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Abstract: In this paper, we propose new methods for estimating the relative
reliability of prediction and rejection methods for selective classification for spiking
neural networks (SNNs). We also optimize and improve the efficiency of the RC
curve, which represents the relationship between risk and coverage in selective
classification. Efficiency here means greater coverage for risk and less risk for
coverage in the RC curve. We use the model internal representation when time
series data is input to SNN, rank the prediction results that are the output, and
reject them at an arbitrary rate. We propose multiple methods based on the
characteristics of datasets and the architecture of models. Multiple methods, such
as a simple method with discrete coverage and a method with continuous and
flexible coverage, yielded results that exceeded the performance of the existing
method, softmax response.
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1. Introduction

In recent years, neural networks have been used not only in the field of scientific
research but also in various fields such as applications in the real world. It is
necessary to properly handle the reliability and uncertainty of predictions in order
to incorporate and operate the prediction results output by the neural network into
the real world system. With the social attention to artificial intelligence, research
on the realization of safe and reliable artificial intelligence and the quantification
of uncertainty has been active in recent years [1].

For example, when operating a system related to human life such as automatic
driving and medical image analysis in the real world, it is useful to use the output
result of the model together with uncertainty. This is because uncertainty can be
used to make decisions from in-vehicle camera images, and the system and humans
can work together to determine the presence or absence of illness and its location.

∗Masaya Yumoto – Corresponding author; Masafumi Hagiwara; Keio University, Faculty of
Science and Technology, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Japan, E-mail: myumoto85@keio.
jp, hagiwara@keio.jp

©CTU FTS 2023 49

mailto:myumoto85@keio.jp
mailto:myumoto85@keio.jp
mailto:hagiwara@keio.jp


Neural Network World 2/2023, 49–66

Selective classification also helps determine how much humans and systems share
tasks.

There are four major approaches to estimating uncertainty using neural net-
works. The first is a single deterministic method [2]. It makes predictions based on
one forward path of one deterministic network. Uncertainty quantification uses an
internal representation in the network or is represented by an external method. The
second is Bayesian method [3]. This is called a stochastic neural network in which
the model parameters are considered as random variables. Bayesian modeling is
performed by assuming prior distribution in the model parameters of the neural
network. The third is an ensemble method [4]. It combines the predicted values of
several different deterministic networks at the time of inference. Research has been
carried out for the purpose of improving accuracy and robust prediction, but it
can also be used to estimate the uncertainty of neural networks. The fourth is the
test-time augmentation method [5]. It makes predictions based on one determin-
istic network. During the test, the input data is expanded to generate prediction
distributions for multiple predictions.

Although each approach has its advantages and disadvantages, there are some
advantages of single deterministic methods over the others. The first one is the high
computational efficiency in learning and evaluation. Single deterministic meth-
ods are applicable to one neural network, especially a trained neural network. In
contrast, Bayesian methods require multiple samplings, ensemble methods require
multiple models, and test-time augmentation methods require multiple expanded
data, resulting in high computational cost. Another point is that there is no need
to make changes to the existing network. In the case of the Bayesian methods and
ensemble methods, it is necessary to change the network for approximate inference
and prepare different models. On the other hand, single deterministic methods have
the disadvantage of being highly dependent on initial values and hyperparameters.
While other methods utilize the diversity of models and data in various approaches
to quantify uncertainty, it is difficult to ensure the diversity in single deterministic
methods. This is in a trade-off relationship with the amount of calculation.

Considering the above discussion, we employ a single deterministic method in
this paper. Specifically, we treat SNN, which is a type of neural network and has
strengths in data processing with spatio-temporal patterns and low power con-
sumption. We propose indices and rejection methods for estimating the relative
reliability of predictions for selective classification in SNN. We improve the effi-
ciency of the RC curve that represents the relationship between risk and coverage
in selective classification. Using the model internal representation, the prediction
results are ranked and rejected at an arbitrary rate. Then, we verify the perfor-
mance of multiple methods depending on the architecture of the model and the
dataset.

Existing research on selective classification and prediction reliability is mainly
about quantifying the reliability of predictions output by models for each piece of
data. On the other hand, in this paper, we focus on making it possible to flexibly
and advantageously select the rejection rate and the expected error rate to be
tolerated by improving the efficiency of the RC curve for a certain number of data.
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The rest of this paper is organized as follows: In Section 2, we will provide the
background; The description of the proposed method is presented in Section 3; Sec-
tion 4 reports the evaluation experiments; and the conclusion is given in Section 5.

