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Abstract: The intelligent diagnosis of cardiovascular diseases is a topic of great
interest. Many electrocardiogram (ECG) recognition technologies have emerged,
but most of them have low recognition accuracy and poor clinical application. To
improve the accuracy of ECG classification, this paper proposes a multi-channel
neural network framework. Concretely, a multi-channel feature extractor is con-
structed by using four types of filters, which are weighted according to their impor-
tance, as measured by kurtosis. A bidirectional long short-term memory (BLSTM)
network structure based on attention mechanism is constructed, and the extracted
features are taken as the input of the network, and the algorithm is optimized
by attention mechanism. An experiment conducted on the MIT-BIH arrhythmia
database shows that the proposed algorithm obtains excellent results, with 99.20%
specificity, 99.87% sensitivity, and 99.89% accuracy. Therefore, the algorithm is
practical and effective in the clinical diagnosis of cardiovascular diseases.
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1. Introduction

Cardiovascular diseases have become common, especially among the elderly (over
60 years of age). These diseases bring great harm, and may even cause sudden
death. Among them, cardiovascular diseases represented by arrhythmia are receiv-
ing increased attention from experts and scholars. The electrocardiogram (ECG)
can record the electrical signal activity of the body surface, thereby reflecting heart
activity, and is an important tool for clinical analysis and diagnosis of arrhythmia
diseases [1, 2].

Doctors have scarce time to examine the increasing number of ECGs. Therefore,
intelligent diagnosis technology of ECGs is necessary. The intelligent diagnosis of
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ECGs has three stages: QRS detection, feature extraction, and classification. The
normal ECGs are composed of P waves, QRS complex waves, T waves, and U waves.
The QRS complex wave is the most intense amplitude variation band in an ECG,
and it contains very obvious but important information. QRS detection locates
QRS waves from ECG records over a long period of time. Robust QRS detection is
helpful for subsequent classification. There have been many studies on QRS wave
detection technology. The classic Pan-Tompkins algorithm [3] had a QRS detection
rate reaching 99.3% on the MIT-BIH arrhythmia database. Zhang et al. [4] used a
Kalman filter to detect QRS waves, with 99.30% detection sensitivity and 99.31%
positive prediction.

Feature extraction and classification are also important steps in the intelligent
diagnosis of arrhythmia. There are two categories: the traditional method is often
used for feature extraction, and machine learning classifiers are used to classify
these features. Commonly used feature extraction methods include threshold-based
methods [5], wavelet transform-based methods [6], digital filter-based methods [7,
8], higher order cumulant methods [9]. Commonly used classification methods
include support vector machine (SVM) [10], extreme learning machine (ELM) [11]
and random forest (RF) [12]. However, this type of method needs much manual
intervention, and has poor classification results.

The second kind method is gradually evolving with the development of deep
learning, whose methods in ECG intelligent diagnosis have been researched and
have shown good results. Commonly used deep neural networks include convo-
lutional neural networks (CNNs) [?] and recurrent neural networks (RNNs) [14].
Acharya et al. [15] used CNN to identify five types of arrhythmia with high accu-
racy of 94.03%. Chauhan et al. [16] analyzed an ECG signal by LSTM and realized
96.45% classification accuracy on the MIT-BIH arrhythmia database. Yildirm [17]
used a wavelet transform (WT) to analyze an ECG signal before input to LSTM,
which further improved classification accuracy to 99.32%. Zhou et al. [18] intro-
duced an attention mechanism (AM) to BLSTM and proved that it can improve
the feature extraction ability of LSTM. Although good results have been achieved,
deep learning methods have their disadvantages. They usually converge slowly, and
easily fall into local optima. To train a deep neural network can take several days
in real applications.

