
TWO-LAYER GENETIC PROGRAMMING

J. Merta∗, T. Brandejský∗

Abstract: This paper focuses on a two-layer approach to genetic programming
algorithm and the improvement of the training process using ensemble learning.
Inspired by the performance leap of deep neural networks, the idea of a multi-
layered approach to genetic programming is proposed to start with two-layered
genetic programming. The goal of the paper was to design and implement a two-
layer genetic programming algorithm, test its behaviour in the context of symbolic
regression on several basic test cases, to reveal the potential to improve the learning
process of genetic programming and increase the accuracy of the resulting models.
The algorithm works in two layers. In the first layer, it searches for appropriate
sub-models describing each segment of the data. In the second layer, it searches
for the final model as a non-linear combination of these sub-models. Two-layer
genetic programming coupled with ensemble learning techniques on the experi-
ments performed showed the potential for improving the performance of genetic
programming.

Key words: two-layer genetic programming, ensemble learning, deep learning, boot-
strapping, symbolic regression

Received: May 10, 2022 DOI: 10.14311/NNW.2022.32.013
Revised and accepted: August 30, 2022

1. Introduction

This paper focuses on a two-layer approach to genetic programming and improv-
ing the training process using approaches known from ensemble learning. In-
spired by the performance leap of deep neural networks, the idea of a multi-layered
approach to genetic programming is proposed to start with two-layered genetic
programming. Another inspiration was the success of ensemble learning methods
in optimizing machine learning algorithms. Combining multiple sub-models of data
into a more accurate final model also corresponds to the principles of deep learning,
which attempts to learn more complex functions by combining simpler functions.
In the first layer, genetic programming is used to generate sub-models from a base
set of terminals and functions. In the second layer, the final model is composed
from the sub-models created in the first phase.

The goal of this paper was to design and implement a two-layer genetic pro-
gramming algorithm, test its behaviour in the context of symbolic regression on

∗Tomáš Brandejský – Corresponding author; Jan Merta; University of Pardubice, Faculty of
Electrical Engineering and Informatics, Department of Software Technologies, Studentská 95, 532
10 Pardubice, Czech Republic, E-mail: tomas.brandejsky@upce.cz, jan.merta@upce.cz

©CTU FTS 2022 215

mailto:tomas.brandejsky@upce.cz
mailto:jan.merta@upce.cz

Neural Network World 4/2022, 215–231

several basic test cases, and find appropriate settings that have the potential to
make the genetic programming learning process more efficient and increase the ac-
curacy of the resulting models. The paper does not aim to describe the dynamics of
two-layer (or possibly multi-layer) genetic programming in general detail, and does
not seek general relationships between the settings of the different parameters.

2. Background

2.1 Genetic programming

Genetic programming [1] uses evolution to evolve computer programs. It is an
extension of genetic algorithms [2]. The genetic algorithm (GA) was introduced
by John Holland in 1975 [3]. It is a stochastic optimization method based on a
population strategy. Genetic programming allows high-level automatic solution of
given problems without explicit writing of the program by the programmer [2],
when it is sufficient to define the expected behaviour and basic program elements
from which the resulting solution should be composed. The expected behaviour of
the desired program is defined using a fitness function. The GP is provided with
basic program elements from which it gradually builds more complex programs.
The search space of programs is enormously large and complex. A single prob-
lem is generally matched by many different programs [4]. Individuals in genetic
programming represent individual programs. They are represented by non-linear
hierarchical chromosomes of variable length in the form of syntactic trees. Syntac-
tic trees consist of two types of genes: terminals and non-terminals (collectively,
primitives) [5].

The mean length of programmes increases during evolution. According to [5],
this is not a problem caused by crossover but by selection. While crossover makes
some programs longer, it makes other programs shorter. Longer programs have
better rankings compared to short programs in the initial steps of evolution, which
gives longer programs a selection advantage. During evolution, the amount of code
that has no positive benefit in a program often grows. This phenomenon is called
bloat. This can be countered by controlling the maximum size of the trees. Another
effective strategy appears to be tree pruning [6], where large trees are randomly
pruned.

2.2 Symbolic regression

Symbolic regression is a supervised machine learning method for finding symbolic
descriptions of mathematical models that approximate a finite set of data points [5].
The goal is to find the relationship between input and output variables. The result
of symbolic regression is a mathematical equation composed of a set of allowed
arithmetic expressions, functions, variables and constants. In addition to the pa-
rameters of the mathematical model, symbolic regression also searches for its op-
timal structure (the best combination of operations, functions and parameters).
Symbolic regression can be solved using GP but also using other methods. Fig. 1
shows the tree representation of the equation y = x+ 2 sinx.

216

Merta J., Brandejský T.: Two-layer genetic programming

2

2 Background

2.1 Genetic programming

Genetic programming [1] uses evolution to evolve computer programs. It is an extension
of genetic algorithms [2]. The genetic algorithm (GA) was introduced by John Holland in 1975
[3]. It is a stochastic optimization method based on a population strategy. Genetic programming
allows high-level automatic solution of given problems without explicit writing of the program
by the programmer [2], when it is sufficient to define the expected behaviour and basic program
elements from which the resulting solution should be composed. The expected behaviour of the
desired program is defined using a fitness function. The GP is provided with basic program
elements from which it gradually builds more complex programs. The search space of programs
is enormously large and complex. A single problem is generally matched by many different
programs [4]. Individuals in genetic programming represent individual programs. They are
represented by non-linear hierarchical chromosomes of variable length in the form of syntactic
trees. Syntactic trees consist of two types of genes: terminals and non-terminals (collectively,
primitives) [5].

The mean length of programmes increases during evolution. According to [5], this is not
a problem caused by crossover but by selection. While crossover makes some programs longer,
it makes other programs shorter. Longer programs have better rankings compared to short
programs in the initial steps of evolution, which gives longer programs a selection advantage.
During evolution, the amount of code that has no positive benefit in a program often grows. This
phenomenon is called bloat. This can be countered by controlling the maximum size of the trees.
Another effective strategy appears to be tree pruning [6], where large trees are randomly pruned.

