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Abstract: The electrocardiograph (ECG) is one of the most successful medical
diagnostic tools. The ECG can show, roughly speaking, all types of heart disorders
that appear as ECG signal arrhythmias or problems with the rate or rhythm of the
human heartbeat. In this paper, a universal ECG signal arrhythmia classification
system is proposed. The proposed system is based on using the wavelet transform
in two of its known forms, namely, the discrete wavelet transform (DWT) and
the wavelet packet transform (WPT), or a combination thereof. The purpose of
the research reported herein is to find out a universal classification system; in the
sense of providing a capability for simultaneous classification of all types of known
heart arrhythmias. Three algorithms based on the wavelet transform are tested for
different wavelet levels, wavelet functions, training and testing ratios, and elapsed
times. We rank these algorithms according to the elapsed times needed for their
processing over the whole loop of the eight different arrhythmia classes. This rank-
ing nominates the WPT-based algorithm to be the most superior method among
the competing methods. A different ranking according to successful recognition
rates assigns priority instead to the method combining the WPT and the DWT.
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1. Introduction

Electrocardiography (ECG or EKG) is a commonly-used noninvasive cardiological
methodology for testing the existence of disorders in the human heart work, which is
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revealed by electrodes placed on the skin of the patient. The idea behind the ECG is
to record the electrical signal that originates from the heart’s muscle. The outcome
of this methodology is called the electrocardiogram, which is an illustration of the
electrical activity of the heart, graphing the voltage signal magnitudes over time [1].
Electrocardiography plays a fundamental role in analyzing various heart diseases
including myocardial infarction, ischemia, heart attack, as well as related blockages
in arteries and veins. The reason behind that is that any heart arrhythmia presents
a particular deformation in the muscle of the heart that causes the sequence of its
electrical impulses to experience certain deviations from the standard or normal,
which in turn are manifested and illustrated on the ECG [1].

The diagnosis of a specific type of heart disease is a somewhat challenging
task and differs from patient to patient. A particular source of difficulty is that a
normal or healthy ECG is different for different persons. As a result, diagnosing a
specific disease may vary for every individual. Furthermore, in a non-normal ECG,
two distinct diseases may have almost the same manifestations [1]. To overcome
these obstacles, researchers must think deep and hard to obtain a universal pattern
recognition technique. This technique should work regardless of the similarity that
occurs in some places in ECG waves with different electrical heart disorders [1–6].

Many ECG arrhythmias may appear as a special pattern called the QRS com-
plex, which is a combination of three graphical deflections, usually constituting the
central and most visually obvious part of the ECG tracing. Therefore, many re-
search ideas start from analyzing the QRS complex [7]. One of the techniques that
attracted many researchers depends on using various variations of the wavelet trans-
form, and utilizing several kinds of wavelets, including the Haar wavelet [8–10], the
Mexican hat wavelet [11,12], and a combination of different wavelet functions [13].
The authors in [14] presented a wavelet QRS complex detection algorithm based
on an ECG signal contaminated with noise, which is comparable to the algorithms
given in [15–18]. A different piece of work in [17] introduced the use of the Haar
discrete wavelet transform for arrhythmia detection. A classification of seven heart-
beat cases (normal beat, bundle branch ectopic beat, supraventricular ectopic beat,
normal, and ventricular ectopic beat) was investigated by the Morlet wavelet func-
tion and the probabilistic neural network (PNN) [18]. The successful classification
rate was up to 100% for a single arrhythmia but decreased for multiple arrhythmias.
The QRS complex was classified by the Haar wavelet and the self organizing map
method, which produced improved results in comparison to the fast Fourier trans-
form (FFT) and the cross-correlation methods [10]. In [19], the authors proposed
a wavelet transform and an energy based method for atrial fibrillation detection.

The paper assumes that the reader is already familiar with the wavelet trans-
form (WT) and many related concepts such as WT energy, wavelet packet, WP
tree, WP tree depth, and feature vectors. Understanding these concepts is not
a pre-requisite for appreciating the paper contribution. However, the interested
reader might consult some of the pertinent tutorial references such as our refer-
ences [6–10,12–14,16–18,20,21].

