
AN IMPROVED CLASSIFIER AND
TRANSLITERATOR OF HAND-WRITTEN

PALMYRENE LETTERS TO LATIN

A. Hamplová∗, D. Franc†, A. Veselý‡,

Abstract: This article presents the problem of improving the classifier of hand-
written letters from historical alphabets, using letter classification algorithms and
transliterating them to Latin. We apply it on Palmyrene alphabet, which is a
complex alphabet with letters, some of which are very similar to each other. We
created a mobile application for Palmyrene alphabet that is able to transliterate
hand-written letters or letters that are given as photograph images. At first, the
core of the application was based on MobileNet, but the classification results were
not suitable enough. In this article, we suggest an improved, better performing con-
volutional neural network architecture for hand-written letter classifier used in our
mobile application. Our suggested new convolutional neural network architecture
shows an improvement in accuracy from 0.6893 to 0.9821 by 142% for hand-written
model in comparison with the original MobileNet. Future plans are to improve the
photographic model as well.

Key words: artificial intelligence, classification, historical alphabets, mobilenet, com-
puter vision

Received: February 25, 2022 DOI: 10.14311/NNW.2022.32.011
Revised and accepted: August 30, 2022

1. Introduction

1.1 Historical alphabet digitization including Palmyrene

Many researches are focused on character recognition of letters from historical
alphabets. These include Persian [5], Bangladeshi [3] and cuneiform, which is
transliterated by hand [19] and photos of these transliterations are classified.

Until recently, there was no Palmyrene transliteration available. There is a
large number of Palmyrene Aramaic memorabilia, which is written in Palmyrene
alphabet. It is similar to classic Aramaic with some differences in the alphabet and
dialect. This dialect was used in western parts of Syria, and classic Aramaic was

∗Adéla Hamplová; Czech University of Life Sciences in Prague, PEF KII, Kamýcká 129, CZ-
165 00, Praha 6 – Suchdol, Czech Republic, E-mail: hamplova@pef.czu.cz

†David Franc – Corresponding author; Czech University of Life Sciences in Prague, PEF KII,
Kamýcká 129, CZ-165 00, Praha 6 – Suchdol, Czech Republic, E-mail: francd@pef.czu.cz

‡Arnošt Veselý – Corresponding author; Czech University of Life Sciences in Prague, PEF KII,
Kamýcká 129, CZ-165 00, Praha 6 – Suchdol, Czech Republic, E-mail: vesely@pef.czu.cz

©CTU FTS 2022 181

mailto:hamplova@pef.czu.cz
mailto:francd@pef.czu.cz
mailto:vesely@pef.czu.cz


Neural Network World 4/2022, 181–195

spoken in the eastern parts. This script was used in the nearest surroundings and
inside the Syrian city of Palmyra (also called city of Tadmur) in the years 100–400
A.D.

Translating Palmyrene texts is contributing to the study of ancient art and
history, as well as Palmyrene and Biblical studies. The largest anthologies were
published in 1996 by Hillers et al. [7] and in 2001 by Taylor et al. [15].

Palmyrene font became part of Unicode in 2010 [1] when the coding for Palmyrene
letters was proposed. The alphabet consists of 32 characters in the range 10860–
1087F in Unicode [12] (Palmyrene, 2010). Apart from “y”, there are only conso-
nants in the script. The alphabet is read from the top right to left corner; words
are not divided by a blank space. As for numbers, there are only four characters,
which mean 1, 5, 10 (or 100) and 20.

1.2 Image classification on mobile devices

Android applications are developed mostly using the IDE Android Studio and in
each version of IDE, a set of standard libraries is added and some of the existing
ones are updated. Among standard Android API libraries, image classification
is not included. The TensorFlow documentation website [17] recommends using
convolutional neural network MobileNet for image classification on mobile devices.

Current research [4] recommends using MobileNet version efficient lite0. It was
introduced by Tan and Le in 2020 [16] and is also presented in Sonawane’s paper [14]
in comparison with other architectures.