2.2 Symbolic regression

Symbolic regression is a supervised machine learning method for finding symbolic descriptions
of mathematical models that approximate a finite set of data points [5]. The goal is to find
the relationship between input and output variables. The result of symbolic regression
is a mathematical equation composed of a set of allowed arithmetic expressions, functions,
variables and constants. In addition to the parameters of the mathematical model, symbolic
regression also searches for its optimal structure (the best combination of operations, functions
and parameters). Symbolic regression can be solved using GP but also using other methods.
Figure 1 shows the tree representation of the equation 𝑦 ൌ 𝑥 ൅ 2 sin 𝑥.

Figure 1 – Tree representation of the equation 𝑦 ൌ 𝑥 ൅ 2 sin 𝑥, source: author Fig. 1 Tree representation of the equation y = x+ 2 sinx.

2.3 Deep learning and ensemble learning

Deep learning algorithms process the raw input data and try to learn its correct
representation [7]. The main idea of deep learning is a compositional approach,
where more complex higher-level representations of the problem being solved are
formed from its simpler lower-level representations. More complex concepts are
built from simpler lower-level concepts. Mathematically, this principle can be de-
scribed using successive functions. The first level functions have as input variables.
Higher level functions are built by composing simpler functions so that the output
of the lower level functions is the input of the higher level functions. Each function
always expresses a new representation of the original raw input. Models built using
ensemble learning methods follow a similar idea.

The main idea of ensemble learning is inspired by human decision making based
on the opinions of multiple experts or voting. Ensemble learning is a group of sta-
tistical and machine learning methods that combine the final model using multiple
sub-models to refine model prediction, improve generalization ability, and reduce
overfitting [8]. The combination of sub-models results in a so-called ensemble. By
combining multiple sub-models trained over different subsets of the original training
data, it is possible to get close enough to the optimal model, avoid overfitting, and
improve generalization [8, 9]. Proper combination of multiple sub-models also im-
proves the expressive power of the algorithms [8]. The predictions of the sub-models
must not be correlated because they would not add new information to the decision
process. The overall accuracy of the final models depends on the accuracy of the
sub-models as well as the diversity of their outputs [8].

Non-generative ensemble methods only select or combine sub-models but do
not create them. Generative ensemble methods create sub-models using a ma-
chine learning algorithm and diversify the training data set to create diversified
sub-models and increase the accuracy and generalization of the ensemble model.
Resampling based methods use bootstrapping technique to diversify the training
data [8]. The boostraping technique generates several different subsets of train-
ing data from the training data set using random selection. Then, by applying a
learning algorithm on each generated subsets, sub-models are created and finally

217

Neural Network World 4/2022, 215–231

a fusion method is used to generate the final model. Examples include bagging
(bootstrap aggregating), wagging (weighted bagging) and AdaBoost method [8].

2.3.1 Ensemble architecture

The ensemble architecture deals with the creation and selection of sub-models, the
topology of their interconnection, and the design of a fusion module that combines
the outputs of the sub-models [9]. The design of the fusion module, called fuser,
deals with finding the combination of individual sub-models into the final output
of the ensemble model. There are two basic variants of the fuser. In the first
variant, the fuser combines only the outputs of the sub-models. In the second
variant, the merger combines the outputs of the sub-models with the values of the
input variables [9]. Fusion modules can also be trainable (e.g., in the stacking
method) [9]. A trainable fusion model is represented by a model over sub-models.
This metamodel is not trained on exactly the same data as the sub-models, because
the ensemble model may be overtrained.

2.4 Optimization of genetic programming and symbolic
regression

Genetic programming is a relatively young method that, with increasing computa-
tional power, is gradually finding practical applications. Genetic programming as
a machine learning method still has gaps in the accuracy of the generated models
and various improvements are currently being proposed to help with this problem.
Each improvement in the efficiency of genetic programming brings the method
closer to real-world use. The main ways to optimize GP include: reducing the
fitness evaluation time and improving the convergence of GP. The fitness function
evaluation can be reduced by reducing the size of the trees [5], reducing the training
set or introducing caching. Using a smaller training set can speed up the fitness
function evaluation. This approach can avoid overfitting the model and improve
its generalization. The risk is that only part of the desired function is learned [5].

Another approach is to hybridize the GP with an optimization method. The
goal of the hybrid approach is to improve the performance of genetic programming
using some local learning methods and heuristics. Most of the methods are based
on the idea that genetic programming can generate a tree with the correct terminal
structure during evolution whose performance will be negatively affected only by
the wrong combination of numerical constants in the terminals. One approach is
constant optimization, in which the optimal combination of numerical constants
is sought for a tree with a given structure of non-terminals using other optimiza-
tion methods. Evett and Fernandez [10] proposed a simple mutation to tune the
constants. Raidl and Gunther in [11] introduced HGP (hybrid genetic program-
ming), added weights to the top-level tree members and optimized them using a
robust least squares method. For example, gradient descent [12, 13], simulated
annealing combined with the simplex method [14], particle swarm optimization
(PSO) [15], multiple regression in the STROGANOFF method [16,17], evolutionary
strategies [13, 18, 19], genetic algorithms [13], self-organizing migrating algorithm
(SOMA) [13,20], the Bison Seeker algorithm [21], and non-linear optimization using

218

Merta J., Brandejský T.: Two-layer genetic programming

the Levenberg-Marquardt algorithm [22,23] can be used to optimize the constants.
There are many modern approaches for GP optimization. Keijzer in [24] proposed
an improvement of symbolic regression using interval arithmetic and linear scal-
ing. Linear scaling deals with minimizing the error by shifting the function and
stretching it, resulting in a function with the correct shape during selection is not
eliminated during selection and is found faster. Multistage genetic programming
(MSGP) [25] sequentially builds models for each feature separately using GP and
then builds a model of how each feature interacts with each other. Multiple basis
function genetic programming (MBF-GP) [26] is very similar to classical GP. The
only difference is that each individual consists of multiple trees. Genetic opera-
tors are used by MBF-GP at two levels [22]. At the microscopic level, the original
crossover between the trees of two randomly selected macroscopic individuals takes
place. Macroscopic crossover, on the other hand, exchanges entire trees between
two macroscopic individuals. Multi-Gene GP (MGGP) extends conventional GP
and increases its accuracy [27]. Similar to MBF-GP, the chromosome consists of
multiple sub-models in the form of short-length classical GP trees. Each such tree
represents one gene. In contrast to MBF-GP, the trees are not formed sequen-
tially but in parallel. The resulting model is a linear combination of the individual
sub-models. Other methods include sequential symbolic regression (SSR) [28], mul-
tiple regression genetic programming (MRGP) [29], evolutionary feature synthesis
(EFS) [30], geometric semantic genetic programming (GSGP) [31], FFX [32, 33],
elite basis regression (EBR) [34], etc.