In our previous study [19], a hybrid method (ELM-LRF-BLSTM) was pro-
posed, combining local receptive field based extreme learning machine (ELM-LRF)
and bidirectional long short term memory network (BLSTM). This algorithm uses
stacked convolution and pooling layers to extract features for use as input to
BLSTM to learn the sequence representation and output the classification results.
However, this algorithm uses a single random filter, and multiple filters have been
proved [20] to improve the feature learning ability of the network. Therefore, this
paper constructs a multi-channel feature extractor through different types of fil-
ters, which are weighted according to their importance, as measured by kurtosis.
Combining the feature extractor with BLSTM and attention mechanism (AM),
an algorithm called LSTM and AM-based multi-channel weighted ELM (MCW-
CELM-LSTM-AM) is proposed. Applying this network to ECG classification re-
markably improves the ability of feature extraction and classification.
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We summarize the main contributions of this work as follows:

1) Four filters are used to extract features, and the weight of each filter is cal-
culated based on kurtosis. The adaptive weighted combination of different
filters is realized. Multiple filters can extract various features, so MCW-
CELM-LSTM-AM can fully extract the implicit information of ECG signals.

2) MCW-CELM-LSTM-AM combines a BLSTM network with AM to mine
the deep temporal information of the signal, and further enhances feature-
extraction ability. Experiments conducted on the MIT-BIH Arrhythmia
database demonstrate the algorithm’s good performance.

The rest of this paper is organized as follows. Related work is reviewed in Section 2.
The proposed MCW-CELM-LSTM-AM algorithm is described in Section 3. Ex-
periments are discussed in Section 4. Section 5 provides conclusions and looks into
the future.

2. Related work

We discuss related work on the convolutional extreme learning machine, bidirec-
tional long short-term memory network, and attention mechanism.

2.1 Convolutional extreme learning machine

Convolutional extreme learning machine (CELM) is the general name of a class
of algorithms, which originated from the algorithm of local receptive fields-based
extreme learning machine (ELM-LRF) proposed by Huang et al. [21]. The ELM-
LRF is composed of feature extraction and classification stages. The first stage uses
orthogonal random convolution filters and pooling operations to achieve feature
extraction, and the second stage uses least squares to calculate the output weights.
This neural network achieved higher accuracy with a shorter training time than
existing methods when applied to the NORB and MINIST datasets.

Experts and scholars have proved the good performance of ELM-LRF and have
proposed a series of improved models, which are collectively known as CELM. Pang
et al. [22] propose a deep extreme learning machine for the recognition of hand-
written digits. This work is pioneer in evaluating the depth increase in CELM
networks. The authors found that the ideal depth may vary with the dataset.
Ding et al. [23] proposed CKELM, which mined feature information at different
levels by continuous stacking of convolution and pooling layers, and evaluated the
effect of network depth on performance. The above studies focused on a single
random filter, but multiple filters enhance identification ability and improve gen-
eralization performance. McDonnell et al. [20] proposed a shallow convolutional
fast neural network for image classification tasks based on random filters, using
multiple filters, including patch, heuristic, and transferred learning filters, to im-
prove recognition accuracy. Dos Santos et al. [24] realized a simple combination of
random, patch, PCA, and Gabor filters, and proved that different types of filters
can extract multifarious features.
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Previous studies failed to statistically compare the importance of different types
of convolution filters. Four types of filters are used in this paper to construct a
multi-channel convolution layer. The filter weight in each channel is calculated
based on kurtosis, and the adaptive weighted combination of filters is realized.

2.2 Bidirectional long short-term memory network

The long short-term memory (LSTM) network was proposed by Hochreiter and
Schmid-Huber in 1997 [25]. It is an improved form of RNN, which solves its problem
of long-term dependence.

It improves upon RNN by solving its problem of long-term dependence. LSTM
introduces gating units to deal with the problems of memory, forgetting, and the
input and output degrees of the memory unit, as shown in Fig. 1. The basic
memory unit consists of one memory cell and three gating units. The memory cell
stores the current network state. The three gating units are the input, output, and
forgetting gates, which control the information flow in the memory block. In the
forward propagation process, the input gate controls the information flow into the
memory cell, and the output gate controls the information flow from the memory
cell to the other structural units of the network. During backpropagation, the input
gate controls the iteration error flowing out of the memory cell, and the output
gate controls the iteration error flowing into the memory cell. The forgetting gate
controls the internal circulation of memory cells, deciding whether to choose or
forget information.