2. Background

2.1 Selective classification

Selective classification [6] is a classification with a reject option. A rejection option
is an option that allows the rejection of a prediction if it is not confident. Selective
classification has the important concepts of risk and coverage. Risk is literally
the risk, the error rate of the classification. Coverage is the ratio of data handled
without rejection to the entire data. There is a trade-off between this risk and
coverage.

Fig. 1 shows the RC plane and RC trade-offs [6], which are the entire area of risk
and coverage. A point (r, c) on the RC plane is achievable if selective classification
is possible such that the coverage is at least c ∈ R and the risk is at most r ∈ R.
The RC plane consists of all points (r, c), and the achievable zone means the area of
achievable points (r, c). Conversely, the non achievable zone is an area that cannot
be achieved. The upper envelope means the lower bound of the non achievable zone,
and the lower envelope is the upper bound of the achievable zone. In the region
between these two boundaries, the curve connecting the corresponding points (r, c)
of risk (r) and coverage (c) is the RC curve. An efficient RC curve for selective
classification is an RC curve that is close to the upper envelope.

Fig. 1 RC plane and RC trade-off.

2.2 Spiking neural networks

SNN is a neural network that uses an artificial neuron model that focuses on the
firing and spikes of neurons in the brain. In recent years, with the progress of
deep learning in multi-layered artificial neural networks (ANNs), research on deep
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learning in SNN is also progressing [7]. The input of SNN always contains time
series information, and the internal representation of the model also has time se-
ries information. In this paper, we perform selective classification considering the
characteristics of this time series internal representation.

3. Efficiency improvement of RC curve

The proposed method uses the time series internal representation of SNN. In this
paper, we propose two kinds of methods: the case where the final layer of the model
is a pooling layer and the case where it is a fully connected layer.

3.1 Problem statement

In this work, we address selective prediction in a multi-class classification problem
[6]. Let X be a feature space and Y a label space. Let P be a distribution over
X × Y. Let D = {(xi, yi)}Li=1 be a dataset sampled i.i.d. from P . A deep neural
classifier f is a function f : X → Y and a loss function ℓ is ℓ : Y × Y → {0, 1},
which is a 0/1 error.

A selective classifier is a pair (f, g), where f is a classification function and
g : X → {0, 1} is a selection function. g acts as a binary selector for f as follows:

(f, g)(x) ≜

{
f(x) if g(x) = 1,
reject if g(x) = 0.

(1)

Thus, the selective classifier rejects the prediction if g(x) = 0.
The selection function g is defined as follows:

g(x) ≜

{
1 if κf(x) ≥ θ,
0 otherwise,

(2)

where κf : X → R is a confidence score function and θ ∈ R is a threshold.
The risk of (f, g) for the dataset D is defined as:

R(f, g|D) ≜
1
L

∑L
i=1 ℓ(f(xi), yi)g(xi)

C(g|D)
, (3)

where C is the coverage for D, which is defined as:

C(g|D) ≜
1

L

L∑
i=1

g(xi). (4)

Each of the following proposed methods provides the different selection function
g, the confidence score function κf, and the threshold θ.

3.2 The case where the final layer is a pooling layer

In this section, we propose five methods, “square matrix method”, “lower triangular
matrix method”, “proposed without constraints”, “proposed with constraints”, and
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“softmax response”. SNN deals with a four-dimensional tensor called spike-wave
tensor [8]. Using this tensor, we explain the input and output sizes. spike-wave
tensor has the size of Tmax × F × H × W , where Tmax ∈ N means the maximum
possible number of time-steps, F ∈ N means feature (channel), H ∈ N means
height, and W ∈ N means width. Since Tmax is constant from the input layer to
the output layer, it is omitted hereafter.

The final pooling layer is often the global max pooling layer or the global average
pooling layer. In the global pooling layer, the maximum or average value of each
feature F is taken, so a tensor with a size of Fin× 1× 1 is output for an input with
a size of Fin ×Hin ×Win. The total number of neurons in the layer immediately
before the final layer is FinHinWin. Let the number of classes in the classification
be Lclass ∈ N. FinHinWin/Lclass neurons correspond to each class.