3. Two-layer genetic programming

Inspired by success ensemble learning methods in the area of machine learning
optimization authors proposed two-layer genetic programming is divided into two
layers. Combination with ensemble learning methods should help GP to exploit
search space of programmes and increase its expressive abilities. It can be thought
of as two genetic programming algorithms, where the second genetic programming
algorithm follows the first one. In the first layer, genetic programming is used to
generate sub-models from a base set of terminals and functions. In the second layer,
the final model (meta-model) is composed from the sub-models created in the first
phase. The whole two-layer GP algorithm can be imagined as the creation of basic
building blocks and the subsequent search for their appropriate combination.

The whole two-layer GP (GP-2L) algorithm can be described in several steps:

1. Creating sub-models using separate runs of the plain GP.

2. Adding the sub-models to the set of terminals for the second layer of the
two-layer GP.

3. One run of the second layer using the classical GP with sub-models.

4. Return the result from the second layer.

The number of runs of the first layer depends on the number of sub-models gen-
erated. The second layer has separate parameter settings. The resulting model is
the product of the second layer run.

219

Neural Network World 4/2022, 215–231

3.1 Motivation

The design of the two-layer GP algorithm is based on several different motivations:

1. The desire to avoid bloat and the creation of increasing trees without improv-
ing the fitness function (reducing model error) by restarting GP, in which the
currently created trees will be used as building blocks for a new run of GP,
where the “old” code will be used in a new constructive way.

2. The ability to change GP settings during evolution, as different tree (model)
complexities may require different operations and settings.

3. Create more robust final models using ensemble learning techniques.

The ensemble nature of the proposed two-layer GP algorithm is based on a parallel
topology of sub-models from the first layer with a trainable fuser on the second
layer. The individual sub-models are generated by separate runs of the first GP
layer.

3.2 Characteristics of layers

The two layers can have different settings of GP parameters and hyperparameters,
including the number of generations, population size, set of terminals, and set
of functions. The two layers can also be independently optimized using BSA on
integer constants.

3.2.1 First layer

For the creation of the sub-models at the first layer, bootstrapping method was
chosen to diversify the training dataset, which splits the whole dataset into differ-
ent subsets for each sub-model. The algorithm can also be run without creating
diversified subsets of the training data.

In the bootstrapping method, the size of the training set for the sub-models
(bootstrap size) was chosen and then random points were added from the whole
training data set. The actual implementation of this method takes as a parameter
the size of the training set as a percentage of the size of the original full training
dataset, for example the set size would be 30% of the full training dataset. In the
implementation of the bootstrapping method used, it was possible for a single data
point to occur multiple times in the training set for a sub-model.

3.2.2 Second layer

Second layer uses all sub-models from first layer without no exception. Depending
on the choice of functions in the second stage, it can be: simple linear folding
or non-linear folding of sub-models. If the sub-models are added (or subtracted),
multiplied by a constant, or folded by arithmetic or weighted averages, this is linear
sub-model folding. Sub-models may also be folded non-linearly in the second stage
if functions such as multiplication, inversion or division are used. Scheme of two-
layer genetic programming is visualized in the Fig. 2.

220

Merta J., Brandejský T.: Two-layer genetic programming

6

of the size of the original full training dataset, for example the set size would be 30% of the full
training dataset. In the implementation of the bootstrapping method used, it was possible
for a single data point to occur multiple times in the training set for a sub-model.

3.2.2 Second layer

Second layer uses all sub-models from first layer without no exception. Depending on the choice
of functions in the second stage, it can be: simple linear folding
or non-linear folding of sub-models. If the sub-models are added (or subtracted), multiplied by
a constant, or folded by arithmetic or weighted averages, this is linear sub-model folding. Sub-
models may also be folded non-linearly in the second stage if functions such as multiplication,
inversion or division are used. Scheme of two-layer genetic programming is visualized in the
Figure 2.

Figure 2 – Scheme of two-layer genetic programming

3.2.3 Implementation

The two-layer genetic programming algorithm was implemented in Java on top
of the Watchmaker framework. It was necessary to implement the genetic programming module
and then its two-layer GP variant in the framework. The standard Random class from the java.util
package was used to generate random numbers.

4 Experiments

All experiments used only integers as constants. The following parameters (Table 1 and Table 2)
were the same for all experiments on all data sets.

Table 1 – Invariant settings of plain GP

Parameter Value
Elitism 1
Probability of mutation 0.01
Initiation method growth method
Initialization tree depth 3
Target fitness of plain GP 0.0005
Tree length for pruning 65
Selection method deterministic tournament selection
Tournament size 2

Fig. 2 Scheme of two-layer genetic programming.

3.2.3 Implementation

The two-layer genetic programming algorithm was implemented in Java on top
of the watchmaker framework. It was necessary to implement the genetic program-
ming module and then its two-layer GP variant in the framework. The standard
Random class from the java.util package was used to generate random numbers.

4. Experiments

All experiments used only integers as constants. The following parameters (Tab. I
and Tab. II) were the same for all experiments on all data sets.

Parameter Value

Elitism 1
Probability of mutation 0.01
Initiation method growth method
Initialization tree depth 3
Target fitness of plain GP 0.0005
Tree length for pruning 65
Selection method deterministic tournament selection
Tournament size 2

Tab. I Tree representation of the equation y = x+ 2 sinx.

The remaining parameters are described for specific experiments. All experi-
ments conducted in this chapter were performed in 100 repetitions. The root mean
square error of the model set was used as fitness to evaluate the quality of the final
models.

4.1 Data sets

In the experiments, symbolic regression problems were performed on several datasets
(the values of the tested functions were generated equidistantly):

221

Neural Network World 4/2022, 215–231

Parameter Value

Elitism 1
Probability of a layer 1 mutation 0.01
Probability of 2nd layer mutation 0.1
Initialization method growth method
Initialization tree depth 3
Target fitness of layer 1 0.005
Target fitness of layer 2 0.0
Tree length for pruning 65
Selection method deterministic tournament selection
Tournament size 2

Tab. II Scheme of two-layer genetic programming.