1.3 Android software template and Palmyrene transliterator

In our research we suggest a mobile software tool for automatic character reading
of historical alphabets and transliterating them into Latin alphabet. This tool
called “Palmyrene Alphabet Transcription” has a potential to help to speed up the
process of processing archived but not transliterated and untranslated documents
or can be used directly in the field by archeologists.

Our tool is an Android application that can serve as a template for other alpha-
bets as well. The two main use cases of our tool are hand-written letter analysis
and letter analysis from photo.

In the first one our tool asks the user to draw a letter on the screen. The
drawn image is resized and sent on the input of the convolution neural network
(CNN). CNN classifies the image and then the three possible transliterations with
the highest confidence score are displayed, see Fig. 1.

The second possibility how to use our tool is using it for transliteration of letters
given in photos. Instead of writing the letters by hand, the user takes a photograph
of the letter directly from sandstone tablet like in Fig. 2 or other document type
that is written in Palmyrene.

The user interface is visible in Fig. 3. There is also a help available, as well as
info and alphabet table available in the application.

The target group of users of this tool are archaeologists, who would use the
software for faster Palmyrene Aramaic texts transliteration, the secondary focus
group are other researchers and people outside the scientific community that could

182



Hamplová A., Franc D., Veselý A.: An improved classifier and transliterator of. . .

Fig. 1 In-app character classification.

Fig. 2 Example of a sandstone tablet containing Palmyrene script, Inv. 2983/9507,
© The Archaeological Museum Of Palmyra.

use the transliteration for educational purposes. The Android application can also
be modified if another historical alphabet model is trained. Therefore, it can be
used for further semi-automatic transliteration of any alphabet.

183



Neural Network World 4/2022, 181–195

Fig. 3 “Palmyrene Alphabet Transcription” mobile application user interface.

184



Hamplová A., Franc D., Veselý A.: An improved classifier and transliterator of. . .

2. Objective

Our goal was to design a suitable classifier for transcribing Palmyrene characters
into Latin, with special regard to its use in mobile applications. Current research
suggests using MobileNet classifier. Therefore, our first step was to verify the
possibility of using CNN with the MobileNet architecture and to train it on the
Palmyrene alphabet character set. Because the results obtained were not satisfac-
tory, we designed our own CNN architecture, trained it and then we compared the
results with the results obtained using MobileNet.

Our results confirmed that it is possible to design CNN architecture of the clas-
sifier that gives better results than MobileNet based classifier. It is likely that this
classifier would also give good results if trained for transcription of some another
similar alphabet.

3. Building the classifier

3.1 Training and validation set

In order to create a dataset of hand-written characters, we modified Axel Thevenot’s
“Python-Interface-to-Create-Handwrittendataset” tool available at Github [18]. The
letters were transcribed from a large number of photographs containing Palmyrene
alphabet, such as in Fig. 2. For acquiring these photographs of tablets with
Palmyrene inscriptions, we established a cooperation with two museums – Musée
du Louvre in Paris [9] as well as Virtual Museum Of Palmyra. [11].

Palmyra alphabet consists of 32 characters, see transcription table in Fig. 4. In
our research we considered only 28 characters. We excluded four characters – the
numbers 2, 3, 4 and 5. The numbers 2–4 are sequences of the characters 1, and
the number 5 looks exactly the same as the letter “ayin”. Using graphic tablet, we
wrote 56197 letters in total (exactly 2007 samples per each character).

The used system font for Palmyrene is “palmmne”. Each character class is
saved in a different folder with character name and using keras ImageDataGenera-
tor.flow from directory function, the dataset is converted to CNN-readable format.
With the generator, the data is split into two subsets – training set contains 80%
data and validation set contains the remaining 20%. We did not use any data
augmentation method.