Before closing this section, we devote this paragraph to stating our contribution
to the current state-of-the-art, and highlighting the novelty dimension in our work.
We stress that, to the best of our knowledge, earlier attempts at classifying ECG
signals were restricted to cases of just one arrhythmia or two arrhythmias, includ-
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ing the normal case. The reason for this restriction is an urge to avoid unnecessary
and unwarranted complexity, in particular since the occurrence of a single heart ab-
normality manifested as a single arrhythmia is more frequent than that of multiple
ones. Despite the fact that the appearance of three or more arrhythmias in ECG
signals is rather rare indeed, it is still a phenomenon of significant importance, more
dreadful consequences, and a non-negligible (albeit small) prevalence. Moreover,
this phenomenon signifies a more critical and complicated case of a heart patient
that is more challenging to even highly-experienced medical personnel. Therefore,
we believe that computer-aided analysis of ECG signals with multiple arrhythmias
rather than a single one is even more beneficial to physicians in detecting more
complex and less known cardiovascular diseases. Our present contribution is ex-
pected to be welcomed by the medical community, since it addresses situations, in
which automated analysis well supplement manual human expertise.

In this paper, we introduce and investigate a new universal pattern recognition
technique. For this purpose, we develop three different methods of varying levels of
sophistication. We employ the probabilistic neural network (PNN) as a classifier.
The paper is structured as follows. The first section is the present introduction,
followed by Section 2 on the employed methodology and Section 3 on the testing
datasets. Section 4 presents the obtained results accompanied by some discussion.
Section 5 concludes the paper.

2. Method

In the past twenty years, researchers investigated many methods for ECG arrhyth-
mia classification. However, the previously published methods dealt with only
certain specific arrhythmia types. Therefore, a universal classification method that
is capable of detecting and handling all kinds of arrhythmia is immensely needed.
With this purpose in mind, we present herein three methods, each employing the
concept of the wavelet percentage energy, earlier introduced in [22], for model-
ing almost all types of the known ECG signal clinical features. To calculate the
percentage of energy E averaged over all qth WT sub-signals uq(t), the following
equation is reproduced from [21,22]

E(S) = 100 ∗
N∑
q=1

(uq(t))
2
/N, (1)

N =
∑

(C2), (2)

where S is the signal and C is the wavelet decomposition vector [22]. For the sake
of investigation, the following three methods are studied:

1. Method of percentage energy of the wavelet packet (PEWP): In this method,
we extract the features by calculating the percentage of energy for the qth
sub-signal uq(t) of the WP tree, where the length of the feature vector is
dependent on the WP tree depth. Therefore, the decomposition wavelet
packet level has an immense effect on the classification system performance.
The resulting values are used as a feature vector for classification.
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(a) Method of percentage energy of the discrete wavelet transform (PEDW):
In this method, we calculate the DWT sub-signals for a certain wavelet
function for a given depth. The percentage of energy is calculated for
several equal frames for each DWT sub-signals, after calculating the
average value for each sub-signal. The resulting values are used as a
feature vector for classification.

(b) Method of percentage energy of WP of the second level of the DWT
(2SPED). In this method, we calculate the second approximation sub-
signal of the DWT. For the calculated DWT sub signal, we determine
the percentage energy of the WP decomposed from the DWT sub-signal.
The length of the feature vector is dependent on the chosen level of
the WP tree. The resulting values are used as a feature vector for
classification.

Despite the fact that we might currently find several improved versions of the
probabilistic neural network (PNN) that can be either more reasonable or have
noticeably better performance than the original version, we adopt the original PNN
as a classifier for simplicity of exposition. The construction of the used algorithm
is as follows:

Net = [T, SP, I], (3)

where T is the target that is given in the algorithm as a sequence of integers
denoting the number of classes, SP is the spread that depicts the standard deviation
used in the radial basis function and is usually given as the number 1, unless the
numerical data type requires another number, and I is the input feature matrix
that contains the training feature vectors as each column contains a feature vector
for one signal as follows:

I =


F11 F12 . . . F1Tr

F21 F22 . . . F2Tr

...
...