• hyperbola according to Eq. (1), 60 points with x ∈ ⟨0.1, 14.85⟩,

• a function composed of three different sine functions (2), 120 points with
x ∈ ⟨−4, 2⟩,

• a dataset (first 399 points) of measured temperatures from the Indian city of
Delhi1.

y1 =
1

x
, (1)

y3 = sin (x) + sin (2x) + sin (3x+ 5) . (2)

4.2 Hyperbola

The experimental setup for the hyperbola function is described in Tab. III and
Tab. IV.

Parameter Value

Population size 50
Generation limit 230
Set of terminals x;−1.0; 1.0; 2.0; 3.0
Set of non-terminals ∗; +;−; sqrt; sin; pow2; pow3

Tab. III Invariant two-layer GP setup.

Three different bootstrap sizes were tested for the bootstrapping method: 10%,
20% and 30%.

1https://www.kaggle.com/datasets/sumanthvrao/daily-climate-time-series-data?

resource=download&select=DailyDelhiClimateTest.csv

222

https://www.kaggle.com/datasets/sumanthvrao/daily-climate-time-series-data?resource= download&select=DailyDelhiClimateTest.csv
https://www.kaggle.com/datasets/sumanthvrao/daily-climate-time-series-data?resource= download&select=DailyDelhiClimateTest.csv

Merta J., Brandejský T.: Two-layer genetic programming

Parameter Value

Number of sub-models 30
Population size (1st layer) 50
Generation limit (1st layer) 200
Set of terminals (1st layer) x;−1.0; 1.0; 2.0; 3.0
Set of non-terminals (1st layer) *; +;−;
Population size (2nd layer) 50
Generation limit (2nd layer) 30
Base set of terminals (2nd layer) x;−1.0; 1.0; 2.0; 3.0
Set of non-terminals (2nd layer) *; +;−; sqrt; sin; pow2; pow3, avg

Tab. IV Parameters for plain GP on hyperbola function.

4.3 Compound sinus

The parameter settings for the composite sine of Eq. (2) were the same as for the
simple sine, except that the number of individuals was set to 150 (on both layers).
After that experiments with more generations and individuals were performed.

4.4 Temperatures of Delhi

In a recent series of experiments, a real dataset capturing temperatures in the
Indian city of Delhi was tested. The feature set contained the functions ∗, +,
−, %, inv, sqrt, pow2 on the first layer and ∗, +, −, avg on the second layer.
The generation limit was set to 530 for plain GP and 500+30 for 2L-GP. Basic
experiments compared GP and 2L-GP with 50 individuals on both layers with 250
individuals on both layers.

5. Results

5.1 Hyperbola

Three different bootstrap sizes were tested for the bootstrapping method:

1. plain GP,

2. plain GP, 1500 individuals,

3. GP-2L without diversification,

4. GP-2L with bootstrapping (10%),

5. GP-2L with bootstrapping (30%),

6. GP-2L with bootstrapping (60%).

223

Neural Network World 4/2022, 215–231

8

Population size (2nd layer) 50
Generation limit (2nd layer) 30
Base set of terminals (2nd layer) x; –1.0; 1.0; 2.0; 3.0
Set of non-terminals (2nd layer) *; +; –; sqrt, sin, pow2, pow3, avg

Three different bootstrap sizes were tested for the bootstrapping method: 10%, 20% and 30%.

4.3 Compound sinus

The parameter settings for the composite sine of equation (2) were the same as for the simple
sine, except that the number of individuals was set to 150 (on both layers). After that experiments
with more generations and individuals were performed.

4.4 Temperatures of Delhi

In a recent series of experiments, a real dataset capturing temperatures in the Indian city of Delhi
was tested. The feature set contained the functions *, +, –, %, inv, sqrt, pow2 on the first layer
and *, +, –, avg on the second layer. The generation limit was set to 530 for plain GP and 500+30
for 2L-GP. Basic experiments compared GP and 2L-GP with 50 individuals on both layers with
250 individuals on both layers.

5 Results

5.1 Hyperbola

Three different bootstrap sizes were tested for the bootstrapping method:

1. plain GP with additional,
2. plain GP with additional, 1500 individuals,
3. GP-2L without diversification with additional,
4. GP-2L with bootstrapping (10%),
5. GP-2L with bootstrapping (30%),
6. GP-2L with bootstrapping (60%).

Figure 3 – Comparison of plain GP with two-layer GP with bootstrapping

E
rr

or

Method

Fig. 3 Comparison of plain GP with two-layer GP with bootstrapping.

More generations and individuals on the second layer
Due to the lack of accuracy of the models, experiments were conducted with this
settings:

1. GP-2L+bootstrapping (60%), 30 sub-models, 50 individuals, 30 generations
(layer 2),

2. GP-2L+bootstrapping (60%), 30 sub-models, 150 individuals, 30 generations
(layer 2),

3. GP-2L+bootstrapping (60%), 30 sub-models, 50 individuals, 120 generations
(layer 2),

4. GP-2L+bootstrapping (60%), 30 sub-models, 250 individuals, 120 genera-
tions (layer 2),

5. GP-2L+bootstrapping (60%), 30 sub-models, 350 individuals 120 generations
(layer 2),

6. GP-2L+bootstrapping (60%), 30 sub-models, 500 individuals, 120 genera-
tions (layer 2).

Fig. 4 shows that, in this case, increasing the number of individuals and gen-
erations on the second layer had a significant positive effect on the error of the
generated models, and most of the models generated using the last three settings
had an error in the order of 10−3 and the lower quartile of error was below 10−4.

Increasing the number of individuals and generations on both layers and adding
features improved the quality of the models and reduced the upper quartile error
below 0.01. Increasing the number of individuals and generations on the first layer
also had a positive effect.

224

Merta J., Brandejský T.: Two-layer genetic programming

9

More generations and individuals on the second layer

Due to the lack of accuracy of the models, experiments were conducted with this settings:

1. GP-2L+bootstrapping (60%), 30 sub-models, 50 individuals, 30 generations (layer 2),
2. GP-2L+bootstrapping (60%), 30 sub-models, 150 individuals, 30 generations (layer 2),
3. GP-2L+bootstrapping (60%), 30 sub-models, 50 individuals, 120 generations (layer 2),
4. GP-2L+bootstrapping (60%), 30 sub-models, 250 individuals, 120 generations (layer 2),
5. GP-2L+bootstrapping (60%), 30 sub-models, 350 individuals 120 generations (layer 2),
6. GP-2L+bootstrapping (60%), 30 sub-models, 500 individuals, 120 generations (layer 2).