3.2 MobileNet based architecture

Our first choice of mobile network architecture was picked according to the cur-
rent recommendations — MobileNet efficient lite0. This architecture consists of a
HubKerasV1V2 layer, Dropout layer to prevent overfitting and an output Dense
layer. The final activation function is softmax, as the problem solved is a multiple
category classification.

The training of the efficient lite0 model (both photographic and hand-written)
used 80% images for training and 20% for validation. For model creation, we used
the library “tflite-model-maker” and did not alternate the architecture.

185



Neural Network World 4/2022, 181–195

Fig. 4 Palmyrene characters and transcription to Latin.

For creating dataset, we call the tflite model maker.image classifier.DataLoader
method. By calling this method, input images are resized to 224× 224 pixels and
loaded into a data generator.

186



Hamplová A., Franc D., Veselý A.: An improved classifier and transliterator of. . .

The network is trained calling the function “model.create”, which runs training
for 5 epochs, with batch size 128 images. The core of the network is not trained, as
there are only 38430 trainable parameters and 3451454 non-trainable parameters.

Model summary is specified below.

Model: “sequential”

Layer (type) Output Shape Param #

Hub keras layer v1v2 (HubKe rasLayerV1V2) (None, 1280) 3413024
dropout (Dropout) (None, 1280) 0

dense (Dense) (None, 30) 38430

Total params: 3451454
Trainable params: 38430

Non-trainable params: 3413024

Tab. I MobileNet summary.

The training accuracy was very high even after the first epoch, it reached 0.902,
and in the last epoch it reached 0.993. The validation accuracy was 0.677. Model
is then saved in .tflite format.

3.3 Design of the custom CNN architecture

To design the network architecture, we conduct experiments with CNN layers. We
compare the influence of the number of convolutions in each Convolutional layer,
the influence of leaving out pooling layers, compare the difference in performance of
AveragePooling and MaxPooling layers and research the influence of the number of
repetition of Convolutional/Pooling blocks. We then pick the architecture, which
had the highest validation accuracy, lowest validation error and lowest validation
loss, and convert it to a mobile version of the model – “.tflite” for testing.

The training is conducted on the graphic card NVIDIA GeForce GTX 970 with
memory clock rate 1.1775GHz, 1664 CUDA cores and memory size 8159MB.

We created 10 versions of CNN architectures and researched the influence of
the combination of layers and numbers of convolutions on a small dataset of hand-
written letters (153 per class, image size 28×28). The results are visible in Tab. II,
where V is version, Acci is accuracy in given epoch i, Lossi is loss in given epoch i,
V Acci is validation accuracy in given epoch i, V Lossi is validation loss in given
epoch i.

Each architecture version was using alternation of Convolutional layers with
specified number of convolutions and Pooling layers, either MaxPooling or Aver-
agePooling. The last three layers were always Flatten and two Dense layers. The
versions are described in the following Tab. III, where Conv i means the number
of convolutions in each i-th Convolutional layer.

As visible in Tab. II, the combination of low validation loss and high validation
accuracy was present in models using the straight alternation of Convolutional and
MaxPooling layers, with 3 or 4 such blocks (mostly versions 1 and 3). Adding
another Convolutional / MaxPooling block (version 7) lowered the validation ac-
curacy from 0.548 to 0.4967 in the last epoch and increased the validation loss

187



Neural Network World 4/2022, 181–195

V Acc 1 Loss 1 V Acc 1 V Loss 1 Acc 15 Loss 15 V Acc 15 V Loss 15

1 0.2992 2.749 00 0.3326 2.6634 0.9688 0.0583 0.5301 2.5247
2 0.7730 0.794 60 0.4330 3.3265 0.9648 0.0511 0.4196 2.7923
3 0.2054 2.871 13 0.2366 2.8368 0.9720 0.0550 0.5480 2.6796
4 0.0649 3.254 80 0.1373 3.0333 0.9389 0.1334 0.4085 5.2541
5 2.8557 0.262 00 0.2334 3.2072 0.9960 0.0758 0.4542 4.2724
6 3.2109 0.082 00 0.1652 3.1675 0.9626 0.0805 0.4743 4.5598
7 3.0733 0.117 90 0.1417 3.2524 0.9628 0.0621 0.4967 4.0713
8 1.4428 0.592 40 0.3571 2.9419 0.9658 0.0499 0.4877 2.9082
9 3.1120 0.123 30 0.1730 3.0210 0.9659 0.6030 0.5580 2.9961
10 3.2842 0.089 40 0.1696 3.0293 0.9652 0.0928 0.5022 3.5259

