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Abstract: As a novel biometric characteristic, the electroencephalogram (EEG)
is used for biometric authentication. To solve the challenge of efficiently growing
the number of classifications in traditional classification networks and to increase
the practicality of engineering, this paper proposes an authentication approach
for EEG data based on an attention mechanism and a triplet loss function. The
method begins by feeding EEG signals into a deep convolutional network, maps
them to 512-dimensional Euclidean space using a long short-term memory network
combined with an attention mechanism, and obtains feature vectors for EEG signals
with identity information; it then adjusts the network parameters using a triplet
loss function, such that the Euclidean distance between feature vectors of similar
signals decreases while the distance between signals of a different type increases.
Finally, the recognition method is evaluated using publicly available EEG data sets.
The experimental results suggest that the method maintains the recognition rate
while effectively expanding the classifications of the model, hence thus boosting
the practicability of EEG authentication.
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1. Introduction

With the rapid advancement of information technology, authentication of personal
identifiable information is critical to network information security. Biometric au-
thentication technologies that are often used include those based on voiceprint [1],
face [2], and fingerprint [3]. However, these recognition systems have a number of
disadvantages, including the ease with which they can be forged, their inability to
function following damage, and their lack of in vivo detection. To address these
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shortcomings, EEG signals have been proposed as a new biometric authentication
medium that satisfies the fundamental requirements of biometric authentication [4].

The electroencephalogram is produced by inducing an electric field on the sub-
ject’s scalp, the characteristics of which are determined by the firing of spatially
arranged cortical pyramidal neurons, and this brain activity is typically classified
into five distinct oscillatory rhythms [5], namely delta (0.5–4Hz), theta (4–8Hz),
alpha (8–13Hz), beta (13–30Hz) and gamma (≥ 30Hz). The characteristics of
EEG signals are unique and enduring aspects of the brain, and compared to con-
ventional biometric identification, EEG signals offer more visible benefits [6]: (i)
High concealment: EEG signals are generated within the brain, necessitating the
need for a specialized acquisition instrument; (ii) Liveness detection: creation of
EEG signals must ensure owner activity in the area where they are placed, and
EEG signals will vanish when the owner dies; (iii) Difficult to harm [7]: Compared
to fingerprints, faces, and other biometric features that are exposed to the outside
world for an extended period of time, the EEG is contained within the head and
is the most vital and well-protected organ, which ensures that the EEG signal can
be used as a biometric authentication without fear of causing damage to the EEG
or allowing it to be identified. As a result, in various application scenarios that re-
quire a high level of security, such as military, financial industry, and other critical
situations, EEG offers numerous advantages that enable it to be used in scenarios
that require a high level of security.