Figure 4 – Two-layer GP with bootstrapping (60%) with different numbers of individuals
and generations on the second layer

Figure 4 shows that, in this case, increasing the number of individuals and generations
on the second layer had a significant positive effect on the error of the generated models,
and most of the models generated using the last three settings had an error in the order of 10-3
and the lower quartile of error was below 10-4.

Increasing the number of individuals and generations on both layers and adding features
improved the quality of the models and reduced the upper quartile error below 0.01. Increasing
the number of individuals and generations on the first layer also had a positive effect.

5.2 Compound sine

The boostrapping method was compared with plain GP and two-layer GP:

1. plain GP of 150 individuals,
2. two-layer GP without training data diversification of 150 individuals,
3. two-layer GP with bootstrapping 30% of 150 individuals,
4. two-layer GP with bootstrapping 60% of 150 individuals.

Results can be seen in the Figure 5.

E
rr

or

Method

Fig. 4 Two-layer GP with bootstrapping (60%) with different numbers of individ-
uals and generations on the second layer.

5.2 Compound sine

The boostrapping method was compared with plain GP and two-layer GP:

1. plain GP of 150 individuals,

2. two-layer GP without training data diversification of 150 individuals,

3. two-layer GP with bootstrapping 30% of 150 individuals,

4. two-layer GP with bootstrapping 60% of 150 individuals.

Results can be seen in the Fig. 5.

10

Figure 5 – Comparison of a plain GP and a two-layer GP with two-layer GP with bootstrapping on a
compound sine function

The bootstrapping method yielded a noticeable improvement on the compound sin, with
60% bootstrap producing better models on average than the 30% bootstrap and producing results
comparable to the simple two-layer GP.

An attempt to increase the accuracy of the models

Experiments with increased populations and generations were designed to increase precision:

1. GP-2L with bootstrapping 60%, 150 individuals,
2. As 1., 200 generations (layer 1), 350 individuals, 240 generations (layer 2),
3. As 1., 150 individuals, 230 generations (layer 1), 500 individuals, 350 generations (layer

2) + sqrt, pow2 function (layer 1), 90 sub-models.

Figure 6 – Comparison of different configurations of the bootstrapping (60%) on the compound sine
function

Figure 6 shows that when increasing the parameters of the two-layer GP with the bootstrapping
method, the error of the resulting models decreased visibly and the last configuration had an error
around 0.1.

5.3 Temperatures of Delhi

The first set of experiments with this dataset looked like this:

1. plain GP, 50 individuals,

Method

E
rr

or

Method

E
rr

or

Fig. 5 Comparison of a plain GP and a two-layer GP with two-layer GP with
bootstrapping on a compound sine function.

225

Neural Network World 4/2022, 215–231

The bootstrapping method yielded a noticeable improvement on the compound
sin, with 60% bootstrap producing better models on average than the 30% boot-
strap and producing results comparable to the simple two-layer GP.

An attempt to increase the accuracy of the models
Experiments with increased populations and generations were designed to increase
precision:

1. GP-2L with bootstrapping 60%, 150 individuals,

2. As 1., 200 generations (layer 1), 350 individuals, 240 generations (layer 2),

3. As 1., 150 individuals, 230 generations (layer 1), 500 individuals, 350 gener-
ations (layer 2) + sqrt, pow2 function (layer 1), 90 sub-models.

Fig. 6 shows that when increasing the parameters of the two-layer GP with the
bootstrapping method, the error of the resulting models decreased visibly and the
last configuration had an error around 0.1.

10

Figure 5 – Comparison of a plain GP and a two-layer GP with two-layer GP with bootstrapping on a
compound sine function

The bootstrapping method yielded a noticeable improvement on the compound sin, with
60% bootstrap producing better models on average than the 30% bootstrap and producing results
comparable to the simple two-layer GP.

An attempt to increase the accuracy of the models

Experiments with increased populations and generations were designed to increase precision:

1. GP-2L with bootstrapping 60%, 150 individuals,
2. As 1., 200 generations (layer 1), 350 individuals, 240 generations (layer 2),
3. As 1., 150 individuals, 230 generations (layer 1), 500 individuals, 350 generations (layer

2) + sqrt, pow2 function (layer 1), 90 sub-models.

Figure 6 – Comparison of different configurations of the bootstrapping (60%) on the compound sine
function

Figure 6 shows that when increasing the parameters of the two-layer GP with the bootstrapping
method, the error of the resulting models decreased visibly and the last configuration had an error
around 0.1.

5.3 Temperatures of Delhi

The first set of experiments with this dataset looked like this:

1. plain GP, 50 individuals,

Method

E
rr

or

Method

E
rr

or

Fig. 6 Comparison of different configurations of the bootstrapping (60%) on the
compound sine function.

5.3 Temperatures of Delhi

The first set of experiments with this dataset looked like this:

1. plain GP, 50 individuals,

2. two-layer GP, bootstrapping 60%, 50 individuals on both layers,

3. plain GP, 250 individuals,

4. two-layer GP, bootstrapping 60%, 250 individuals on both layers.

226

Merta J., Brandejský T.: Two-layer genetic programming

The results of these experiments are shown in the Fig. 7.

The two-layer GP with bootstrapping method managed to improve the accuracy
of the resulting models compared to the plain variant. The greater improvement
occurred in experiments with 250 individuals.

11

2. two-layer GP, bootstrapping 60%, 50 individuals on both layers,
3. plain GP, 250 individuals,
4. two-layer GP, bootstrapping 60%, 250 individuals on both layers.

The results of these experiments are shown in the Figure 7.

Figure 7 – Comparison of plain GP with two-layer GP with bootstrapping (60%) on Delhi temperature
dataset

The two-layer GP with bootstrapping method managed to improve the accuracy of the resulting
models compared to the plain variant. The greater improvement occurred in experiments
with 250 individuals.