Memory Unit

1, , b,t tC x W

×

tanh

+

tanhCell ×

×

  F
o

rg
e
t 

g
a

te

In
p

u
t 

g
a

te

O
u

tp
u

t 
g

a
te

tf

th

to

ti

tC

1th 

Fig. 1 Structure of memory unit.

Through this gating mechanism, the LSTM network can control the information
flow in the unit, enabling it to preserve long-term information. That is, the LSTM
network has the “memory” ability, which can eliminate external interference with
the internal gradient in the training process, and avoid gradient disappearance and
explosion.
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Let the input vector of a single LSTM memory block be xt. Then the update
process of long-term memory unit ct can be expressed as

ft = σ (Wf [xt, ht−1] + bf ) , (1)

it = σ (Wi [xt, ht−1] + bi) , (2)

gt = tanh (Wg [xt, ht−1] + bg) , (3)

ct = ft ⊙ ct−1 + it ⊙ gt. (4)

The update process of short-term memory unit is

ot = σ (Wo [xt, ht−1] + bo) , (5)

ht = ot ⊙ tanh (ct) , (6)

where ft, it, ot and ct respectively, are the outputs of the forgetting, input, and
output gates and cell state at time t. Wf , Wi and Wo are the weights of the
forgetting, input, and output gates, respectively; bf , bi and bo are the corresponding
bases; ct is the cell state at time t. σ is the sigmoid function; tanh is the hyperbolic
tangent function and ⊙ is the Hadamard product.

The connection between the hidden layers of the LSTM network is unidirec-
tional, i.e., the cell state of the current moment depends on the input of the cur-
rent moment and the hidden layer output of historical moments. However, in some
specific tasks, the cell state at the present moment is also related to the state at
a future time. Therefore, a bidirectional LSTM (BLSTM) network is proposed,
whose structure is shown in Fig. 2. BLSTM takes into account both historical and
future information, which can make up for the deficiency of LSTM.
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Fig. 2 Structure of BLSTM.
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As can be seen from Fig. 2, for the each input xt, two LSTM networks in
opposite directions will be connected to it, and the output at the current moment is
a combination of two LSTM networks, i.e., the forward and reverse LSTM networks
jointly determine the output at the current moment. The formulas of BLSTM are

ht = ot ⊙ tanh (ft ⊙ ct−1 + it ⊙ gt) , (7)

ht
′ = ot

′ ⊙ tanh
(
ft

′ ⊙ v′t+1 + it
′ ⊙ g′t

)
, (8)

yt = [ht, h
′
t] , (9)

where ht and ht
′ arethe hidden layer outputs of the forward and reverse LSTM,

respectively, as determined by Eq. (7)-(9). BLSTM can be regarded as forward
and reverse LSTMs, which respectively learn the forward and backward features
of the input [26]. Both LSTM networks are connected to an output layer that can
only be updated if both forward and reverse features are introduced. Therefore,
the output at the current time contains past and future information.

2.3 Attention mechanism

The attention mechanism (AM) was proposed by Bahdanau in 2014 [27]. It can
selectively allocate attention according to specific tasks, strengthen the correlation
between sampling points, and improve the ability of feature expression and recog-
nition accuracy. In this paper, the AM is introduced into BLSTM. The weight of
the feature vectors of the hidden layer is calculated and normalized according to
the importance degree, and the attention resources are allocated according to the
weight. The calculation process of AM is as follows.

1) Calculate the weight. Common methods to calculate the weights of feature
vectors include the dot product, addition, and splicing. The weights of hidden
layer output ht at moment t can be expressed as

at = score (ht) . (10)

2) Normalize the weights. The softmax function is used to normalize the weights
to [0, 1], so as to judge the importance of the features. If the weight of moment
t moment is 1, then the features at this moment are important, and are given
a large weight. If the weight of the moment t is 0, then the characteristic
information at this moment is not important, and it receives a small weight.
The normalized weight is calculated as

pt = exp (at) /

n∑
t=1

at. (11)

3) Attention resources are allocated according to weights. We multiply the
hidden layer output by the weights of attention to realize the allocation of
attention resources. The weights of features differ, and the weights of more
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important features are larger, so they are allocated more attention resources.
The allocated attention resources yt can be expressed as

yt =

n∑
i=1

ptht. (12)

3. Methodology

CELM can be used for fast classification tasks, but its performance in processing
complex signals is limited because only random filters are used. To solve this
problem, this paper proposes MCW-CELM, which uses four types of filters to
extract features, and the weight of each filter is calculated based on kurtosis. MCW-
CELM realize adaptive weighted combination of different filters and is capable of
extracting various features. BLSTM and AM are existing methods, and previous
study has proved that the hybrid model (called BLSTM-AM) of the two methods
has better performance [28]. To get better classification accuracy, MCW-CELM-
LSTM-AM is proposed by combining the superiority of MCW-CELM and BLSTM-
AM.