...
FN1 FN2 . . . FNTr

 , (4)

where Tr is the training vectors’ number and T is the target class vector:

P = [1, 2, . . . , T r]. (5)

3. Testing dataset

To test the proposed methods, a dataset of an ECG signal of specific disorders was
prepared. Nine ECG arrhythmias were extracted from the MIT-BIH arrhythmia
database, which is a set of Holter’s long-term recordings conducted between years
1975 and 1979 [20,23]. The MIT-BIH arrhythmia database consists of a randomly-
chosen sample of 23 ECG records (labeled by non-consecutive numbers from 100 to
124), supplemented by 25 ECG records (labeled by non-consecutive numbers from
200 to 234) selected to include less common but clinically significant arrhythmias
that would not be well-represented in a small random sample. The records are
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slightly over 30 minutes long and are digitized at a 360-Hz sampling frequency.
The subjects were 25 men and 22 women with the men aged 32 to 89 years, and
the women aged 23 to 89 years. The testing extracted signals were 10 seconds long,
taken from nine ECG arrhythmias. The nine arrhythmia types are shown in Fig. 1.
Each type of signal was extracted from several records as seen in Tab. I. The first
arrhythmia is Bradycardia (Br), which is the case of an ECG signal that contains
long R-R intervals. In other words, the Br signal is a slow ECG signal with the
Heart Rate (HR) being less than 60 beats/min. The Br signal occurs during sleep
or because of heart weakness. The second type is the second-degree block (SDB),
which occurs when the cardiac conduction system of atrial impulse through the

 

Figure 1. The nine ECG arrhythmia patterns contained in the testing database taken from the 

MIT‐BIH Database. The vertical axis represents the amplitude, where the units are in mV and 

can be managed dependent on the scale presented by the numbers from 1 to 2000. The 

horizontal scale represents the time duration that is dependent on the sampling frequency of 

360 Hz. So, the unit will be a second for each 360 samples. 

Table 1. The list of the nine classes contained in the testing database and the selected records 

of the MIT‐BIH Database. 

Type  Record  

Bradycardia  232 

  Second‐Degree Block  231 

Ventricular Tachycardia  106,200,203,205,210,213.214,215,217,221,223,233

Ventricular Trigemini  106,119,124,201,208,214,221,233 

Ventricular Bigeminy  106,119,200,207,213,217,223,228 

Atrial Fibrillation  201,202,203,210,217,219,221,222 

Normal Sinus Rhythm   100, 103 

APC  100,101,108,113,118,124,200,201,202,223,220,213

PVC  100,103,112,117,122 

Fig. 1 The nine ECG arrhythmia patterns contained in the testing database taken
from the MIT-BIH database. The vertical axis represents the amplitude, where
the units are in mV and can be managed dependent on the scale presented by the
numbers from 1 to 2000. The horizontal scale represents the time duration that is
dependent on the sampling frequency of 360Hz. So, the unit will be a second for
each 360 samples.
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atrial-ventricular (AV) node and the bundle of His is blocked or delayed. Patients
with the SDB disease may be asymptomatic, lightheadedness and syncope. The
third arrhythmia illustrated in Fig. 1 is Tachycardia (Tc), which is the ECG ar-
rhythmia of a very fast heart rate that reaches more than 100 beats/min. Mainly,
Tc may occur in some typical cases like in fear and during exercise. But in some
clinical cases, Tc could be very life threatening, mostly if left without treatment.
The fourth arrythmia is Ventricular Bigeminy (VB), which occurs when every nor-
mal beat is followed by a ventricular premature beat. The fifth one is Ventricular
Trigemini (VT), which happens when two normal beats are followed by one ven-
tricular premature beat. The sixth heart arrhythmia is the Atrial Fibrillation (AF)
that occurs when the heart’s electrical signal produces a quick contraction of the
upper chambers. In this case, the P wave of the electrocardiogram trace may not
appear. The AF arrhythmia may lead to a stroke, and in some cases, may cause
heart failure. The seventh one is the Normal Sinus Rhythm (NSR). The eighth and
ninth cases are the Atrial Premature Complex (APC) and the Premature Atrial
Contraction (PAC) that occur when one region in the atria makes a premature
beat before the sinoatrial node. On the ECG signal with a PAC arrhythmia, both
the T waves and the QRS complexes are seen as very different from their normal
readings.