With the rapid advancement of brain-computer interface (BCI) technology and
the application of deep learning technology in recent years, EEG signal-based au-
thentication systems have garnered increased attention and study. Research can
generally be classified into four groups based on the cognitive tasks that trigger
EEG. The first is research on the identification of EEG in the resting state. Lan
Ma et al. [8] used convolutional neural networks (CNN) to automatically extract
and classify the best and most unique neural characteristics of individuals, using
EEG data from the open resting state of the eyes (REO) and the closed resting
state of the eyes (REC), and demonstrated that they achieved high recognition
accuracy in a 10-level classification. Additionally, by focusing on a very low fre-
quency band, significant interpersonal variations can be seen. Banee Bandana Das
et al. [9] suggested a spatiotemporally dense architecture for EEG-based person
recognition, first using a CNN to analyze raw EEG data and then using a long
short-term memory network (LSTM) to handle temporal data and perform closed-
eye person recognition. The recognition rates of the individuals were 99.95% and
98% in the closed-eye and open-eye states, respectively. The second is EEG recog-
nition based on visual evoked potentials (VEP). Heba El-Fiqi et al. [10] advocated
the use of CNN in conjunction with the raw steady-state visual evoked potential
(SSVEP) for the recognition and validation of individuals. On the SSVEP dataset,
the suggested technique achieved an average recognition accuracy of 96.8%, which
is 45.5% greater than the average recognition accuracy of other methods. Hongze
Zhao et al. [11] recognized people using a template matching-based identification
algorithm originally designed for the detection of VEP in BCI. Experiments demon-
strated that code-modulated visual evoked potentials (c-VEPs) achieved the max-
imum correct recognition rates when 3.15 s of VEP data were used in the sessional
condition and 99.48% when 10.5 s of VEP data were used in the cross-sessional
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condition. The third category is EEG recognition based on motor imagery (MI).
Yingnan Sun et al. [12] suggested a novel method based on a one-dimensional con-
volutional long short-term memory neural network. The method was evaluated
using EEG data from 109 subjects and demonstrated an extremely high average
accuracy when only 16 channels of EEG signals were used. Vitaly Schetinin et
al. [13] presented the group method of data handling (GMDH), which properly
recognized all subjects in studies using EEG-MI benchmark data and improved
recognition accuracy statistically significantly. Finally, identification of EEG us-
ing event-related potentials (ERPs). Jinan Guan et al. [14] conducted a simulated
reading ERP experiment to extract and classify features from the EEG signals
of numerous subjects using an unsupervised feature learning method. The ex-
perimental results indicated that: utilizing artificial neural networks, the feature
vectors of five subjects were classified with an accuracy rate greater than 90%. Ad-
ditionally, Emanuemeiorana [15] proposed a deep learning method using Siamese
convolutional neural network, which was carried out on a multi-session database
composed of 45 subjects’ EEG data. The results can be used for EEG-based biomet-
ric verification under cross-task conditions. Alyasseri Z.A.A. et al. [16] addressed
the problem of EEG channel selection by using a binary version of the grey wolf
optimizer and a support vector machine classifier with a radial basis function to
obtain an accuracy of 94.13% using only 23 EEG channels with 5 autoregressive
coefficients of the sensor. Mohamed Benomar [17] explored the implementation of
EEG-based biometrics using ResNet, Inception and EEGNet on a multi-task BED
dataset for 21 subjects achieving an accuracy of 63.21%, 70.18% and 86.74% for
ResNet, Inception and EEGNet, respectively.

Although academics have conducted much research on EEG biometrics with
encouraging results, several fundamental difficulties remain: (i) Conventional con-
volutional recurrent models in which long short-term memory networks are unable
to highlight significant information in a long sequence, thus impairing the network’s
ability to learn temporal information; (ii) Existing research on traditional algo-
rithms based on deep learning models for classification tasks. The disadvantages
of commonly used loss functions, such as cross-entropy and softmax loss functions,
are that they require a fixed number of categories to be defined in advance [18],
and that if new categories need to be added or reduced during the training process,
the entire network must be redefined and retrained, which cannot be well adapted
to the training task of nonfixed categories, and the prescribed training categories
have a certain risk of failure; (3) EEG signals is typically performed on 64 or 128
conductive pole channels, which is extremely uncomfortable and impractical for
the EEG acquisition process, significantly reducing the user’s comfort; and there
is prior experimental evidence that fewer electrodes can be used for the authen-
tication of EEG [19], suggesting that EEG authentication in realistic engineering
applications can be reduced.

Therefore, in the traditional cascaded network based on a convolutional neural
network and a long short-term memory network, this paper introduces the attention
mechanism and the triplet loss function to extract features and classify and identify
EEG signals. Experiments based on the EEG database prove that this method has
good scalability while ensuring accuracy and ensures strong practicability in the
engineering of EEG authentication.
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2. Materials and method

In this paper, we propose a deep neural network model for EEG authentication
based on the attention mechanism with long short-term memory networks and
convolutional neural networks (1DCNN-ALSTM), and the overall model is depicted
in Fig. 1. The model begins with the original EEG data, abstracts the original EEG
data characteristics using a convolutional neural network, and then extracts the
brain pattern features of the EEG signal using a long short-term memory network.
Scale regularization of EEG features will be used to ensure that the final acquired
brain pattern feature is a vector of features restricted to Euclidean space.

Fig. 1 EEG authentication model.

