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Abstract: Time series forecasting using multilayer feed-forward neural networks
(FNN) is potential to give high accuracy. Several factors influence the accuracy.
One of them is the choice of activation functions (AFs). There are several AFs
commonly used in FNN with their specific characteristics, such as bounded type
AFs. They include sigmoid, softsign, arctan, and tanh. This paper investigates
the effect of the amplitude in the bounded AFs on the FNNs’ accuracy. The
theoretical investigations use simplified FNN models: linear equation and linear
combination. The results show that the higher amplitudes give higher accuracy
than typical amplitudes in softsign, arctan, and tanh AFs. However, in sigmoid
AF, the amplitude changes do not influence the accuracy. These theoretical results
are supported by experiments using the FNN model for time series prediction of 10
foreign exchanges from different continents compared to the US dollar. Based on
the experiments, the optimum amplitude of the AFs should be high, that is greater
or equal to 100 times of the maximum input values to the FNN, and the accuracy
gains up to 3–10 times.
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1. Introduction

Multilayer feed-forward neural network (FNN) can be applied for constructing data
regression models, which are applicable for estimating unknown values or forecast-
ing. The dataset of the regression models can be time series data or other multi-
variables data. There are several fields which implement it, such as chemistry [18],
geography [15], medicine [27], pharmacy [4], and engineering [9]. Although FNN
has been used for many years, it is still interesting for many researchers today. The
researches focus on accelerating the training process [32] and increasing prediction
accuracy.
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One of the methods to increase the accuracy is by modifying the activation
functions (AFs). AFs play a vital role in FNN since AFs produce the outputs
of the neuron in FNN. These AFs are able to make FNN to approximate several
functions [8]. Therefore, FNN can be used as a regression or classification. However,
there is no single AF that is suitable for all problems. There are five categories
of AF based on [1], namely bounded, rectified, non-linear below, non-linear and
unbounded above, and increasing and decreasing functions. The sigmoid function
is a bounded function broadly used in many FNN applications [11, 16, 23, 28]. It
is a smooth and continuous function that maps real value [−∞,∞] into [0, 1] [7].
Since the output of the sigmoid function is only a non-negative number, there
are other alternative bounded functions, such as bipolar sigmoid, tanh, arctan,
and softsign functions [30], which can output negative numbers. Those AFs are
appropriate in simple FNN architecture (few layers) [3] but may suffer from gradient
disappearance in complex FNN architecture such as deep neural network (DNN)
during the training phase [25]. The sparsity of the model [19] or inappropriate
weights initialization [34] causes this disappearance.

The commonly used AFs in complex FNN architecture, such as convolution
neural network (CNN) or DNN, is ReLU [29] and its modifications. ReLU can
handle the gradient disappearance problem in sigmoid AF [25], yet it may suffer
from death neurons since it maps negative input into zero value. There are sev-
eral modifications based on ReLU to improve its performance. One of them is
leaky ReLU (LReLU) or parametric ReLU (PReLU) [14]. This AF converts nega-
tive input into linearly small negative values based on static (LReLU) or dynamic
(PReLU) parameters. This AF shows better performance than ReLU. Another
modification is the exponential linear unit (ELU) [6] which converts the negative
input value of AF into a non-zero value based on the exponential function. The
treatment of negative input in ELU gives more robust and faster training than
ReLU and LReLU. ELU has a few improvements, such as adding a parameter
to scale the ELU function (scaled ELU (SELU)) [13]. Other improvements are
approximating the exponential function with floating point operations (fast expo-
nential linear unit (FELU)) [25] and changing the original exponential term in ELU
into parametric deformed exponential (parametric deformed ELU (PDELU)) [5].
Apart from ELU, [1] proposed ReLU modification called inverse polynomial linear
unit (IpLU) and absolute linear unit (AbsLU). These AFs keep the linearity for
positive input and treat negative input using a polynomial function for IpLU and
an absolute function for AbsLU. The experiments showed that IpLU and AbsLU
performed better than ReLU and LReLU.

A few ReLU modifications combine particular AFs, as done by [20,24], and [17].
These combinations are purposed to obtain new AFs having advantages from each
individual AF and eliminate the limitations. [20] proposed a new AF by combining
tangent, ReLU, and sigmoid functions (TSReLU). This AF gives a slight improve-
ment in accuracy compared to each individual function. SinLU AF is proposed
by [24], who combines sine and sigmoid linear unit functions. This AF has better
accuracy and is more stable to hidden layer addition than ReLU. [17] proposed a
combination of ReLU, sigmoid and ELU called RSigELU. It performs better than
ReLU and ELU, although it is slower on average for all experiments.
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Trainable AFs are another type of AFs introduced by [31], followed by [12],
that have become popular in nowadays research [2]. They have parameters that
change during the network training. The basic functions of trainable AF can be
either the previously explained AFs or any linear/non-linear functions. One of the
trainable AF is sigmoid AF, with two added parameters for controlling its slope and
amplitude, as done by [22, 31]. These two parameters have specific initialization
values and are updated during the network training. These works do not compare
the results of the proposed AFs with any existing AFs, yet they look for the best
slope and amplitude parameters. Another trainable AF is introduced by [10].
This AF is a polynomial function where its coefficients are obtained using a linear
regression. The linear regression is between the sum of the input neurons and the
desired outputs. This AF has slightly higher accuracy in classification problems
than the similar AFs with fixed parameters. On the other hand, it has promising
higher accuracy in regression problems.