Tab. II Influence of CNN layers on network performance.

V Conv 1 Conv 2 Conv 3 Conv 4 Conv 5 Pool

1 16 32 64 Max
2 32 64 128 Max
3 16 32 64 128 Max
4 16 32 64 128 Avg
5 32 64 128 Avg
6 32 64 128 256 Avg
7 16 32 64 128 256 Avg
8 16 32 64 Max
9 16 32 64 64 Max

10 16 32 32 32 Max

Tab. III CNN versions description.

from 2.6796 to 4.0713. Using AveragePooling layers conducted in lower validation
accuracy to 0.4085 in version 4 and almost doubled the validation loss to 5.2541 in
comparison to using MaxPooling layers. The best performing architecture overall
was version 3.

3.4 Training of the new CNN model

We used the training / validation split equal to 0.8 / 0.2 using the library Image-
DataGenerator from tensorflow.keras. The images are resized to 28× 28 pixels.

We picked the best performing model with 4 Convolutional layers alternated by
4 MaxPooling layers (version 3). The model summary is visible below.

We trained the network for 15 epochs, with batch size 128, selected optimizer
was “adam”. The training results are visible in Tab. V.

188



Hamplová A., Franc D., Veselý A.: An improved classifier and transliterator of. . .

Model: “sequential”

Layer (type) Output Shape Param #

conv2d (Conv2D) (None, 28, 28, 16) 448
max pooling2d (MaxPooling2D) (None, 14, 14, 16) 0

conv2d 1 (Conv2D) (None, 14, 14, 32) 4640
max pooling2d 1 (MaxPooling2) (None, 7, 7, 32) 0

conv2d 2 (Conv2D) (None, 7, 7, 64) 18496
max pooling2d 2 (MaxPooling2) (None, 3, 3, 64) 0

conv2d 3 (Conv2D) (None, 3, 3, 128) 73856
max pooling2d 3 (MaxPooling2) (None, 1, 1, 128) 0

flatten (Flatten) (None, 128) 0
dense (Dense) (None, 512) 66048
dense 1 (Dense) (None, 28) 14364

Total params: 177852
Trainable params: 177852

Non-trainable params: 0

Tab. IV Custom CNN summary.

Acc 1 Loss 1 V Acc 1 V Loss 1 Acc 15 Loss 15 V Acc 15 V Loss 15

0.861 0.4718 0.9255 0.3092 1 4.66 0.9626 0.3315

Tab. V Results of final model training.

4. Evaluation on testing set

The testing dataset is not created in advance. Testing is conducted directly in
the mobile application, and the characters need to be written by hand in the
“Draw Letter” module. We use 10 samples in each class for testing of both CNN
architectures (280 images in total).

4.1 Metrics

For classifier evaluation, the metrics accuracy acc, error err, recall r Eq. (1), preci-
sion p Eq. (2) and F-score Eq. (3) are used. [2] Accuracy acc is the mean of correctly
classified characters, error err is the mean of incorrectly classified characters. Pa-
rameters of recall Eq. (2), precision Eq. (1) and F-score Eq. (3) are evaluated as
follows. For each category i we consider binary decision whether character belongs
to the category i versus it belongs to any other category j ̸= i and we calculate
precision pi, recall ri and Fi-score.

ri =
m∑
i=1

TPi

TPi + FPi
, (1)

pi =
m∑
i=1

TPi

TPi + FNi
, (2)

189



Neural Network World 4/2022, 181–195

Fi =
2 · ri · pi
ri + pi

, (3)

where
– TPi is the number of correctly classified objects from category i
– FPi is the number of characters from the category j ̸= i incorrectly classified as
being characterss from category i
– FNi is the number of characters from category i incorrectly classified as being
characters from some another category j ̸= i
– m is the number of categories.