2.1 Description of data and pre-processing

The source of the experimental data is the publicly available Physionet EEG motor
imagery data set [20]. Subjects performed different motor/imagery tasks while 64-
channel EEG was recorded using the BCI2000 system [21]. The sampling frequency
of the database is 160 Hz, and there are EEG data from a total of 109 subjects. Each
subject performed 14 experimental runs: two one minute baseline runs (one with
eyes open, one with eyes closed) and three two minute runs of each of the following
four tasks: (i) A target appears on either the left or right side of the screen. The
subject opens and closes the corresponding fist until the target disappears. Then
the subject relaxes. (ii) A target appears on either the left or right side of the
screen. The subject imagines opening and closing the corresponding fist until the
target disappears. Then the subject relaxes. (iii) A target appears at the top or
bottom of the screen. The subject opens and closes either both fists (if the target
is on top) or both feet (if the target is on the bottom) until the target disappears.
Then the subject relaxes. (iv) A target appears at the top or bottom of the screen.
The subject imagines opening and closing either both fists (if the target is on top)
or both feet (if the target is on the bottom) until the target disappears. Then the
subject relaxes

In order for the data to be better trained, a few minutes of EEG data from each
subject are segmented so that it can have a larger number of files for the same task
from the same subject. In this paper, each segment of the EEG signal is segmented
into 1s EEG data. For the 1s EEG segment data, each sample can be represented
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as a matrix of EEG channels and sampling rates, with a total number of samples
of 169246. For practical use, i.e., whether a high resolution can be achieved even
without performing a specific evoked task. Therefore, the full task EEG data of
each subject was used for this experiment regardless of whether this subject was
performing the evoked task or not.

2.2 Neural network structure

2.2.1 One-dimensional convolution neural network

Convolution neural network has a wide range of applications in computer vi-
sion [22], and its convolutional layer uses a two-dimensional convolutional kernel
to convolve image data. One-dimensional convolutional neural networks are very
effective in deriving features from fixed-length segments of the entire dataset and
are also known as automatic feature extractors, which automatically learn basic
ordered features from the underlying raw data. Convolutional and pooling lay-
ers are commonly used for feature learning [23] and are used to extract patterns
and features from the input. As for the EEG signal, which is essentially a one-
dimensional sequence, a one-dimensional convolutional layer is required, and the
process of one-dimensional convolutional operation is shown in Fig. 2.

Fig. 2 One-dimensional convolutional operation process.

2.2.2 The long short-term memory network

The long short-term memory network is a special kind of recurrent neural network
(RNN), which was proposed by Hochreiter & Schmidhuber [24] and has been ap-
plied and promoted by many people in subsequent works. It performs very well
in various sequential problems, and its special structural design makes it good for
solving long-dependence problems. Long short-term memory neural network can
overcome the problems of “gradient disappearance” and “gradient explosion” in
the backpropagation process of recurrent neural networks [25], and can effectively
extract temporal features from EEG temporal signals.

The LSTM structure is mainly composed of three different gate structures: the
forgetting gate, the memory gate, and the output gate. The main purpose of
these three different gate structures is to control the retention and transmission
of information in the LSTM, which is finally reflected in the cell state Ct and the
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output signal Ht. The forgetting gate consists of a sigmoid activation function
and a bit multiplication operation, which is always used for information forgetting
as there is always excess information in the computation of information. The
forgetting gate selects the cell state Ct−1 in which the information will be forgotten,
and the activation of the forgetting gate is represented by, which is calculated using
in Eq. (1).

Ft = σ(W · [Xt, Ht−1, Ct−1] + bf ), (1)

where W is the weight matrix, bf is the offset, Ht−1 is the output of the previous
loop layer, and Xt is the input of that layer.

The memory gate consists of a sigmoid activation function and a tanh activation
function, which serves the opposite function of the forgetting gate and is mainly
used to remember information. It determines which of the new input information
Xt and Ht−1 retained and which is discarded. The sigmoid layer serves the same
function as the forgetting gate, mainly receiving Xt and Ht−1 as input and then
outputting to a value between 0 and 1 to determine which information needs to be
updated, as shown in Eq. (2). The role of the tanh layer is to integrate the input.
The input Xt is integrated with Ht−1, and the tanh layer is used to create a new
candidate vector of cell states, Ct−1 with a value between 0 and 1, as shown in
Eq. (3).