In this section, we introduce the proposed MCW-CELM-LSTM-AM algorithm.
Four convolutional filters are discussed in Section 3.1. We explain the filter weight-
ing process in Section 3.2, and the MCW-CELM-LSTM-AM structure in Section
3.3. Section 3.4 describes the loss and training algorithm.

3.1 Four filters

The filter can be regarded as a weight matrix to convolve the input data. Huang
achieved good classification results on the NORB and MNIST datasets. How-
ever, random filters have been shown to degrade feature-extraction ability in other
datasets, perhaps because of randomness of the weight matrix [29, 30]. We will
improve upon this with four filters for feature extraction, as described below.

1) Random filter

Each point in a random filter is randomly selected from a continuous proba-
bility density distribution and orthogonalized. Feature maps in a layer have
different input weights.

2) PCA filter

The PCA filter design comes from principal component analysis (PCA), as
follows. If the input sample is X, the filter size is k1 × k2, and the number of
output mappings is K, the filter matrix is expressed as:

WPCA
k = matk1,k2

(
qk
(
XXT

))
∈ Rk1×k2 , k = 1, 2, . . . ,K,

where WPCA
k is the weight matrix of the kth feature graph, and matk1,k2

(v)
can convert vector v ∈ Rk1k2 to matrix W ∈ Rk1×k2 . qk

(
XXT

)
represents

the kth principal component vector.
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3) Patch filter

Patch filters select sub-regions from the original input [20]. We randomly
select signal fragments, whose elements are normalized and used as the patch
filter matrix. It can be expressed as

WPatch
k = norm(select(X, k1 × k2)) ∈ Rk1×k2 , k = 1, 2, . . . ,K,

where select(X, k1 × k2) indicates that a matrix of size k1 × k2 is randomly
selected from the sample X. norm(·) represents normalization, which is Z-
score method in this paper.

4) WT filter

The WT filter is inspired by the wavelet transform (WT). It is useful when an-
alyzing nonstationary time series. The input signal passes through high- and
low-pass filters to obtain detail and approximate coefficients. The obtained
approximate coefficients are filtered to obtain the second-layer component.
This process is repeated until a specified level is reached, so as to obtain fea-
tures that contain important information about the input signal. The detail
coefficients represent frequency-related detail characteristics, and are selected
as the values of the weight matrix of the WT filter.

3.2 Multi-channel weighting

The multi-channel weighting (MCW) refers to the process of weighting multiple
filters based on kurtosis and feature fusion. Kurtosis is a statistic to reflect the
property of a signal, which is particularly sensitive to impact signal and can reflect
the strength of the impact feature. Kurtosis is a normalized fourth-order central
moment, calculated as follows. For continuous variables,

K =

∫ +∞
−∞ [x(t)− x̄]

4
p(x)dx

σ4
(13)

and for discrete variables,

K =
1

N

N∑
i=1

(
xi − x̄

σt

)4

, (14)

where x(t) and xi represent signal values at time t and the ith sampling, respec-
tively. x̄ is the mean value, p(x) is the probability density function, σ is the
standard deviation, N is the sample length.