The overall parameters of recall r Eq. (4), precision p Eq. (5) and F score
Eq. (6) are then evaluated as arithmetic means.

r =
1

m

m∑
i=1

ri, (4)

p =
1

m

m∑
i=1

pi, (5)

F =
1

m

m∑
i=1

Fi. (6)

4.2 Results of MobileNet and custom CNN classifier

The detailed results of MobileNet classifier evaluation on testing set are visible in
Tab. VI.

The mean error of this classifier is 0.311, while the mean accuracy reached 0.689.

The least recognized Palmyrene character is “20” and “mem” with only 1 (out
of 10) true positive recognition. The character “20” was otherwise classified as “pe”
and “waw”, while “mem” was classified as “beth”, “nun” and “pe”. 9 characters
– “10”, “aleph”, “beth”, “he”, “nun”, “nun final”, “pe”, “shin” and “waw” were
recognized in each case (10 out of 10).

The classifier was over-oriented for character “pe”, as it had most false positive
predictions – 28 other letters were classified as “pe”, as it is visually similar to
other characters. The second character with most false positive predictions was
“nun” with 18 false classifications and the third one was “nun final” with 9 false
positives.

The detailed results of custom CNN classifier evaluation on testing set are
visible in Tab. VII. The mean error of custom CNN classifier is only 0.018, while
the accuracy reached 0.982, which is a significant 142% improvement from the
MobileNet classifier.

The least recognized character is “pe” with 8 true positives out of 10, one was
classified as “nun” and the other as “yodh”. 24 characters were recognized in all 10
cases out of 10, 3 had one false negative prediction – “gimel”, “resh” and “sadhe”.

There were only 5 characters with false positives – “20”, “daleth”, “heth”,
“nun” and “yodh”, each of them had 1 false positive prediction.

190



Hamplová A., Franc D., Veselý A.: An improved classifier and transliterator of. . .

class TPi FNi FPi ri pi Fi err acc

1 8 2 2 0.8 0.8 0.8
10 10 0 0 1 1 1
20 1 9 0 0.1 1 0.182

aleph 10 0 9 1 0.526 0.690
ayin 6 4 0 0.6 1 0.75
beth 10 0 7 1 0.588 0.741

daleth 5 5 0 0.5 1 0.667
gimmel 4 6 0 0.4 1 0.571

he 10 0 0 1 1 1
heth 9 1 1 0.9 0.9 0.9
kaph 8 2 2 0.8 0.8 0.8

lamedh 7 3 0 0.7 1 0.824
left 2 8 5 0.2 0.286 0.235

mem 1 9 0 0.1 1 0.182
nun 10 0 18 1 0.357 0.526

nun final 10 0 9 1 0.526 0.690
pe 10 0 26 1 0.278 0.435

qoph 7 3 1 0.7 0.875 0.778
resh 3 7 0 0.3 1 0.462
right 5 5 0 0.5 1 0.667
sadhe 4 6 0 0.4 1 0.571

samekh 3 7 0 0.3 1 0.462
shin 10 0 2 1 0.833 0.909
taw 5 5 1 0.5 0.833 0.625
teth 8 2 0 0.8 1 0.889
waw 10 0 4 1 0.714 0.833
yodh 8 2 2 0.8 0.8 0.8
zayin 7 3 0 0.7 1 0.824
mean 0.682 0.826 0.672 0.311 0.689

Tab. VI MobileNet classifier evaluation.