It = σ(W · [Xt, Ht−1, Ct−1] + bi), (2)

Ct−1 = tanh(W · [Xt, Ht−1, Ct−1] + bc), (3)

where W is the weight matrix, bi and bc are the offset, Ht−1 is the output of the
previous loop layer, and Xt is the input of that layer.

Here, the output of the forgetting gate Ft is multiplied by the cell state Ct−1

at the previous moment to select some information for forgetting and retention, as
shown in Eq. (4). The output of the memory gate is summed by the information
selected by the forgetting gate to get the new cell state. Ct will continue to be
passed on to the LSTM network at moment t+ 1 as the new cell state.

Ct = Ft · Ct−1 + It · Ct−1. (4)

After updating the cell state Ct, enter the output quantity Ht corresponding
to moment t. The output gate is the state passed at moment t − 1 and after the
previous forgetting gate and memory gate, after selecting the state, integrated with
the output signal at moment t− 1 and the input signal at moment t as the current
moment output signal, as shown in Eqs. (5) and (6).

Ot = σ(W · [Xt, Ht−1, Ct−1] + bo), (5)

Ht = tanh (Ct) ·Ot, (6)

where bo is the offset, Ot indicates control Ct output.

2.2.3 Attention mechanism

The attention mechanism is inspired by the human visual system and can give
neural networks the ability to focus on a specific subset (input or features) [26].
Essentially, attention mechanisms filter out a small amount of valid information
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for focus during information processing and ignore a large amount of other in-
valid information to solve the information overload problem. The inability of the
LSTM network to highlight important information in a long sequence weakens the
network’s ability to learn temporal information. The attention mechanism can
compensate for this shortcoming. The attention mechanism can help the network
capture stage information by introducing new trainable variables that sequentially
strengthen the connection between data segments and highlight attention-focused
data segments. Not all feature information is of equal importance in studies tar-
geting EEG signals, so adding an attention mechanism to the LSTM network and
assigning different weights to the output of the LTSM layer can better focus on the
important feature information of the EEG signals, thus effectively improving the
classification of the model [27], Eqs. (7), (8), and (9) are as follows:

u(t) = tanh(WwHt + bw), (7)

α(t) =
exp

(
uT(t)uw

)∑
t exp (u

T(t)uw)
, (8)

S =
∑
t

α(t)Ht, (9)

where Ww, uw and bw represent trainable weights and bias terms, respectively;
uT(t) represents the LSTM layer output of the learned features Ht; α(t) represents
the probability distribution obtained by normalizing the weight coefficients by the
softmax function, and the more important feature information in the feature in-
formation Ht extracted by the LSTM is selected and obtained by the probability
distribution α(t), and finally the weighted sum of the feature values is obtained by
the final feature information.

2.2.4 Triplet loss function

Triplet loss was first presented by Google in the FaceNet paper [28] as a loss function
for solving the facial identification problem, with the goal of differentiating non-
identical and very similar samples, such as two brothers. The triplet loss has
three fundamental elements: three distinct embedding vectors that combine to
produce a triplet. The anchor vector A, the positive vector P , and the negative
vector N are the three embedding vectors. The anchor vector A serves as the
reference vector, i.e., it serves as the reference vector for the following two vectors.
The positive vector P represents the embedding vector of samples belonging to the
same category as the anchor vector; the negative vectorN represents the embedding
vector of any other samples belonging to a different category. The basic concept of
ternary loss is to bring the positive vector as close to the anchor vector as possible
while keeping the negative vector as far away from the anchor vector as possible.
This is illustrated in Fig. 3.

The margin parameter called the threshold parameter, is used to measure how
close or far the positive and negative vectors are to and from the anchor vector.
The triplet loss function for this parameter is shown in Eq. (10).