5.3.1 Increasing performance

To improve the performance of the two-layer GP on this dataset, the following experiments were
designed:

1. GP-2L, bootstrapping 60%, 50 individuals,
2. As 1., 50 individuals on layer 1, 250 individuals and 120 generations on layer 2,
3. As 1., 150 individuals on layer 1, 250 individuals and 120 generations on layer 2,

set of functions on layer 1 = { *, +, –, %, inv, pow2, pow3, sqrt, sin, abs },
4. As 1., 250 individuals on both layers, 500 and 30 generations, set of functions

on layer 1 = { *, +, –, %, inv, pow2, pow3, sqrt, sin, abs }, 60 sub-models.

E
rr

or

Method

Fig. 7 Comparison of plain GP with two-layer GP with bootstrapping (60%) on
Delhi temperature dataset.

5.3.1 Increasing performance

To improve the performance of the two-layer GP on this dataset, the following
experiments were designed:

1. GP-2L, bootstrapping 60%, 50 individuals,

2. As 1., 50 individuals on layer 1, 250 individuals and 120 generations on layer 2,

3. As 1., 150 individuals on layer 1, 250 individuals and 120 generations on layer
2, set of functions on layer 1 = {∗, +, −, %, inv, pow2, pow3, sqrt, sin, abs},

4. As 1., 250 individuals on both layers, 500 and 30 generations, set of functions
on layer 1 = {∗, +, −, %, inv, pow2, pow3, sqrt, sin, abs }, 60 sub-models.

Fig. 8 shows that by gradually increasing the parameter values, the error was
reduced to a relatively low value (given the nature of the data, the functions used
and the GP implementation with integer constants). The error corresponds more
to learning the trend without overfitting. The addition of more functions on the
first layer also had a positive effect on reducing the error of the generated models.
The last setting generated the most consistent models of all settings tested.

227

Neural Network World 4/2022, 215–231

12

Figure 8 – Comparison of two-layer GP with bootstrapping with increased parameter values

Figure 8 shows that by gradually increasing the parameter values, the error was reduced
to a relatively low value (given the nature of the data, the functions used and the GP
implementation with integer constants). The error corresponds more to learning the trend without
overfitting. The addition of more functions on the first layer also had a positive effect on reducing
the error of the generated models. The last setting generated the most consistent models of all
settings tested.

6 Discussion

The goal of this paper was not to find exact models, but to explore the dynamics and benefits of
a two-layer genetic programming algorithm on hard problems. For this reason, the experiments
were chosen so that finding mathematical models and searching the state space would be difficult
for genetic programming. In the case of the mathematical model search for the hyperbola, no
operator or division function (or % or inverse) was present in the feature set. The search for a
simple sine function used relatively simple functions. The search for the composite sine function
also omitted the sine function from the set of functions. And the entire genetic programming
algorithm used only integer constants. Thus, the real constants in genetic programming had to
evolve by evolution using a suitable combination of integer constants and the functions of
division, inversion, or the square root function.

Two-layer genetic programming coupled with ensemble learning techniques on the experiments
performed showed the potential for improving the performance of genetic programming. Simple
two-layer genetic programming in the selected settings produced, on average, more accurate
and consistent mathematical models of the tested datasets. Some of the accuracies
of the generated trees did not achieve usable results. Also, two-layer genetic programming
coupled with bootstrapping produced better results on average than plain GP. The second layer
responded positively to the greater variety of models generated by the first layer. The selection
of the feature set also had a great influence on the quality of the resulting models, and this was
done on both layers.

Method

E
rr

or

Fig. 8 Comparison of two-layer GP with bootstrapping with increased parameter
values.

6. Discussion

The goal of this paper was not to find exact models, but to explore the dynam-
ics and benefits of a two-layer genetic programming algorithm on hard problems.
For this reason, the experiments were chosen so that finding mathematical models
and searching the state space would be difficult for genetic programming. In the
case of the mathematical model search for the hyperbola, no operator or division
function (or % or inverse) was present in the feature set. The search for a simple
sine function used relatively simple functions. The search for the composite sine
function also omitted the sine function from the set of functions. And the entire ge-
netic programming algorithm used only integer constants. Thus, the real constants
in genetic programming had to evolve by evolution using a suitable combination
of integer constants and the functions of division, inversion, or the square root
function.

Two-layer genetic programming coupled with ensemble learning techniques on
the experiments performed showed the potential for improving the performance
of genetic programming. Simple two-layer genetic programming in the selected
settings produced, on average, more accurate and consistent mathematical models
of the tested datasets. Some of the accuracies of the generated trees did not achieve
usable results. Also, two-layer genetic programming coupled with bootstrapping
produced better results on average than plain GP. The second layer responded
positively to the greater variety of models generated by the first layer. The selection
of the feature set also had a great influence on the quality of the resulting models,
and this was done on both layers.

7. Conclusion

In future research, it would be useful to investigate the dynamics of the param-
eter settings in more detail, especially the number of sub-models, the number of

228

Merta J., Brandejský T.: Two-layer genetic programming

generations and individuals on both layers. Another area of investigation could
be the appropriateness of individual features on the second layer. Furthermore, it
would be interesting to try two-layer programming on data containing noise, on
datasets with a larger number of variables, and on problems in the big data cate-
gory. Another interesting topic for research would be to use different methods to
build sub-models on the first layer simultaneously, thus providing more diversity
in the sub-models.

Another subject of investigation could be the intentional diversification of fea-
ture subsets for sub-model creation. Methods for diversifying input variables would
also need to be added when looking for models of multivariate data. Creating sub-
models may be more time consuming than a plain GP approach due to the larger
number of evaluations. Another promising idea would be to introduce microscopic
genetic operators into the second layer of a two-layer GP. The possibility of adding
additional layers would deserve further investigation. Adding additional layers
would bring genetic programming closer to the principles of deep learning, giving
rise to the term multilayer or deep genetic programming.

References

[1] KOZA J.R. Genetic programming: On the programming of computers by means of natural
selection. Cambridge: Bradford Book, 1992. ISBN 978-0262111706.

[2] AFFENZELLER M. Genetic algorithms and genetic programming: modern concepts and
practical applications. Boca Raton: CRC Press, 2009. ISBN 978-1584886297.