5. Discussion

The results of the Palmyrene hand-written characters classification were satis-
factory, as the accuracy reached 98.21% instead of 68.93% with MobileNet effi-
cient lite0.

The reason behind the false predictions when using MobileNet is the visual
similarity of Palmyrene symbols. In sample datasets used for object detection
with MobileNet image classifiers, there are many distinct features that makes the
classification easier. Such objects like dogs, cats etc. can be stretched, rotated and
shifted within the image and still be recognized and classified correctly, however, in
case of characters of alphabets, the precise position, shape and rotation of letters
matter and can not be altered, because it would change the meaning of the letter,
as some letters look like others if rotated or stretched. The demonstration of such

191



Neural Network World 4/2022, 181–195

class TPi FNi FPi ri pi Fi err acc

1 10 0 0 1 1 1
10 10 0 0 1 1 1
20 10 0 1 1 0.909 0.952

aleph 10 0 0 1 1 1
ayin 10 0 0 1 1 1
beth 10 0 0 1 1 1

daleth 10 0 1 1 0.909 0.952
gimmel 9 1 0 0.9 1 0.947

he 10 0 0 1 1 1
heth 10 0 1 1 0.909 0.952
kaph 10 0 0 1 1 1

lamedh 10 0 0 1 1 1
left 10 0 0 1 1 1

mem 10 0 0 1 1 1
nun 10 0 1 1 0.909 0.952

nun final 10 0 0 1 1 1
pe 8 2 0 0.8 1 0.889

qoph 10 0 0 1 1 1
resh 9 1 0 0.9 1 0.947
right 10 0 0 1 1 1
sadhe 9 1 0 0.9 1 0.947

samekh 10 0 0 1 1 1
shin 10 0 0 1 1 1
taw 10 0 0 1 1 1
teth 10 0 0 1 1 1
waw 10 0 0 1 1 1
yodh 10 0 1 1 0.909 0.952
zayin 10 0 0 1 1 1
mean 0.982 0.984 0.982 0.018 0.982

Tab. VII Results of model with 4×Conv/MaxPooling network architecture.

similarity is visible in Fig. 5. The most similar letter to “pe” is “20” and so it had
the highest classification error with MobileNet.

When using custom classifier, the improvement is significant (142% better), as
the CNN architecture was tested especially for letter classification and is less prone
to error when classifying objects with less distinct features.

Fig. 5 Visual similarity of character similarity.

192



Hamplová A., Franc D., Veselý A.: An improved classifier and transliterator of. . .

Mara H. conducted the analysis of 3-dimensional scans of tablets with cuneiform
signs, however the success rate is not presented in the research. [10] Yamauchi
researched hand-written cuneiform characters, but also did not publish classifier
results. [19]

Ghosh et al.’s model, that recognized Bangladeshi signs, reached 96.46% accu-
racy on MobileNet, which is 2.4% less than with our upgraded CNN hand-written
model. The Bangladeshi script contains 60 letters [3]. Its hand-written were also
analysed and reached 90.27% accuracy. [13]

Our classifier is also comparable with other object recognition tasks, for example
Cho Junghwan et al. have researched CT body scans. The dataset contained 4000
very high quality images and they reached 97% accuracy on GoogLeNet Inception
v1 architecture. They also described, how the results declined if less images were
used, accordingly [8].

The F-score of 83% has been reached in the task of great tits and carried food
recognition by part of our team. We analysed photos from Smart Nest Boxes.
For the model, we used YOLOv3 architecture. The F-measure was lower due to
difficult object detection. [6]

Our results of Palmyrene letters recognition were therefore comparable with
other author’s works. The classifier results were satisfactory, over 70% as initially
stated in the success criteria. With a 98.21% classification success, the task of
hand-written Palmyrene characters classification can be considered resolved.