L(A,P,N) = max(∥f(A)− f(P )∥2 − ∥f(A)− f(N)∥2 + α, 0), (10)
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Fig. 3 Triplet loss adjustment chart.

where ∥f(A) − f(N)∥2 denotes the Euclidean distance between the anchor vector
and the negative vector; ∥f(A) − f(P )∥2 denotes the Euclidean distance between
the anchor vector and the positive vector. α is a preset very small threshold to
constrain the gap between A−N and A− P Euclidean distance.

In the process of tuple selection, difficult samples are chosen [29] so that the
triadic loss can learn more subtle features and thus better facilitate network con-
vergence. The difficult samples include the triplet sample mining strategy, which
selects the positive samples with the farthest distance from the anchor sample fea-
ture mapping and the negative samples with the closest distance from the anchor
sample feature mapping under each training batch to form a difficult triad and
train the neural network model. For a given anchor vector, the difference between
the hard positive sample and the anchor vector is the smallest, while the difference
between the hard negative sample and the anchor vector is the largest. The defini-
tions of hard positive samples and hard negative samples are expressed in Eqs. (11)
and (12), respectively, as follows.

hardpositive = argmax ∥f(A)− f(P )∥22 , (11)

hardnegative = argmin ∥f(A)− f(N)∥22 , (12)

where ∥f(A)− f(P )∥22 denotes the Euclidean distance between the anchor vector

and the positive vector in the ith tuple; ∥f(A)− f(N)∥22 denotes the Euclidean
distance between the anchor vector and the negative vector in the ith tuple.

2.3 Overview of proposed architecture

Fig. 4 shows 1DCNN-ALSTM network structure. The network is made up of four-
teen layers, including five convolution layers, two long short-term memory network
layers, four batch normalization layers, an attention mechanism layer, a full con-
nection layer and a resize layer. The main parts of the network are the 1DCNN
layer, the LSTM layer, and the attention mechanism layer

Original data is first processed by reversed convolution structure that possess 5
convolution layers, with 3×1 scale of all convolution nucleus and num of convolution
nucleus for each layer is 1024, 512, 256, 128 and 64 in order. The step of each single
convolution opreation for data was set to 1. When the data went through the fifth
convolution layer, the shape of each EEG data was changed to 160× 64. Then the
whole data is reshaped from batchsize ×160× 64 to 160× batchsize× 64, and we
know that 160 is about infomation of time dimension, so the input dimension of
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Fig. 4 Network structure based on 1DCNN-ALSTM.

each double-layer LSTM cell is set to 160. After going through the LSTM layer,
the output goes through the attention mechanism layer. Finally, the data goes
through the full connection layer and become 512D EEG feature output, which has
512 numbers to describe EEG of different individuals.

The EEG signals are mapped to a feature space constituted of 512 real numbers
in this model by multiple feature extraction, and the feature vectors of the EEG
identity signals are obtained. Following back propagation, the network is graded
down in the direction of minimizing the triplet loss, and the network parameters
are changed, as illustrated in Eqs. (13) and (14). Following repeated training, the
Euclidean distance between 512-dimensional eigenvectors generated by the same
identity will eventually diminish, while the distance between distinct signals will
gradually increase.

W ′
ij = Wij − lr

∂

∂Wij
L(W, b), (13)

b′i = bi − lr
∂

∂bi
L(W, b), (14)

where lr is the network learning rate; Wij , b network weight and bias; L(W, b) is
the triplet loss function.

3. Experiments and analysis of results

3.1 Experimental environment configuration

The experiment implementation environment is equipped with the Ubuntu18.04
operating system, an Intel(R)Xeon(R)CPUE5− 2680v4@2.40GHz CPU proces-
sor, and a GeForceGTX1080Ti graphics card, and the model uses the Pytorch1.9.0
deep learning framework built on Python3.8.3. During the training phase of the
experiment, each experiment was randomly separated into three groups: 80% of
the EEG signals were used to train the model, 10% of the data were used to verify
the model, and 10% of the data were maintained for model testing. Each iterative
training session in the experiment begins with the training data being combined
into 64 batches. When the network reaches 200 epochs or the training loss is at
standstill, the network training will be terminated.
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To evaluate the classification performance of the created model, this article
determines the correct recognition rate (CRR), loss values (loss), model loading
time (L-time) and batch testing time (T-time) for EEG identities.