Selective classification is performed using the time series internal representation
in the layer immediately before this final layer. For each time-step, create a row
vector in which the outputs of this layer for xi are arranged in descending order
according to the potential of the neuron, and connect them in the column direction.
The matrix A ∈ ZTmax×FinHinWin of the time series internal representation of the
layer immediately before the final pooling layer is defined, where am,n ofA contains
the number of the label of the class corresponding to the neuron. The subscripts
of the components, m and n, contain any natural number less than or equal to
the size of the matrix. Here, it is assumed that each class label is represented
by a different integer. The vertical (column) direction means time, the 1st row
corresponds to the first time-step, and the Tmax-th row corresponds to the last
time-step. In the horizontal (row) direction, the 1st column corresponds to the
maximum in the order of the value of the neuron potential, and the FinHinWin-th
column corresponds to the minimum.

Set any natural number Lp ∈ N less than or equal to Tmax. Lp is a variable
for cutting out a part of A, and cuts off the components in the time step of
the former part that is not important for the judgment of rejection. The matrix
Ap ∈ Z(Lp+1)×Lp cut out from the (Tmax−Lp)-th row to the Tmax-th row and from
the 1st column to the Lp-th column of A is expressed as:

Ap =


aTmax−Lp,1 aTmax−Lp,2 . . . aTmax−Lp,Lp

aTmax−Lp+1,1 aTmax−Lp+1,2 . . . aTmax−Lp+1,Lp

...
...

. . .
...

aTmax,1 aTmax,2 . . . aTmax,Lp

 . (5)

Let ∆Ap ∈ ZLp×Lp be the matrix obtained by taking the difference in the time
(vertical) direction of Ap, which is defined as:

∆Ap =


∆aTmax−Lp+1,1 ∆aTmax−Lp+1,2 . . . ∆aTmax−Lp+1,Lp

∆aTmax−Lp+2,1 ∆aTmax−Lp+2,2 . . . ∆aTmax−Lp+2,Lp

...
...

. . .
...

∆aTmax,1 ∆aTmax,2 . . . ∆aTmax,Lp

 , (6)

where ∆am,n = am,n − am−1,n. When 1 time-step is advanced, if the label has not
changed, it will be 0, and if the label has changed, it will be a number other than
0.
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Set any natural number N ∈ N less than or equal to Lp. N is a variable that
determines the size of the square matrix and lower triangular matrix of N × N ,
which is the rejection criterion explained below. When the condition is whether all
the components of the matrix are 0, the larger N is, the more difficult it is to satisfy
the condition, the smaller the coverage, and the smaller the risk. Conversely, the
smaller N , the easier it is to meet the conditions, the greater the coverage, and the
greater the risk. ∆Ap,N ∈ ZN×N is a square matrix cut from the (Lp −N +1)-th
row to the Lp-th row and from the 1st column to the N -th column of ∆Ap, which
is defined as:

∆Ap,N =


∆aTmax−N+1,1 ∆aTmax−N+1,2 . . . ∆aTmax−N+1,N

∆aTmax−N+2,1 ∆aTmax−N+2,2 . . . ∆aTmax−N+2,N

...
...

. . .
...

∆aTmax,1 ∆aTmax,2 . . . ∆aTmax,N

 . (7)

Similarly, ∆Atri,N ∈ ZN×N is a lower triangular matrix in which the components
above the diagonal components of ∆Ap,N are set to 0, which is defined as:

∆Atri,N =


∆aTmax−N+1,1 0 . . . 0
∆aTmax−N+2,1 ∆aTmax−N+2,2 . . . 0

...
...

. . .
...

∆aTmax,1 ∆aTmax,2 . . . ∆aTmax,N

 . (8)

The simplest rejection criteria is whether all components of ∆Ap,N or ∆Atri,N are
0 or not in the following:

g(x) =

{
1 if ∆Ap,N or ∆Atri,N = 0,
0 otherwise.

(9)

We call these rejection method “square matrix method” and “lower triangular
matrix method”. However, these methods have drawbacks. The coverage delimiter
is set to the Lp stage at the maximum, and any value cannot be selected for
coverage, it becomes discrete, and the risk and coverage values cannot be flexibly
selected. Therefore, we propose the following method.