6. Conclusion

We have explored the architectures suitable for character recognition for mobile
use, which is an ever evolving area. Letters and numbers classification is a special
image classification case, as, unlike other objects, the images of alphabet characters
can not be manipulated rotation-wise, shape-wise and shift-wise. We conducted
experiments with convolutional neural network architectures special for character
recognition on Android devices, aiming to improve the classification in comparison
with MobileNet, and found out, that the network with 4 Convolutional layers
alternated by MaxPooling layers has better classification results than other tested
networks and trained this network on our data and improved hand-written classifier
results by 142%.

We updated the model in our software tool, which uses artificial intelligence
for semi-automation of historical alphabets transliteration and proved its function
on Palmyrene Aramaic script. From a general point of view, we can state that
if a different model is trained on another alphabet, using the same architecture
and mobile application (using different dataset of letters, and with some alterna-
tions of in-app texts), this research can serve as a template for other historical
script analysis and a foundation of historical optical character recognition (OCR)
algorithms.

There is still room for improvement in performance of the photographic model,
which is still run on MobileNet and has only 440 images per class in the dataset.
We plan to expand the set using keras augmentation and to develop generative
adversarial networks. We also plan to create a web application for Palmyrene
alphabet recognition, where we will also implement rows recognition and character

193



Neural Network World 4/2022, 181–195

segmentation, creating a Palmyrene OCR, aiding researchers with transliterating
Palmyrene Aramaic texts in field use and thus contributing to biblical studies. The
aim of the next steps of this research is however not just to create a Palmyrene OCR,
but to suggest neural network architectures for any historical alphabet character
detection, segmentation and classification on mobile and improve the state of art
of creating mobile OCR.

Acknowledgement

This article was created with the support of the Internal Grant Agency (IGA) Fac-
ulty of Management and Economy, Czech University of Life Sciences in Prague,
2021A0004 – “Reading the characters of Palmyrene alphabet using artificial intel-
ligence tools”.

References

[1] EVERSON M. Proposal for encoding the Palmyrene script in the SMP of the UCS [online].
UC Berkeley: Department of Linguistics, 2010. Available from: https://escholarship.org/
uc/item/27b327h7.

[2] GÉRON A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd
Edition. O’Reilly, 2019, pp. 88–92.

[3] GHOSH T., ABEDIN M., CHOWDHURY S., TASNIM Z., KARIM T., REZA S., SAIKA
S., YOUSUF M. Bangla handwritten character recognition using MobileNet V1 architecture.
Bulletin of Electrical Engineering and Informatics. 2020, 9(6), pp. 2547–2554, doi: 10.11591/
eei.v9i6.2234.

[4] GUPTA D. Mobile Application for Bird Species Identification Using Transfer Learning. In:
2021 IEEE International Conference on Artificial Intelligence in Engineering and Technol-
ogy (IICAIET). 2021, pp. 1–6, doi: 10.1109/IICAIET51634.2021.9573796.

[5] HAJIHASHEMI V., ARAB AMERI M.M., ALAVI GHARAHBAGH A., BASTANFARD A.
A pattern recognition based Holographic Graph Neuron for Persian alphabet recognition.
In: 2020 International Conference on Machine Vision and Image Processing (MVIP), 2020,
pp. 1–6, doi: 10.1109/MVIP49855.2020.9116913.

[6] HAMPLOVÁ A., PAVLÍČEK J. Object Recognition Tool for “Smart Nest Boxes.”. In: Pro-
ceedings of IAC in Budapest 2020. IAC-ETITAI., Prague, Czech republic: Czech Institute
of Academic Education, 2020, pp. 105–109.

[7] HILLERS D., CUSSINI E. Palmyrene Aramaic Texts. Baltimore: Johns Hopkins Univ. Press,
1996.

[8] CHO J., LEE K., SHIN E., CHOY G., DO S. How much data is needed to train a medi-
cal image deep learning system to achieve necessary high accuracy?, 2015. Available from:
https://arxiv.org/pdf/1511.06348.pdf

[9] Le Louvre. Louvre Museum Official Website. [viewed 2021-12-01]. Available from: https:

//www.louvre.fr/en.