Type Record

Bradycardia 232
Second-Degree Block 231
Ventricular Tachycardia 106,200,203,205,210,213.214,215,217,221,223,233
Ventricular Trigemini 106,119,124,201,208,214,221,233
Ventricular Bigeminy 106,119,200,207,213,217,223,228
Atrial Fibrillation 201,202,203,210,217,219,221,222
Normal Sinus Rhythm 100, 103
APC 100,101,108,113,118,124,200,201,202,223,220,213
PVC 100,103,112,117,122

Tab. I The list of the nine classes contained in the testing database and the selected
records of the MIT-BIH database.

4. Results and discussion

In this section, we investigate the performance of the three proposed methods over
the ECG signal dataset by testing a big number of arrhythmias. Before starting
our analysis, one question arises: What is the motivation behind tackling this
massive number of arrhythmia classes, instead of focusing on only one arrhythmia
or two arrhythmias as often happened in former research. In fact, the answer to
this question points out to the essence of our contribution and motivation behind
such sophisticated classification set-up. One of the most critical objectives here is
to find out a general and a universal algorithm for classification of almost all ECG

48



Daqrouq K. et al.: A universal ECG signal classification system using. . .

arrhythmia types. The investigation system pursued herein will consist of several
experiments for exploration of the proposed algorithm over the testing dataset.
The study will analyze the recognition rate as evidence about the wavelet function,
WT level, training/testing ratio, and the method consuming time. We investigate
the proposed methods by comparing their performance as measured by each of
these parameters.

The testing data was taken from different records. So, for each arrhythmia 30
signals were prepared. The signals as shown in Fig. 1 are chosen to have only one
type of the arrhythmias regardless of the object that the signal belongs to.

At the beginning of our work, the folders of the arrhythmias were prepared.
There are nine such folders with each one of them containing 30 different signals or
samples of one arrhythmia (.mat type files). The training and testing signals are
taken from these 30 signals. For example, the training/testing ratio can be 5/25,
15/15, 20/10, or 25/5. This means that the training data matrix I will have this
number of feature vectors for each arrhythmia. So if the ratio is 5/25, it means
5 feature vectors are used for each arrhythmia then the matrix I will have 5 × 9
columns. And then the remaining 25 signals are tested, and so on.

For testing the proposed methods by the testing dataset, we run the three
methods eight times, such that at each time; a different number of arrhythmias is
involved. In fact, the performance of the methods is determined for 2, 3, 4, 5, 6,
7, 8, and 9 classes of arrhythmia types separately, as is seen in Tab. II. As it was
mentioned before, the purpose of these experiments is to find out a universal system
for discrimination among various arrhythmia classes regardless of the numbers of
arrhythmias within each of these classes. Therefore, the system used herein is
a classification system and not a verification system that uses only two types of
classes; a positive class in which some arrhythmias are present, and a negative one,
in which all arrhythmias are absent.

At the beginning of our analysis, we used the PEWP method (WP at level 8) as
a reference to determine an appropriate wavelet function and an optimal wavelet
level. In Tab. II, we present the results of the PEWP performance for different
Daubechies wavelet functions. By studying the results tabulated therein, we can

Wav. Fun. Db1 Db2 Db3 Db4 Db5 Db6 Db7 Db10

Class No. 2 100 100 100 100 100 100 100 100
Class No. 3 93.33 93.33 90 96.66 100 96.66 96.66 93.33
Class No. 4 87.5 87.5 85 90 92.5 90 87.5 85
Class No. 5 80 80 74 76 80 78 72 74
Class No. 6 63.33 63.33 56.66 65 66.66 68.33 56.66 70
Class No. 7 68.57 68.57 62.85 70 71.42 71.42 60 74.28
Class No. 8 62.5 62.5 55 62.5 63.75 61.25 53.75 63.75
Class No. 9 58.88 58.88 56.66 63.33 63.33 58.88 53.33 62.22

Average 76.7638 76.7638 72.5212 77.9363 79.7075 78.0675 72.4875 77.8225

Tab. II Recognition rates [%] for PEWP versus different wavelet functions.
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notice that Daubechies function type Db5 has the best results compared with other
functions, with an average recognition rate that reaches 79.70%. One observation is
very critical here, namely, that the recognition rate of seven arrhythmias is 71.42%,
which is a high number indeed attesting to the success of our current investigation.
And that is repetitive for Db6 and Db10. The results in Tab. II are the basic
indication for choosing the wavelet function as Db5 for the rest of our experiments.