First, ∆Ap is binarized to the matrix B ∈ ZLp×Lp . All non-zero components
of the matrix are set to 1. This is to express the presence or absence of a change
in the label as a binary value. The component of B is denoted as:

bm,n =

{
0 if ∆aTmax−Lp+m,n = 0,
1 otherwise.

(10)

Prepare a matrix F ∈ RLp×Lp with the same size as B. F acts like a filter to make
a rejection decision. Take the Hadamard product H ∈ RLp×Lp of B and F. After
that, the sum SH ∈ R of the components hm,n of H is taken. SH is the value of the
total change of the label, in which the change of the label in the range of interest
of the time series internal representation is weighted by F. H and SH are defined
as:

H =


b1,1 . . . b1,Lp

b2,1 . . . b2,Lp

...
. . .

...
bLp,1 . . . bLp,Lp

⊙


f1,1 . . . f1,Lp

f2,1 . . . f2,Lp

...
. . .

...
fLp,1 . . . fLp,Lp

 , (11)
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SH =

Lp∑
m=1

Lp∑
n=1

hm,n. (12)

Then, SH is calculated for all the data in the dataset. Here, let the total number
of data in the dataset be Lds ∈ N, and prepare the matrix S ∈ RLds . All the data
here refers to the entire training data at the time of optimization and the entire
test data at the time of evaluation. S is expressed as:

S = [s1, s2, . . . , sLds
], (13)

where si contains the value of SH calculated for xi. Since coverage is expressed
between 0 and 1, so if the coverage is c, the model’s predictions for the entire
100(1− c)% data from the smaller value are rejected. Let sth be the Lds(1− c)-th
smallest component of S, and the selection function g is in Eq. (2), where κf = si,
and θ = sth.

Assuming that the number of coverage delimiters is Nsep ∈ N, the coverage
matrix is C ∈ RNsep , and the corresponding risk matrix is R ∈ RNsep . The element
c of the coverage matrix C is calculated in Eq. (4), and the element r of the risk
matrix R is calculated in Eq. (3).

Here, it is necessary to adjust the components of the matrix F in order to
efficiently reject and bring the RC curve closer to the ideal one. The method is
explained below.

Fig. 2(a) shows an example of the RC curve and RC area before optimization.
The RC area is calculated by summing up the rectangles with the difference between
adjacent coverage as the height and the larger adjacent risk as the width. Let
(rns , cns) be (r, c) separated by ns from (0, 0). The obtained RC area Src ∈ R is
denoted as:

Src(R,C) =

Nsep∑
ns=0

{
(cns+1 − cns

)rns+1 if rns
< rns+1,

(cns+1 − cns)rns otherwise.
(14)

Minimizing this RC area corresponds to improving the efficiency of the RC curve.
The gradient-free black-box optimization library Nevergrad [9] is used to minimize

(a) (b)

Fig. 2 Examples of RC curve and RC area. (a) RC curve and RC area before
optimization; (b) RC curve and RC area after optimization.
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the area. The parameter handled by Nevergrad is only the matrix F, and the
objective function that returns the RC area Src is minimized as follows:

F∗ = argmin
F

Src(RgF ,C). (15)

Fig. 2(b) shows an example of the optimized RC curve and RC area.

Here we explain the optimization with constraints. In the case of constrained
optimization, use the matrix Fconst ∈ RLp×Lp instead of the matrix F. Then, black-
box optimization is performed so as to minimize the RC area Src while satisfying
the conditions in the following:

Fconst =


wLp−1 wLp−2 . . . w1 w0

wLp
wLp−1 . . . w2 w1

...
...

. . .
...

...
w2Lp−3 w2Lp−4 . . . wLp−1 wLp−2

w2Lp−2 w2Lp−3 . . . wLp wLp−1

 , (16)

s.t. w0 < w1 < · · · < w2Lp−3 < w2Lp−2. (17)

The methods whose rejection criteria are adjusted by optimizing the matrices F and
Fconst are called “proposed without constraints” and “proposed with constraints”,
respectively.