[10] MARA H., KRÖMKER S., JAKOB S., BREUCKMANN B. GigaMesh and Gilgamesh –
3D Multiscale Integral Invariant Cuneiform Character Extraction. In: The 11th Interna-
tional Symposium on Virtual Reality, Archaeology and Cultural Heritage. VAST 2010., 2010,
doi: 10.2312/VAST/VAST10/131-138.

[11] Palmyra Archaeological Museum. The Archaeological Museum Of Palmyra, 2021 [viewed
2021-12-01]. Available from: https://virtual-museum-syria.org/palmyra/.

[12] Palmyrene, Range: 10860–1087F [pdf]. 2010. Available from: https://www.unicode.org/

charts/PDF/U10860.pdf.

194

https://escholarship.org/uc/item/27b327h7
https://escholarship.org/uc/item/27b327h7
http://dx.doi.org/10.11591/eei.v9i6.2234
http://dx.doi.org/10.11591/eei.v9i6.2234
http://dx.doi.org/10.1109/IICAIET51634.2021.9573796
http://dx.doi.org/10.1109/MVIP49855.2020.9116913
https://arxiv.org/pdf/1511.06348.pdf
https://www.louvre.fr/en
https://www.louvre.fr/en
http://dx.doi.org/10.2312/VAST/VAST10/131-138
https://virtual-museum-syria.org/palmyra/
https://www.unicode.org/charts/PDF/U10860.pdf
https://www.unicode.org/charts/PDF/U10860.pdf


Hamplová A., Franc D., Veselý A.: An improved classifier and transliterator of. . .

[13] SAZAL M.M.R., BISWAS S.K., AMIN M.F., MURASE K. Bangla handwritten character
recognition using deep belief network. In: 2013 International Conference on Electrical In-
formation and Communication Technology (EICT), 2013, pp. 1–5, doi: 10.1109/EICT.2014.
6777907.

[14] SONAWANE P., DROLIA S., SHAMSI S., JAIN B. Self-Supervised Visual Representation
Learning Using Lightweight Architectures, 2021. Available from: https://arxiv.org/pdf/

2110.11160.pdf.

[15] TAYLOR D.G.K. An Annotated Index of Dated Palmyrene Aramaic Texts. Journal of
Semitic Studies. 2001, 16(2), pp. 203–219, doi: 10.1093/jss/XLVI.2.203.

[16] TAN M., LE Q.V. Efficientnet: Rethinking model scaling for convolutional neural networks,
2020. Available from: https://arxiv.org/pdf/1905.11946.pdf

[17] Image Classification — Tensorflow. Tensorflow.org, 2021 [viewed 2021-01-14]. Available
from: https://www.tensorflow.org/lite/examples/image_classification/overview.

[18] THEVENOT A. Python Interface to Create Handwritten dataset [software]. Available from:
https://github.com/AxelThevenot/Python-Interface-to-Create-Handwritten-dataset

[19] YAMAUCHI K., YAMAMOTO H., MORI W. Building A Handwritten Cuneiform Char-
acter Imageset. In: Proceedings of the Eleventh International Conference on Language Re-
sources and Evaluation. LREC 2018., Miyazaki, Japan, 2018. Available from: aclweb.org/
anthology/L18-1115.

195

http://dx.doi.org/10.1109/EICT.2014.6777907
http://dx.doi.org/10.1109/EICT.2014.6777907
https://arxiv.org/pdf/2110.11160.pdf
https://arxiv.org/pdf/2110.11160.pdf
http://dx.doi.org/10.1093/jss/XLVI.2.203
https://arxiv.org/pdf/1905.11946.pdf
https://www.tensorflow.org/lite/examples/image_classification/overview
https://github.com/AxelThevenot/Python-Interface-to-Create-Handwritten-dataset
aclweb.org/anthology/L18-1115
aclweb.org/anthology/L18-1115