For evaluating the PEWP performance versus different WP levels, we run the
system eight times according to different numbers of arrhythmias. At each time,
different WP levels (4, 5, 6, 7, 8, and 9) were utilized, with the coefficients vector
length given as follows: 30, 52, 116, 244, 500, and 1012, respectively. The results
are reported in Tab. III. The best performance was achieved with level 8 where the
result was 79.70%, and we can see that the result for each iteration was significant.

WP level 4 5 6 7 8 9

Class No. 2 100 100 100 100 100 100
Class No. 3 93.33 96.66 100 96.67 100 93.33
Class No. 4 67.50 87.50 97.5 90 92.5 85
Class No. 5 60 68 72 74 80 70
Class No. 6 53.33 56.71 61.66 61.66 66.66 60
Class No. 7 55.71 55.71 67.14 65 71.42 61.42
Class No. 8 50 48.75 58.75 62.50 63.75 51.25
Class No. 9 45.55 43.33 55.55 61.11 63.33 48.88
Average 65.67 69.58 76.57 67.36 79.70 71.23

Tab. III Recognition rates for PEWP versus different wavelet levels.

In Tab. IV, the recognition rate for the PEWP, PEWD, and 2SPED methods
versus different Training/Testing ratios is investigated. For this purpose, ratios of
5/25, 15/15, 20/10, and 25/5 for the Training/Testing ratios were tested. We can
notice that PEWP and 2SPED have better results than PEWD for the smaller
training ratios 5/25 and 15/15, with averages of 40.58 and 69.11, respectively.
However, PEWD has better results with the larger training ratios of 20/10, and
25/5 with averages of 82.08% and 90.39%, respectively. The average for the 25/5
Training/Testing ratio is 90.39%, and the recognition rate for nine arrhythmias is
72.5%. In fact, these results are auspicious and favorable. However, the 2SPED
method is immensely competing with the PEWD one, where the average for the
25/5 Training/Testing ratio is 88.94%, and the recognition rate for nine arrhyth-
mias is again 72.5%. By contrast, the PEWP method has corresponding values of
only 79.16% and 50%, respectively.

The elapsed time calculated for the processing of the PEWP, PEWD, and
2SPED methods over the whole loop of the eight different arrhythmia classes
(shown in Tab. IV) is investigated in Tab. V. For fair comparison, the three meth-
ods were coded similarly in MATLAB, and their codes were implemented on the
same platform. We can see that the PEWP method has the best result, while
PEWD comes second, and 2SPED ranks third. The reason behind this order is the
difference in the level of sophistication for the three methods.
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Training/Testing 5/25 15/15

PEWP PEDW 2SPED PEWP PEDW 2SPED

Class No. 2 96 51.72 93.10 100 80 96.66
Class No. 3 84 41.37 65.51 97.77 86.66 93.33
Class No. 4 76 39.65 60.34 86.66 80 88.33
Class No. 5 64.8 38.62 46.89 70.66 57.33 69.33
Class No. 7 53.71 39.40 40.39 56.19 59.04 65.71
Class No. 9 45 32.75 34.48 50.83 51.66 62.5

Average 69.91 40.58 56.78 76.10 69.11 79.31

Training/Testing 20/10 25/5

PEWP PEDW 2SPED PEWP PEDW 2SPED

Class No. 2 100 100 100 100 100 100
Class No. 3 96.66 100 100 100 100 100
Class No. 4 87.5 90 97.5 85 95 100
Class No. 5 68 70 65 80 92 84
Class No. 7 55.71 70 70 60 82.85 77.14
Class No. 9 48.75 62.5 65 50 72.5 72.5

Average 75.04 82.08 82.91 79.16 90.39 88.94

Tab. IV Recognition rates for PEWP, PEWD, and 2SPED versus different Train-
ing/Testing ratios.

Method PEWP PEDW 2SPED

Elapsed time 55.79 seconds 83.66 seconds 98.48 seconds

Tab. V Elapsed time calculated for the processing of PEWP, PEWD, and 2SPED
over the whole loop of the eight different arrhythmia classes number shown in
Tab. III.

