposition methods were compared for
MIR and dipolarity for a task related to visual memory. The similarity of the
results obtained for completely different mental tasks [11] and the results obtained
in this study corroborate the conclusion that the distribution of methods according
to these indicators reflects properties of the methods themselves and is independent
of the task.

It is worth noting that FASTICA is slightly behind AMICA and RUNICA in
terms of the firs three indicators, but significantly surpasses them in computational
cost. This makes it reasonable to use FASTICA even in real time experiments. CSP
demonstrates greatest ability to create components most suitable for BCI control
(Fig. 3). This is not surprising since namely this method provides the highest
accuracy for recognizing mental states by EEG and is most frequently used for
BCI control. However, it is originally assigned to recognize only pair of mental
states. The CSP modification proposed in the present paper for recognizing three
states in off-line analysis may be efficient for multiclass BCI performing in real
time.

After removing the components that do not satisfy the criteria of dipolarity
and rank, approximately 10,000 components were left for further analysis. The
components were combined in clusters according to the similarity of their TMs.
We analyzed the properties of components in 12 largest clusters. The components
in these clusters had high rank, dipolarity and significance for BCI control. As
a result, they may be treated as physiologically significant. The five components
(1, 3, 5, 7 and 9) shown in Fig. 4 were described earlier in [19] but they were
obtained by only one ICA method AMICA and for the small group of 7 healthy
subjects and 4 post-stroke patients. The result obtained here for large group of 27
healthy subjects by 8 methods of EEG decomposition confirms the correct choice
of these components in [19] as the most physiologically significant. The result
obtained in [19] also confirms the high ability of AMICA to reveal physiologically
meaningful components obtained in the present study.

The sources of the five components were localized in [19] by solving the inverse
EEG problem taking into account individual geometry of the brain and its covers
obtained by magnetic resonance imaging (MRI) [16]. The sources of the compo-
nents 1 and 3 were localized in primary somatosensory cortex of the left and right
hemispheres, 5 in the supplementary motor area, 7 in the precuneus and 9 in the
lateral pre-motor-cortex. The detail description of motor functions for these brain
areas is given in [27]. The functions of 7 others have to be additionally studied.
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