The weights of each channel are calculated according to the kurtosis. Suppose
there are m channels, and Ki represent the kurtosis value of the characteristic
signal on ith (i ≤ m) channel. The weights αi can be expressed as

αi = Ki/

(
m∑
i=1

Ki

)
. (15)
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3.3 Network architecture

Filters can extract different features of various importance. We use multiple filters
to adaptively extract features, and combine LSTM and an attention mechanism
in the proposed MCW-CELM-LSTM-AM algorithm. The algorithm uses multiple
filters to construct a multi-channel feature extractor, and filters are weighted ac-
cording to importance. We use random, PCA, patch, and WT filters to extract
discriminative features, which are used as the input of BLSTM to learn and classify
the sequence features. We introduce the AM between the hidden and output layers
of BLSTM. The flowchart of the MCW-CELM-LSTM-AM network can be seen in
Fig. 3.
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Fig. 3 Flowchart of MCW-CELM-LSTM-AM network.

3.4 Loss and training algorithm

The loss function is obtained by calculating the cross-entropy between the network
output and the actual labels,

Loss = −
∑
i

y′i log (yi) , (16)

where y′i represents the real labels of ith sample, and yi is the output of the ith
sample.

In the backpropagation stage, the Adam algorithm is used to optimize the
parameters, and the learning rate of each parameter is dynamically adjusted using
the first and second moment estimation of parameters, so that the weight is updated
to obtain the optimal solution.
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4. Experiment

4.1 Data description and preprocessing

We evaluated the performance of the proposed network through experiments on
the commonly used MIT-BIH Arrhythmia (MIT-BIH-AR) Database [31], which
consists of 48 dual-lead ECG records, each containing more than 30 minutes of
ECG data. ECG records are taken from 47 subjects in patients at Beth Israel
Hospital in Boston. The subjects include 25 men and 22 women aged between
32 and 89. Each record has been annotated by cardiovascular specialists in units
of heartbeats. Most of the existing comparative studies have used only five types
of ECGs. To facilitate comparison with existing studies, five types of ECGs from
different records in the MIT-BIH-AR database are used in this study. The five
ECG types are normal sinus rhythm (NSR), left bundle branch block (LBBB),
right bundle branch block (RBBB), ventricular premature contraction (VPC), and
atrial premature beat (APB). In Fig. 4, the waveforms of the beat types used in
the study are given.
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Fig. 4 Waveforms of five different heartbeat types.

Segmented signals from these beat types are used for a period that includes
250 samples. The records were preprocessed as follows before being fed into the
network.

1) Use the Pan-Tompkins algorithm [3] to locate the R peak, and select ECG of
30 millisecond before and after R peak, with a total of 1 second, as a complete
heartbeat cycle. Subsample the data to 250Hz.
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2) Normalize the heartbeat data x by

x̄ =
x− xmin

xmax − xmin
, (17)

where xmin and xmax represent the maximum and minimum values of each
sample, respectively.

3) Divide all data into training and testing sets at a 4:1 ratio. The number of
heartbeats of each type in the training and testing sets are shown in Tab. I.

Beat Types Number of training set Number of testing set Total

NSR 59970 14992 74962
LBBB 6454 1614 8068
RBBB 5803 1451 7254
VPC 5627 1407 7034
APB 2036 509 2545
Total 70890 19973 99863

Tab. I Number of heartbeats in training and testing sets.

4.2 Network structure design and parameter setting

The network structure was designed as shown in Tab. II.
The other parameters were set as follows. The initial learning rate was set to

0.01, the optimizer was selected as Adam, the batch size was 128, and number of
iterations was 50.

We calculated the kurtosis values of the MIT-BIH-AR data according to Eq. (14),
and then calculated the weights of each channel according to Eq. (15). The calcu-
lation results are shown in Tab. III

5. Experimental Results and analysis

5.1 Experimental Results

Fig. 5 shows the loss curve of MCW-CELM-LSTM-AM during training process.
As can be seen from Fig. 5, the loss values of MCW-CELM-LSTM-AM on the

MIT-BIH-AR database decrease with the increase of iterations. After about 30
iterations, the algorithm tends to be stable and the loss value is close to zero.
Tab. IV shows the confusion matrix of MCW-CELM-LSTM-AM on the testing
set, where the vertical direction represents the true label of the sample and the
horizontal direction represents the predicted label.