In general, the SNN model in which the final layer is the pooling layer does
not include the softmax function in the model, unlike the SNN model in which the
final layer is the fully connected layer. Therefore, the softmax function is applied
to the internal representation of the final pooling layer, and softmax response [10]
that serves as the baseline is used. Softmax response is a method that uses the
maximum value of the softmax function as the reliability. Let the total number of
neurons in the final pooling layer be Npool ∈ N. Each class corresponds to neurons
ofNpool/Lclass. Then a row vector in which the outputs of the final pooling layer are
arranged as they are for each time-step is created and each row vector is combined
in the column direction. The matrix P ∈ RTmax×Npool of the time series internal
representation of the final pooling layer is defined, where pm,n of P contains a real
value that represents the value of the neuron’s potential. The vertical (column)
direction means time, and the 1st row corresponds to the first time-step, and the
Tmax-th row corresponds to the last time-step. The horizontal (row) direction
corresponds to the position of the neuron.

Let Q ∈ RLclass be the matrix that extracts the neuron that has the maximum
potential among the neurons corresponding to each class in the Tmax-th row of P.
The component of Q is denoted as:

qk = max{pTmax,Np/c(k−1)+1, pTmax,Np/c(k−1)+2, . . . , pTmax,Np/ck}, (18)

where Np/c = Npool/Lclass.

Q has a large value for each component, and if the softmax function is applied, an
extreme result is often obtained. Therefore, we use the matrix Q′ ∈ RLclass , where
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each component is divided by the mean of all components. The component of Q′

is expressed as:

q′k =
qk

1
Lclass

∑Lclass

j=1 qj
. (19)

Applying the softmax function to Q′ gives φQ′ ∈ RLclass . The following φQ′ is
obtained. Its component φq′k is in the following:

φQ′ = [φq′1, φq
′
2, . . . , φq

′
Lclass

], (20)

φq′k = softmax(q′k) =
exp(q′k)∑Lclass

t=1 exp(q′t)
. (21)

Selective classification is performed using φQ′. S is created, and si in Eq. (13)
contains the maximum value of the components of φQ′ for xi, max{φq′k}

Lclass

k=1 . The
selection function g is in Eq. (2), where κf = si, and θ = sth. This rejection method
will be called “softmax response”.

3.3 The case where the final layer is a fully connected layer

In this section, we propose three methods, “softmax response”, “softmax differ-
ence”, and “proposed”. Selective classification is performed using the time series
internal representation in the fully connected layer, which is the final layer. In
general, the total number of neurons in the final fully connected layer is equal to
the number of classes Lclass. Row vectors of the outputs of the final fully connected
layer are created and are arranged in the column direction, as they are, for each
time-step. The matrix D ∈ RTmax×Lclass of the time series internal representation
of the final fully connected layer is defined, where dm,n of D contains a real value
that represents the value of the neuron’s potential. The vertical (column) direction
means time, the 1st row corresponds to the first time-step, and the Tmax-th row
corresponds to the last time-step. The horizontal (row) direction corresponds to
the position of the neuron. The matrix φD ∈ RTmax×Lclass is obtained by apply-
ing a softmax function in the horizontal (row) direction to the matrix D. The
component of φD is denoted as:

φdm,n = softmax(dm,n) =
exp(dm,n)∑Lclass

u=1 exp(dm,u)
. (22)

Selective classification is performed using φD. S is created, and si in Eq. (13)
contains the maximum value of the components of Tmax-th row of φD for xi,
max{φdTmax,k}

Lclass

k=1 . The selection function g is in Eq. (2), where κf = si, and
θ = sth. This rejection method is referred as “softmax response” in this paper.

Let E ∈ RTmax×Lclass be a matrix in which each column vector of φD is fixed and
arranged in descending order by the value of φdTmax,n in the final time-step. This
is because the potential values of the neurons and their rankings are important for
the rejection decision. Here, the vertical (column) matrix is preserved and only the
horizontal (row) order is sorted according to the value of the potential in the final
time-step. That is, the same column represents the value of the neuron’s potential
for the same label. The 1st column is for the class with the maximum potential
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in the final time-step, and the Lclass-th column is for the class with the minimum
potential in the final time-step.

Here, the second rejection criteria is explained. It employs the value of (eTmax,1−
eTmax,2)/eTmax,1 of E. S is created, and si contains this value for xi. The selection
function g is in Eq. (2), where κf = si, and θ = sth. This rejection method is
referred as “softmax difference”.