3.2 Authentication performance of the model

To highlight the benefits of the proposed 1DCNN-ALSTM model structure, we
can more effectively depict the spatial information contained in the EEG in a
512-dimensional Euclidean space, resulting in a higher recognition rate. When
using the same 64-channel EEG dataset and the same triplet loss function, the loss
convergence of the training to the network is stopped.

The classification and identification performance indicators for the three models
are shown in Tab. I, the EEG authentication model based on attention LSTM and
CNN achieves a high classification rate of 99.97%, which is 0.35% better than the
single 1DCNN model and 3.1% higher than the single LSTM model. The loss rate
of the 1DCNN-ALSTM model is the lowest in Tab. I, and while the model loading
time in the test set is longer than that of the single 1DCNN and LSTM model,
it is still less than 0.5 s, which meets the requirements of engineering applications.
Additionally, the 1DCNN-ALSTM model achieves a minimum test time of 0.23 s
for each batch, which is approximately 0.1 s faster than that of a single network. In
summary, it shows that the 1DCNN-ALSTM model can outperform the standard
single network model and successfully increase the accuracy of the model.

Indicator

Models CRR [%] Loss L-time [s] T-time [s]

1DCNN 99.61 0.0442 0.0271 0.3189
LSTM 97.87 0.1245 0.0408 0.3609
1DCNN-ALSTM 99.97 0.0230 0.3553 0.2369

Tab. I Authentication results under 64 electrodes for different models.

To illustrate the model’s utility and to make EEG authentication realistic.
Individual EEG electrodes from the BCI2000 system used in the EEG database
were screened in this work for the EEG areas caused by the motor imagery EEG
paradigm (region C, region P, and region CP), there were a total of 23 electrodes,
as shown in Fig. 5. As a result, in this paper, the EEG data from nine electrodes
in the P region, seven electrodes in the CP region, and seven electrodes in the C
region were retained sequentially, and the EEG data from these electrodes were
substituted into the above model for training, while the data from the remaining
electrodes were erased.

The electric recognition effects of the three models based on different num-
bers are depicted in Tab. II. By comparison, it is discovered that as the number
of electrodes is reduced, the accuracy of the model gradually decreases, but the
recognition rate increases. EEG recognition rates based on the P area (9 elec-
trodes) and the P-C-CP region (23 electrodes) are approximately equal and exceed
99%. Although the variation in electrode count is modest compared to the CP and
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Fig. 5 Electrode screening chart.

C regions. However, the precision of the three models in each region varies signifi-
cantly, demonstrating that the P region is capable of accurately identifying motor
imagery EEG data. Compared to the single 1DCNN and LSTM model, 1DCNN-
ALSTM achieves the maximum accuracy in each region, although the recognition
rate gradually decreases to less than 90% for a few electrodes. As a result, this
article can utilize the 1DCNN-ALSTM model to reduce the number of electrodes,
lower the cost of data collection, and increase practicability.

Region

Models C [%] CP [%] P [%] C-P-CP [%]

1DCNN 51.17 88.29 97.97 98.74
LSTM 29.17 28.10 30.81 80.95
1DCNN-ALSTM 94.42 94.45 98.50 99.71

Tab. II Authentication results under different regions.
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3.3 Comparison with traditional classification networks

The output of the last fully connected layer of the convolutional neural network
is usually processed by the softmax function, and the output processed by soft-
max is brought into the cross-entropy loss function, which can measure the degree
of difference between two different probability distributions in the same random
variable, and is expressed in machine learning as the difference between the true
probability distribution and the predicted the difference between the true prob-
ability distribution and the predicted probability distribution. The smaller the
value of cross-entropy, the better the model prediction. The cross-entropy function
is essentially a log-likelihood function that can be used in both dichotomous and
multiclassification tasks. In multi-classification tasks, the cross-entropy is usually
of the form of Eq. (15).

L = − 1

n

∑
y ln a, (15)

where y represents the actual label, a represents the predicted output, and n rep-
resents the total number of samples.