The classification results can be seen from Tab. IV. There were 14992 NSR sam-
ples, all but one correctly classified. The recognition accuracy of the NSR category
reached 99.99%. The recognition accuracies of LBBB, RBBB, VPC and APB are
99.81%, 99.72%, 98.64% and 98.23% respectively. Among all categories, 19972
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Number Layer Name Parameters Output Size

0 Input – 250× 1

1 Convolution layer 1

Random filter 4@17× 1
PCA filter 4@17× 1
Patch filter 4@17× 1
WT filter 4@17× 1

4× 234× 4

2 Pooling layer 1 2 4× 117× 4

3 Convolution layer 2

Random filter 8@6× 1
PCA filter 8@6× 1
Patch filter 8@6× 1
WT filter 8@6× 1

4× 112× 8

4 Pooling layer 2 2 4× 56× 8

5 Convolution layer 3

Random filter 3@5× 1
PCA filter 3@5× 1
Patch filter 3@5× 1
WT filter 3@5× 1

4× 52× 3

6 pooling layer 3 2 4× 26× 3
7 Weighting – 4× 78× 1
8 BLSTM 64 Unit 1× 128
9 BLSTM 64 Unit 1× 128
10 Attention – 128× 1
11 Dense – 5

Tab. II Network structure design of MCW-CELM-LSTM-AM.

Kurtosis values channel 1 channel 2 channel 3

Kurtosis K1 ≈ 3.77 K2 ≈ 3.56 K3 ≈ 4.11 K4 ≈ 7.00
Weights α1 ≈ 0.20 α2 ≈ 0.19 α3 ≈ 0.22 α4 ≈ 0.38

Tab. III Kurtosis values and weights of each channel.

NSR LBBB RBBB VPC APB

NSR 14991 0 1 0 0
LBBB 2 1611 0 0 1
RBBB 1 2 1447 0 1
VPC 2 1 0 1402 2
APB 6 0 2 1 500

Tab. IV Confusion matrix of MCW-CELM-LSTM-AM.

samples were collected, and 19551 correctly classified. The average recognition
accuracy of MCW-CELM-LSTM-AM on the MIT-BIH-AR database was 99.89%.

We also conducted experiments with single filters, i.e., the PCA, patch, and
WT filters in the convolution stage. The loss curves based on single filters are
shown in Fig. 6.
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Fig. 6 Loss curve of MCW-CELM-LSTM-AM based on single filter.
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It can be seen from Fig. 6, the loss function curves based on different filters all
decrease with increasing iterations. However, compared to MCW-CELM-LSTM-
AM, the single filter-based algorithm has a slower convergence speed and larger
final value. Experimental results of MCW-CELM-LSTM-AM and single filter -
based algorithms are shown in Fig. 7.

NSR LBBB RBBB VPC APB
Averag

e

Random filter 99.86% 99.19% 98.76% 98.51% 97.45% 99.57%

PCA filter 99.87% 99.19% 99.24% 99.15% 98.62% 99.68%

Patch filter 99.56% 97.89% 97.66% 97.94% 97.45% 99.12%

WT filter 99.43% 97.71% 96.14% 97.73% 97.05% 98.87%

AFLRF-BLSTM-Attention 99.99% 99.81% 99.72% 98.64% 98.23% 99.89%
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Fig. 7 Classification accuracy based on different filters on MIT-BIH-AR database.

To evaluate the generalization performance of the proposed algorithm, we con-
ducted comparative experiments of CELM (using only random filters), BLSTM,
CELM-BLSTM (only random filters), CELM-BLSTM-AM (only random filters),
and MCW-CELM-LSTM-AM. The specificity, sensitivity, and accuracy of these
algorithms are shown in Tab. V.

Algorithm Specificity [%] Sensitivity [%] Accuracy [%]

CELM(random filter) 89.64 92.71 93.02
BLSTM 92.25 96.45 97.26

CELM-BLSTM 92.72 99.30 99.32
CELM-BLSTM-AM 99.20 99.51 99.57

MCW-CELM-LSTM-AM 99.20 99.87 99.89

Tab. V Performance of different algorithms.