The third method considers the entire time series in the internal representation.
Set any divisor Tg ∈ N of Tmax. Tg is a variable for compressing E in the time
direction, and can remove and smooth out the small perturbations in the potential
that are not important for the rejection decision. The matrix G ∈ RTg×Lclass is the
mean of E every Tm/g time-steps and its component is denoted as:

gm,n =
1

Tm/g

Tm/gm∑
v=Tm/g(m−1)+1

ev,n, (23)

where Tm/g = Tmax/Tg.

Prepare a matrix F ∈ RTg×Lclass with the same size as G. Take the Hadamard
product H ∈ RTg×Lclass of G and F. After that, the sum of the components of
H is taken as SH. The flow after that is the same as in Section 3.2. However, si
in Eq. (13) contains the value of SH. Unlike B, whose component is 0 or 1, the
component of G is a real value, so constraints like Fconst do not work well. This
rejection method is referred as “proposed”.

4. Evaluation experiments

4.1 Experimental overview

In the experiments, the size of the RC area, risk, and coverage based on the re-
jection criteria of the proposed method are compared with softmax response as
the baseline. The RC area can be used to evaluate the balance between risk and
coverage of the entire RC curve. [0.05, 0.1, 0.15, . . . , 0.9, 0.95] is used as the cov-
erage matrix for calculating the RC area, except for “square matrix method” and
“lower triangular matrix method”. DCSNN (deep convolutional spiking neural
network) [8,11] is used as a model of SNN whose the final layer is a pooling layer.
ASF-BP (accumulated spiking flow-backpropagation) [12,13] is used as a model of
SNN whose the final layer is a fully connected layer. DCSNN is an SNN composed
of three convolution layers and three pooling layers. ASF-BP is a learning rule of
SNN, and it is possible to learn a model obtained by converting a deep model such
as VGG-7 [14] into SNN. Here, we use a model converted to SNN based on VGG-7.
The SNN using this learning rule is referred as “ASF-BP”.

Tab. I shows the SNN model, the final layer of the model, the dataset, the
original data format, the conversion method for handling by SNN, and the number
of time-steps after conversion to time series data for experiments. Tab. II shows
the parameters related to the proposed method. MNIST [15] is an image dataset of
handwritten digits from ‘0’ to ‘9’. Intensity-to-latency encoding [16] is performed
on the MNIST data, which is used as the input for DCSNN. This encoding is
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Experiment 1 Experiment 2

Model DCSNN ASF-BP (VGG-7)
Final layer Global pooling layer Fully connected layer
Dataset MNIST CIFAR10-DVS
Original format Static Time series
Conversion Intensity-to-latency encoding Accumulation
Time-steps 15 100

Tab. I Models and data used for experiments.

Experiment 1 Experiment 2

C [0.05, 0.1, . . . , 0.95] [0.05, 0.1, . . . , 0.95]
Nsep 19 19
Npool 200 –
Lclass 10 10
Lp 10 –
Lds(training) 8,000 9,000
Lds(test) 2,000 1,000
Tg – 10
Tmax 15 100
Fin 200 –
Hin 4 –
Win 4 –

Tab. II Parameters related to the proposed methods.

a process necessary for handling data that does not have temporal information
in SNN. CIFAR10-DVS [17] is a recording of the moving CIFAR-10 [18] image
displayed on the LCDmonitor using an event camera, dynamic vision sensor (DVS).
CIFAR-10 is an image dataset of color photographs of objects such as vehicles and
animals. Each data is a spike train and time series data that can be used as it is as
an input of SNN. The spike trains are accumulated at certain intervals to compress
them into 100 time-steps.

4.1.1 Experiment 1 (Experiment of DCSNN)

Fig. 3 shows the architecture of DCSNN. There is a decision-making map after
the final layer of DCSNN, the pooling layer (P3), and the class corresponding to
the neuron with the largest potential in the pooling layer (P3) is used as the label
for model prediction. The layer immediately before the pooling layer (P3) is the
convolution layer (C3), and the time series internal representation in this layer (C3)
is used.