[3] HOLLAND J. Adaptation in Natural and Artificial Systems: An Introductory Analysis with
Applications to Biology, Control, and Artificial Intelligence. Reprint edition. Cambridge,
MA, United States: MIT Press, 1992. ISBN 9780262275552.

[4] LANGDON W.B., POLI R. Foundations of genetic programming. Berlin: Springer-Verlag,
2002. ISBN 978-3540424512.

[5] POLI R., LANGDON W.B., MCPHEE N.F., KOZA J.R. A field guide to genetic program-
ming. Lulu Press. 2008. ISBN 978-1-4092-0073-4.

[6] BOHANEC M., BRATKO I. Machine Learning [online]. 15(3), pp. 223–250. ISSN 08856125.
doi: 10.1023/A:1022685808937.

[7] GOODFELLOW I., BENGIO Y., COURVILLE A. Deep learning. Cambridge, MA: MIT
press, 2016. Adaptive computation and machine learning series. ISBN 9780262035613.

[8] MATTEO R., GIOGIO V. Ensemble methods: a review. In: M.J. WAY, J.D. SCARGLE,
K.M. ALI, A.N. SRIVASTAVA, ed. Advances in Machine Learning and Data Mining for
Astronomy. Chapman & Hall, 2016, ISBN 9781138199309.

[9] WOŹNIAK M., GRAÑA M., CORCHADO E. A survey of multiple classifier systems as
hybrid systems. Information Fusion. 2014, 16, pp. 3–17. ISSN 15662535. doi: 10.1016/j.
inffus.2013.04.006.

[10] FERNANDEZ T., EVETT M. Numeric Mutation as an Improvement to Symbolic Regression
in Genetic Programming. In: Porto, V.W., WAAGEN, D. (eds.) EP 1998. LNCS, vol. 1447,
pp. 251–260. Springer, Heidelberg (1998).

[11] RAIDL G. A Hybrid GP Approach for Numerically Robust Symbolic Regression. In: Proc.
of the 1998 Genetic Programming Conference. Madison, Wisconsin, 1998, pp. 323–328.

[12] SCHOENAUER M., LAMY B., JOUVE F. Identification of Mechanical Behaviour by Ge-
netic Programming Part II: Energy formulation. Technical report, Ecole Polytechnique,
France, 1995.

229

http://dx.doi.org/10.1023/A:1022685808937
http://dx.doi.org/10.1016/j.inffus. 2013.04.006
http://dx.doi.org/10.1016/j.inffus. 2013.04.006

Neural Network World 4/2022, 215–231

[13] HLAVÁČ V. Genetic programming with either stochastic or deterministic constant evalua-
tion. Neural Network World. 2018, 28(2), pp. 119–131. ISSN 12100552. doi: 10.14311/NNW.
2018.28.007.

[14] GRAY G.J., LI Y., MURRAY-SMITH D.J., SHARMAN K.C. Structural system identifica-
tion using genetic programming and a block diagram oriented simulation tool. Electronics
Letters. 1996. ISSN 00135194. doi: 10.1049/el:19960888.

[15] HASHIMOTO N., KONDO N., HATANAKA T., UOSAKI K. Nonlinear System Modeling
by Hybrid Genetic Programming. IFAC Proceedings Volumes. 2008, 41(2), pp. 4606–4611.
ISSN 14746670. doi: 10.3182/20080706-5.

[16] IBA H., SATO T., DEGARIS H. Recombination guidance for numerical genetic program-
ming. In: Proceedings of 1995 IEEE International Conference on Evolutionary Computation.
IEEE, 1995, pp. 97. ISBN 0-7803-2759-4. doi: 10.1109/ICEC.1995.489292.

[17] NIKOLAEV N.Y., IBA H. Adaptive Learning of Polynomial Networks. Boston: Kluwer
Academic Publishers, 2006. Genetic and Evolutionary Computation. ISBN 0-387-31239-0.
doi: 10.1007/0-387-31240-4.

[18] BRANDEJSKÝ T. Influence of (p)rings onto GPA-ES behaviors. Neural Network World.
2017, 27(6), pp. 593–605. ISSN 12100552. doi: 10.14311/NNW.2017.27.033.

[19] BRANDEJSKÝ T. Dependency of GPA-ES Algorithm Efficiency on ES Parameters Opti-
mization Strength. In: ZELINKA, Ivan, Pavel BRANDSTETTER, Tran TRONG DAO, Vo
HOANG DUY a Sang Bong KIM, ed. AETA 2018 – Recent Advances in Electrical Engi-
neering and Related Sciences: Theory and Application. Cham: Springer International Pub-
lishing, 2020, pp. 294–302 Lecture Notes in Electrical Engineering. ISBN 978-3-030-14906-2.
doi: 10.1007/978-3-030-14907-9_29.

[20] ZELINKA I. SOMA — Self-Organizing Migrating Algorithm. In: ONWUBOLU, Godfrey C.
a B. V. BABU. New Optimization Techniques in Engineering. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2004, 2004, pp. 167–217: Studies in Fuzziness and Soft Computing. ISBN
978-3-642-05767-0. doi: 10.1007/978-3-540-39930-8_7.

[21] MERTA J. Hybrid Symbolic Regression with the Bison Seeker Algorithm. MENDEL. 2019,
25(1), pp. 79–86. ISSN 2571-3701. doi: 10.13164/mendel.2019.1.079.

[22] HINCHLIFFE M. Dynamic Modelling Using Genetic Programming. Newcastle, 2001. Dis-
sertation thesis. University of Newcastle upon Tyne.

[23] BETTENHAUSEN K.D. Self-organizing structured modelling of a biotechnological fed-batch
fermentation by means of genetic programming. In: 1st International Conference on Genetic
Algorithms in Engineering Systems: Innovations and Applications (GALESIA). IEE, 1995,
1995, pp. 481–486. doi: 10.1049/cp:19951095.

[24] KEIJZER M. Improving Symbolic Regression with Interval Arithmetic and Linear Scaling.
In: RYAN, Conor, Terence SOULE, Maarten KEIJZER, Edward TSANG, Riccardo POLI
a Ernesto COSTA, ed. Genetic Programming. Berlin, Heidelberg: Springer Berlin Book.
Heidelberg, 2003, 2003-5-13, pp. 70–82. Lecture Notes in Computer Science. ISBN 978-3-
540-00971-9. doi: 10.1007/3-540-36599-0_7.