This experiment is compared to the standard classification network, and for the
purposes of comparison, the classification network’s network structure is essentially
identical to that of the present model. The distinction is that the classification
network employs the widely used cross-entropy loss function as the network’s loss
function, converts the final layer of this model from a normalization layer to an
output layer containing 109 neurons, and achieves classification of the input data
using a softmax function. The classification network was trained using the same
dataset as the current model, and once the models converged, the two models were
tested using the dataset’s test set.

Indicator

Loss function CRR [%] Loss L-time [s] T-time [s]

Cross-entropy loss 61.06 1.6061 0.3135 0.0313
Triplet loss 99.97 0.0230 0.3553 0.2369

Tab. III Classification results of the model under different loss functions.

As shown in Tab. III, the same 1DCNN-ALSTM model significantly improves
its recognition rate when the triplet loss function is used, and the model speed
is effectively increased at the same epoch, even though the model testing time is
reduced. However, the reduction is within the range of engineering. In general, the
triplet loss model outperforms the classic classification network in terms of iden-
tification accuracy, and the training objective is to obtain features incorporating
EEG identity information, which can significantly enhance the scalability of EEG
identity authentication.

3.4 Comparison with related works

The proposed 1DCNN-ALSTM-based EEG authentication model is compared to
existing EEG identity models in this paper, as shown in Tab. IV. Banee Bandana
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Das et al. [9] proposed a network for the resting-state only Physionet EEG motor
imagery dataset in 2019, using 64 channels and 4 s of EEG for identification, with
95% and 95.33% for two resting states with eyes open and closed, respectively,
but the real identification rate is insufficient for practical applications. In 2019,
Yingnan Sun et al. [12] proposed a user identification system for EEG signals using
Physionet EEG that is built on a one-dimensional convolutional long short-term
memory neural network. The method’s performance was validated using the motor
imagery dataset, and the results indicated that the accuracy could reach 95.58%
at 16 channels. However, despite the fact that the number of electrodes has been
effectively reduced, the application in reengineering remains inconvenient. In 2021,
Mari Ganesh Kumar et al. [30] proposed the best subspace approach (ix-vector)
to identify persons with an accuracy of 86.4% with only 9 EEG channels. In
2022, Chiqin Lai [31]proposed a CNN combined with an error correcting output
code of support vector machine with majority voting set (CNN-ECOC-SVM) for
biometric recognition showing that 98.49% accuracy was achieved in the proposed
architecture. The results demonstrate that the suggested 1DCNN-ALSTMmodel is
effective at extracting EEG authentication features and can be decreased for EEG
channels, showing that the proposed method is effective, resilient, and practicable.

Model Electrodes Subjecs Time [s] CRR [%]

Das B.B. [9] CNN-LSTM 64 109 4 95.33
SUN Y. [12] CNN-LSTM 64 109 1 99.58

Kumar M. [30] IX-VECTOR 9 30 15 86.40
Lai C. [31] CNN-ECOC-SVM 64 109 1 98.49
Proposed 1DCNN-ALSTM 64 109 1 99.97

Tab. IV Comparison with some state-of-the-art EEG-based authentication model.

4. Conclusions and future work

In this paper, a neural network EEG authentication model based on CNN and
LSTM with attention mechanism is built, and an authentication method based on
motor imagery EEG signals is designed by drawing on the triplet loss function in the
field of face recognition. The performance of the proposed model is experimentally
evaluated on publicly available EEG datasets, and the experimental results show
that the proposed method outperforms the state-of-the-art EEG authentication
methods on both 64 electrodes and 23 electrodes, thus enabling the use of less
The electrodes are used to complete the authentication, which can reduce the data
cost in the authentication. Furthermore, compared to traditional classification
networks, the number of identifiable species in this model is not limited by the
number of neurons in the output layer of the network model, which can effectively
improve the scalability of EEG authentication.
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In addition, EEG signals collected over long periods of time can hinder authen-
tication performance, and thus there is still research to be done on how long it takes
to update the EEG identity information. Since this paper is based on the motor
imagery EEG data set for EEG authentication research, the generality of EEG can
be improved in the future by implementing cross-task EEG authentication based
on different tasks.
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