The experiment using DCSNN as a model and MNIST as a dataset uses the
method in Section 3.2. Nevergrad’s NGOpt [19,20] is used as the solver for black-
box optimization. The budget, which means the number of search attempts, is set
to 5,000. NGOpt serves as a selector for optimization algorithms [21]. Based on
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Fig. 3 Architecture of DCSNN.

existing benchmark data, either of the following two methods is selected. The first
one is an automatic solver selection using high-level problem information. The
second one is combination of optimization algorithms. There are more than 20
types of solvers, such as differential evolution [22] and Bayesian optimization [23],
and NGOpt will select them according to the budget.

Originally, MNIST has 60,000 training data and 10,000 test data. This 60,000
training data is used for learning for DCSNN to perform the original classification
task. Here, 8,000 of the 10,000 test data are used for optimization as training
data for conducting experiments, and the remaining 2,000 are used as test data for
conducting experiments. For cross-validation, the training data and test data are
divided into five different patterns.

4.1.2 Experiment 2 (Experiment of ASF-BP)

Fig. 4 shows the architecture of ASF-BP. There is a softmax function after the fully
connected layer (F2), which is the final layer of ASF-BP. The class corresponding
to the neuron with the largest potential in the fully connected layer (F2) is used
as the label for model prediction. We use the time series internal representation in
this layer (F2).

For experiment using ASF-BP as a model and CIFAR10-DVS as a dataset, the
method in Section 3.3 is used. The solver and budget for black-box optimization
are the same as in Section 4.1.1. Originally, CIFAR10-DVS has 10,000 data. Al-
though there is no fixed ratio between training data and test data, Hao Wu et
al. [12] uses 9,000 data for training in order to perform the original classification
task in ASF-BP. Here, according to this, 9,000 is used as training data for con-
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Fig. 4 Architecture of ASF-BP.
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ducting experiments, and the remaining 1,000 is used as test data for conducting
experiments. Set five types of random seeds and perform optimization five times.

4.2 Experimental results

4.2.1 Experiment 1

Tab. III shows the RC area in the training data and test data of each method.
Since cross-validation was performed, the mean and standard deviation are shown.
The RC curves in the test data are shown in Fig. 5(a). Fig. 5(b) shows the RC
curves in the training data. The mean obtained by cross-validation is shown. In the
test data, proposed with constraints showed the minimum RC area. Additionally,
lower triangular matrix method and proposed with constraints showed a smaller RC
area than softmax response, which is the baseline. In the training data, proposed
without constraints showed the minimum RC area.

Method Training data (×10−3) Test data (×10−3)

Softmax response (baseline) 7.809(0.925) 8.042(3.806)
Square matrix method 8.552(0.877) 8.914(3.652)
Lower triangular matrix method 7.048(0.642) 7.511(2.781)
Proposed without constraints 4.879(0.720) 9.106(3.559)
Proposed with constraints 7.157(0.724) 7.383(3.253)

Tab. III RC area in Experiment 1.

4.2.2 Experiment 2

Tab. IV shows the RC area in the training data and test data of each method. In
the proposed method, five types of random seeds were set and optimization was
performed five times, so the mean and standard deviation were shown. Tab. V
shows the risks for coverage in the test data. The risks for coverage in the training
data is shown in Tab. VI. In the test data, proposed showed the smallest RC area.
Regarding the risk for coverage in the test data, the risk of proposed was lower
than that of softmax response, especially when the coverage was 0.4 or less. For
the risk in the training data, the risk of proposed was equal to or smaller than the
risk of the other methods in all coverage.

Method Training data (×10−2) Test data (×10−2)

Softmax response (baseline) 3.364 22.04
Softmax difference 2.881 22.13
Proposed 2.733(0.007) 21.86(0.087)

Tab. IV RC area in Experiment 2.
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Fig. 5 RC curves in Experiment 1. (a) RC curves in test data; (b) RC curves in
training data.

Method
Coverage [%]

0.1 0.2 0.3 0.4 0.5

Softmax response (baseline) 2.000 7.000 11.67 18.25 22.20
Softmax difference 1.000 5.500 10.00 18.25 23.60
Proposed 1.000 4.800 10.60 16.75 23.20

Tab. V Risk of test data in Experiment 2.