[25] GANDOMI A.H., ALAVI A.H. Multi-stage genetic programming: A new strategy to nonlin-
ear system modeling. Information Sciences. 2011, 181(23), pp. 5227–5239. ISSN 00200255.
doi: 10.1016/j.ins.2011.07.026.

[26] WILLIS M., HIDEN H., HINCHLIFFE M., MCKAY B., BARTON G.W. Systems modelling
using genetic programming. Computers & Chemical Engineering. 1997, pp. 1161–1166. ISSN
00981354. doi: 10.1016/S0098-1354(97)87659-4.

[27] DANANDEH MEHR A., NOURANI V. Season Algorithm-Multigene Genetic Programming:
A New Approach for Rainfall-Runoff Modelling. Water Resources Management. 2018, 32(8),
pp. 2665–2679. ISSN 0920-4741. doi: 10.1007/s11269-018-1951-3.

[28] MOUSAVI ASTARABADI S.S., EBADZADEH M.M. A decomposition method for symbolic
regression problems. Applied Soft Computing. 2018, 62, pp. 514–523. ISSN 15684946. doi: 10.
1016/j.asoc.2017.10.041.

230

http://dx.doi.org/10.14311/NNW.2018.28.007
http://dx.doi.org/10.14311/NNW.2018.28.007
http://dx.doi.org/10.1049/el:19960888
http://dx.doi.org/10.3182/20080706-5
http://dx.doi.org/10.1109/ICEC.1995.489292
http://dx.doi.org/10.1007/0-387-31240-4
http://dx.doi.org/10.14311/NNW.2017.27.033
http://dx.doi.org/10.1007/978-3-030-14907-9_29
http://dx.doi.org/10.1007/978-3-540-39930-8_7
http://dx.doi.org/10.13164/mendel.2019.1.079
http://dx.doi.org/10.1049/cp:19951095
http://dx.doi.org/10.1007/3-540-36599-0_7
http://dx.doi.org/10.1016/j.ins.2011.07.026
http://dx.doi.org/10.1016/S0098-1354(97)87659-4
http://dx.doi.org/10.1007/s11269-018-1951-3
http://dx.doi.org/10.1016/j.asoc.2017.10.041
http://dx.doi.org/10.1016/j.asoc.2017.10.041

Merta J., Brandejský T.: Two-layer genetic programming

[29] ARNALDO I., KRAWIEC K., O’REILLY U. Multiple regression genetic programming. In:
Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation. New
York, NY, USA: ACM, 2014, pp. 879–886. ISBN 9781450334723. doi: 10.1145/2739480.

2754693.

[30] ARNALDO I., O’REILLY U., VEERAMACHANENI K. Building Predictive Models via
Feature Synthesis. In: Proceedings of the 2015 Annual Conference on Genetic and Evolu-
tionary Computation. New York, NY, USA: ACM, 2015. pp. 983-990. ISBN 9781450334723.
doi: 10.1145/2739480.2754693.

[31] MORAGLIO A., KRAWIEC K., JOHNSON C.G. Geometric Semantic Genetic Program-
ming. COELLO, Carlos A. Coello, Vincenzo CUTELLO, Kalyanmoy DEB, Stephanie FOR-
REST, Giuseppe NICOSIA a Mario PAVONE. – ed. Parallel Problem Solving from Nature
– PPSN XII. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, 2012, pp. 21–31. Lecture
Notes in Computer Science. ISBN 978-3-642-32936-4. doi: 10.1007/978-3-642-32937-1_3.

[32] ŽEGKLITZ J., POŠÍK P. Sequential Model Building in Symbolic Regression. In: ITAT
2019: Conference Information Technologies – Applications and Theory. 2019. [online: http:
//ceur-ws.org/Vol-2473/paper5.pdf].

[33] ICKE I., BONGARD J.C. Improving genetic programming based symbolic regression using
deterministic machine learning. In: 2013 IEEE Congress on Evolutionary Computation.
IEEE, 2013, pp. 1763–1770. ISBN 978-1-4799-0454-9. doi: 10.1109/CEC.2013.6557774.

[34] CHEN C., LUO C., JIANG Z. Elite bases regression: A real-time algorithm for symbolic
regression. In: 2017 13th International Conference on Natural Computation, Fuzzy Systems
and Knowledge Discovery (ICNC-FSKD). IEEE, 2017, 2017, pp. 529–535. ISBN 978-1-5386-
2165-3. doi: 10.1109/FSKD.2017.8393325.

231

http://dx.doi.org/10.1145/2739480.2754693
http://dx.doi.org/10.1145/2739480.2754693
http://dx.doi.org/10.1145/2739480.2754693
http://dx.doi.org/10.1007/978-3-642-32937-1_3
http://ceur-ws.org/Vol-2473/paper5.pdf
http://ceur-ws.org/Vol-2473/paper5.pdf
http://dx.doi.org/10.1109/CEC.2013.6557774
http://dx.doi.org/10.1109/FSKD.2017.8393325

	id1019
	Introduction
	Historical alphabet digitization including Palmyrene
	Image classification on mobile devices
	Android software template and Palmyrene transliterator

	Objective
	Building the classifier
	Training and validation set
	MobileNet based architecture
	Design of the custom CNN architecture
	Training of the new CNN model

	Evaluation on testing set
	Metrics
	Results of MobileNet and custom CNN classifier

	Discussion
	Conclusion

	id824
	Introduction
	Methodology of the proposed work
	Overview
	Preprocessing

	CNN for image fusion: background
	CNN model for SAR optical fusion

	Experimental results and analysis
	Dataset preparation
	Comparison of CNN-based image fusion with traditional and conventional fusion methods
	Inference from the reference-quality assessment metrics
	Inference from the no reference quality metrics

	Conclusion and future work

	id1116
	Introduction
	Background
	Genetic programming
	Symbolic regression
	Deep learning and ensemble learning
	Ensemble architecture

	Optimization of genetic programming and symbolic regression

	Two-layer genetic programming
	Motivation
	Characteristics of layers
	First layer
	Second layer
	Implementation

	Experiments
	Data sets
	Hyperbola
	Compound sinus
	Temperatures of Delhi

	Results
	Hyperbola
	Compound sine
	Temperatures of Delhi
	Increasing performance

	Discussion
	Conclusion