The average for the PEWP method over the three Training/Testing ratios
shown in Tab. IV is 75.05%, for the PEWD method is 70.48%, and for the 2SPED
method is 76.99%. Tab. V shows the elapsed time in seconds calculated for the
processing of PEWP, PEWD, and 2SPED over the whole loop of the eight differ-
ent arrhythmia classes shown in Tab. III. The results in the table nominate the
PEWP method to be the superior method among the three used methods in terms
of the consumed time. Meanwhile, the 2SPED method has better results in term
of recognition rate with an average that reached 76.99%. For fair comparison,
the three methods were coded similarly in MATLAB 2015a, and their codes were
implemented on the same platform. The hardware used was a Surface Pro 1796
laptop with processor Intel(R) Core(TM) i7-7660U CPU @ 2.50GHz, 2496MHz.

In Tab. VI, we compare our proposed method 2SPED to other published meth-
ods that are based on the wavelet transforms, such as the method of the average
power spectrum density of DWT (WPSD) [19], the method of Shannon entropy
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with a wavelet packet (WSHE) [24], the method of log energy entropy with a
wavelet packet (WLEE) [21] and the method of sure entropy with a wavelet packet
(WSE) [22]. An average recognition rate of 76.99% is achieved by our 2SPED
method, whereas the best of its competing methods in Tab. VI (the WPSD method)
reached only an average recognition rate of 61.03%.

Method Recognition Rate [%]

WPSD 61.03
WSHE 41.34
2SPED 76.99
WSE 58.10

Tab. VI Results of recognition rates for comparison.

Our preliminary investigation of classification of error herein simply dealt collec-
tively with error per se, without differentiation between the well-known two types
of errors. One type of error, called error of type I (error of the first kind or error
of false positives) occurs when a healthy person is mistakenly predicted to be a
patient inflicted with a specific cardiovascular abnormality or a specific set of ab-
normalities. Another type of error, called error of type II (error of the second kind
or error of false negatives) occurs when a patient inflicted with a specific cardiovas-
cular abnormality or a specific set of abnormalities is mistakenly deemed to be a
healthy person [25]. For the problems of heart diseases considered herein, the error
of the second type should be given more attention, since it is of more serious and
dreadful consequences and ramifications than the error of the first kind. For future
work, we strive to treat the problem of ECG-signal classification via a contingency
or confusion matrix comprising true positives, false positives, false negatives, and
true negatives. Based on this ubiquities matrix, we might derive sets of indicators
such as sensitivity, specificity and predictive values, and finally combine these into
single metrics such as the Mathew correlation coefficient (MCC), or other means
of informedness and markedness [26].

5. Conclusions

In this study, a universal recognition system has been proposed for ECG signal
arrhythmia recognition. The challenging task of the present system is to test the
possibility to distinguish between a big number of different types of arrhythmias
at the same time, which is increased herein to reach the ultimate number of nine.
Unlike traditionally known methods that can be used for the classification of just
one or two types of arrhythmias only, the proposed study investigates the classifi-
cation of nine different types of heart disorders with relatively good results. Three
wavelets transform-based methods have been investigated by conducting different
experimenting with various concepts such as the wavelet functions, the wavelet
level, the training/testing systems, and the elapsed time. The results showed that
these three methods can distinguish between the nine arrhythmias in a good recog-

52



Daqrouq K. et al.: A universal ECG signal classification system using. . .

nition rate on the average. The average for the PEWP method over the three
training/testing systems is 75.05%, for the PEWD method is 70.48%, and for the
2SPED is 76.99%. The elapsed time in seconds calculated for the processing of
PEWP, PEWD, and 2SPED over the whole loop of the eight different arrhythmia
classes nominates the PEWP method to be the superior method among the three
methods in terms of time-consumption. On the other hand, the 2SPED method
has better results in terms of the recognition rate.

A natural sequel of the present work is to compare the performance of our
automated method to a manual one relying on human judgement. Since we are
unaware of any former experiments in which human experts attempted to handle
more than two arrhythmias simultaneously, we have to arrange for the conduction
of such experiments ourselves. We believe that it is not a really easy task to
locate experienced medical personnel who can excel in classifying classes of multiple
arrhythmias. Therefore, we preferred to defer to future work the comparison of
the performance of our automated method to the manual one relying on human
expertise.
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