4.3 Discussions

4.3.1 Experiment 1

The proposed method without constraints was able to minimize the RC area in
the training data. However, in the test data, the RC area could not be made
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Method
Coverage [%]

0.2 0.3 0.4 0.5 0.6

Softmax response (baseline) 0.000 0.222 0.472 1.044 2.296
Softmax difference 0.000 0.111 0.306 0.600 1.389
Proposed 0.000 0.074 0.250 0.502 1.085

Tab. VI Risk of training data in Experiment 2.

smaller than the proposed method with constraints. It is considered that the
proposed method without constraints was overfitted to the training data and the
generalization ability was insufficient. The RC curve in the training data of the
proposed method is shown in Fig. 5(b), and in the test data is shown in Fig. 5(a).
According to these figures, without constraints, the RC curve in the training data
has a risk of almost zero, especially in the range where the coverage is less than 0.5.
The RC curve in the test data has the smallest risk at the point of coverage of 0.25,
and after that, the risk does not decrease even if the coverage is narrowed. This is
not an efficient rejection criteria. On the other hand, with constraints, the degree
of risk reduction for coverage in the training data is modest. Even in the test data,
the risk for coverage decreases almost monotonously, and it is considered that more
efficient rejection criteria can be set compared to the case without constraints.

Fig. 6(a) shows the heatmap of the matrix F when the optimization was per-
formed without constraints. Fig. 6(b) shows the heatmap of the matrix Fconst

when the optimization was performed with constraints. According to Fig. 6(a), it
can be seen that the change in the label in the lower part in the vertical (column)
direction, that is, in the latter part of the time step, greatly contributes to the
judgment of whether or not the prediction should be rejected. It can also be seen
that the change in the label in the left part in the horizontal (row) direction, that
is, in the upper part of the potential of the neuron, has a large effect. In particular,
the large components of the matrix F are concentrated in the parts where the time-
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Fig. 6 Heatmap of the matrix F of the proposed method in Experiment 1. (a)
Unconstrained matrix F; (b) Constrained matrix Fconst.
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steps are 6 to 10 and the ranks of potential’s values are 1st and 2nd. Both of them
are natural. This is because the label corresponding to the 1st and 2nd neurons
of potential’s values in the latter part of time-steps, greatly affects the prediction
result. However, if we look closely at Fig. 6(a), we can notice a pattern in which
the difference between the component with a high weight and the component with
a low weight is large, the positive and negative signs differ between adjacent com-
ponents, and the values differ greatly. It is considered that these factors lead to
the difference in generalization ability when compared with the constrained matrix
Fconst in Fig. 6(b). Depending on the constraints, the component corresponding
to the higher value of the neuron’s potential than the lower value is always given
more weight in the same row. In the same column, more weight is always given to
the component that corresponds to the later part of the time step than the earlier
part. It is considered that these strong constraints contribute to the improvement
of generalization ability.

4.3.2 Experinment 2

By minimizing the RC area in the training data, the results exceeding the baseline
were obtained in the test data. Fig. 7 shows the heatmap of the matrix F when
optimized. f10,1 is the largest component and f10,2 is the smallest component in
the matrix F. This indicates that the matrix F has a property close to softmax
response. This is because f10,1 is the component corresponding to the mean of 10
time-steps including the final time-step of the neuron with the maximum potential
in the final time-step. It also shows that it has a property close to softmax differ-
ence. This is because the relationship between the positive f10,1 and the negative
f10,2 is similar to (e100,1 − e100,2)/e100,1. It is considered that the remaining com-
ponents of the 10 × 10 matrix, while including the above two properties, provide
more flexible expressive power as a rejection criteria.
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Fig. 7 Heatmap of the matrix F of the proposed method in Experiment 2.
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5. Conclusion

In this paper, we proposed rejection methods using internal representation of SNN,
selective classification using them, and efficiency improvement method of RC curve.
Most of existing studies on selective classification and prediction reliability focus
on quantifying the reliability of the model’s output predictions for each piece of
data. On the other hand, in this paper, we focused on improving the efficiency
of the RC curve for a certain number of data so that the rejection rate and the
expected error rate to be allowed can be selected advantageously. The proposed
method uses the internal representation of the model, ranks the prediction results,
and rejects them at an arbitrary rate. Using the proposed method and the existing
method, experiments were conducted to compare the size of the RC area according
to the rejection criteria. As a result, it was confirmed that the proposed method
enables selective classification based on efficient rejection criteria while ensuring
generalization ability.
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