From Tab. V, the specificity, sensitivity, and accuracy of CELM-BLSTM are
92.72%, 99.30%, and 99.32%, respectively, better than those of the single CELM
or BLSTM algorithm. This is because CELM-BLSTM combines the advantages of
CELM and BLSTM, thereby improving feature-extraction and classification capa-
bilities. CELM-BLSTM-AM shows further improvements, with 99.20% specificity,
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99.51% sensitivity, and 99.57% accuracy. This illustrates the necessity of AM.
Compared to CELM-BLSTM, the specificity of CELM-BLSTM-AM is greatly im-
proved, which shows its improved ability in diagnosing disease-free patient. The
specificity, sensitivity, and accuracy of CELM-BLSTM-AM reach 99.20%, 99.87%,
and 99.89%, respectively. This is because the use of four types of filters enhances
feature-extraction ability, and discriminative features are fully extracted.

5.2 Discussion

Feature extraction is an important step in classification, whose quality can greatly
affect its results. We proposed the MCW-CELM-LSTM-AM algorithm, using four
types of filters (random, PCA, patch, WT) to construct a multi-channel feature ex-
tractor, so that various local spatial features were fully extracted. The introduction
of kurtosis realized the adaptive combination of filters of different types according
to their importance degree, to further improve the feature-extraction capability.

BLSTM can consider long-time dependence and analyze the influence of histor-
ical and future information on the current state. The combination of CELM and
BLSTM is necessary to learn local spatial and temporal characteristics. The intro-
duction of an attention mechanism strengthens the correlation between sampling
points, allocates limited attention resources to important features, and further im-
proves feature-extraction ability.

Experiments on the MIT-BIH arrhythmia database demonstrated the algo-
rithm’s high recognition accuracy. The algorithm was compared to CELM, BLSTM,
CLEM-BLSTM, and CELM-BLSTM-AM, and was shown to have higher recogni-
tion accuracy. The combination of CELM, BLSTM, and AM can improve feature-
extraction and classification ability.

To better evaluate the performance of the proposed algorithm, we compared it
to several current algorithms, with results as shown in Tab. VI.

Literature Methods Accuracy [%]

Chauhan et al. (2015) [16] LSTM 96.45
Kiranyaz et al. (2016) [32] 1D-CNN 99.00
Acharya et al. (2017) [15] CNN 94.03
Sahoo et al. (2017) [33] DWT + SVM 98.39
Yang et al. (2018) [34] PCANet + SVM 97.08
Shu et al. (2018) [35] CNN + LSTM 98.10
Yildirim et al. (2020) [17] DWT + BLSTM 99.39
This paper MCW-CELM-LSTM-AM 99.89

Tab. VI Comparison results with the State-of-the-art.

As can be seen from Tab. VI, MCW-CELM-LSTM-AM has higher recognition
accuracy than the other methods, which demonstrates its competitiveness and
practicability. The superiority of the proposed algorithm is summarized as follows:

1) The algorithm can extract a variety of discriminative features through adap-
tive combination of filters.
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2) The proposed algorithm is fully automatic and does not require denoising or
manual feature extraction.

The algorithm has some potential limitations:

1) The algorithm is based on the premise that there is only one label per heart-
beat.

2) This study only uses five types of ECGs for training and testing to compare
with the existing literature. In addition, the number of other types of ECG
samples in the MIT-BIH-AR database is too small to carry out corresponding
training and testing. It has not been proved whether the model can be used
in other types of ECGs. We will explore the application of this algorithm to
multi-classification problems in future work.

6. Conclusion

We proposed a multi-channel neural network algorithm, MCW-CELM-LSTM-AM.
A multi-channel feature extractor was constructed using four filters (random, patch,
PCA, WT) to extract spatiotemporal features of the signals. To measure the im-
portance of the filter, it was weighted according to kurtosis, so as to realize an
adaptive weighted combination of filters. The extracted features were used as the
input of a BLSTM layer to learn the temporal features of the sequences. An atten-
tion mechanism further optimized the algorithm. Output categories were obtained
by a softmax function. The proposed algorithm was used for ECG classification
tasks, with excellent results of 99.20% specificity, 99.87% sensitivity, and 99.89%
accuracy. The recognition accuracy of this algorithm is higher than that of some
current algorithms.

The next step of our research will include the suppression and removal of noise
in ECG to further improve classification accuracy. We will further explore the
possibilities of deep-learning methods in the field of medical diagnosis to aid in the
development of intelligent healthcare.
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