From all the AF modifications above, it can be concluded that AF modifications
apply to the functions’ shape, slope, and amplitude. In this paper, we put interest in
the effect of the amplitude modification in bounded AFs regarding the accuracy of
the FNN. Since bounded AFs have explicit amplitudes in their functions, the effect
of the amplitude modification can be seen clearly. This research investigates four
AFs, namely sigmoid, softsign, arctan, and tanh AFs. Although these AFs were
founded in the past decades, yet they are still used until today. The characteristics,
differences, and advantages of those AFs are explained in [21,26,30].

In order to observe the relationship between the AFs’ amplitudes and FNNs’
accuracy, there are theoretical analyses and some experiments. First, we test that
relationship with a simple model, which is a single-variable linear model. This
model can be considered as a single neuron. After that, we increase the model into
a linear combination of two variables and a bias to know whether that relationship
also holds in a more complex model. At last, that relation is tested using the FNN
model to see that the relationship is consistent from a simple to a more complex
model. However, in FNN model, there are no theoretical analyzes since they are
too complex therefore we provide experiment-based analyzes only. The observed
FNN model uses a simple architecture with one hidden layer. In addition, the
experiments in this research use time series data that are foreign exchanges of 10
countries from different continents to US dollar (USD). The rest of this article is
organized as follows. Section 2 provides the analyses of the relationship between
AFs’ amplitudes and the predictions’ accuracy using a single-variable linear model.
Section 3 discusses that relationship using a linear combination of two variables and
a bias. Section 4 is similar to the previous sections but uses the FNNmodel. Section
5 provides the discussions, and the last section is the conclusions.

2. Single variable linear function model

In order to know the effect of AFs’ amplitude modifications on the FNNs’ accuracy,
we analyze the model mathematically by simplifying the FNN into one variable
linear function, which can be considered as a single neuron with single input and
output.

247



Neural Network World 4/2023, 245–269

Given a data series yi where yi ∈ R+ and i = 1, 2, . . . , n, which can be regarded
as time series data. This data becomes an input to the linear model with single
variable as Eq. (1)

ȳj = ayj−1, (1)

with a is a coefficient and j = 2, 3, . . . , n. Then, ȳj becomes an input to AFs f(ȳj)
called the prediction value. There are three AFs, which are used, namely sigmoid
Eq. (2), softsign (3), and arctan (4) AFs, with p is the amplitude parameter

f(ȳ) =
p

1 + e−ȳ
(sigmoid), (2)

f(ȳ) =
pȳ

1 + |ȳ| (softsign), (3)

f(ȳ) = p arctan(ȳ) (arctan). (4)

We only observe sigmoid, softsign, and arctan AFs for a few reasons. The first
reason is that those AFs have different output ranges. The sigmoid AF has an
output between 0 and p. On the other hand, the output of softsign and arctan AFs
are [−p, p] and

[
−pπ

2 , pπ
2

]
, respectively. The second reason is that those three AFs

have good mathematical properties to be derived. Another reason is that tanh AF
has a similar shape and range to softsign AF. Therefore, the analysis of tanh AF
can be approximated from it.

2.1 Sigmoid AF

This section observes the relation between amplitude p of sigmoid AF and the
accuracy of model Eq. (1). The optimum coefficient a of Eq. (1) is obtained by
minimizing error function Eq. (5)

E =
1

2

n∑
j=2

(f(ȳj)− yj)
2. (5)

Consider the function f(·) is sigmoid AF as in Eq. (2). Take the derivative of
Eq. (5) with respect to a and equal to zero, one will reach

dE

da
=

n∑
j=2

(f(ȳj)− yj)
df(ȳ)

dȳ

dȳ

da
= 0. (6)

Simplify the Eq. (6) and obtain

0 =

n∑
j=2

(
p

1 + e−ayj−1
− yj

)
pe−ayj−1

(1 + e−ayj−1)2
yj−1,

=

n∑
j=2

p2yj−1e
−ayj−1 − yjyj−1pe

−ayj−1(1 + eayj−1)

(1 + e−ayj−1)3
.
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Consider one of solutions from the above equation

p2yj−1e
−ayj−1 = yjyj−1pe

−ayj−1(1 + e−ayj−1),

p = yj + yje
−ayj−1 ,

p− yj

yj
= e−ayj−1 ,

ln
p− yj

yj
= ln e−ayj−1 ,

a = −
ln

p−yj

yj

yj−1
.

Plug the above a into Eq. (5), and we have this relation

Emin =
n∑

j=2

(
p

1 + e
ln

p−yj
yj

− yj

)2

, (7)

where Emin is the minimum error. The summation term can be neglected since this
observation focuses on finding the relation between amplitude p and the accuracy
of the model represented by Emin. Therefore, by assuming y = 1, the growth of
function Emin based on p is shown in Fig. 1a. From that figure, the minimum
error Emin increases to be a constant when p increases, although the increment is
relatively small.

2.2 Softsign AF

Similar to the above method, we use Eq. (1) as the model, and the error function
is Eq. (5). Take the derivative of Eq. (5) with respect to a and equal to zero to
obtain the optimum a as shown in Eq. (6). Consider the function f(·) is softsign
AF as in Eq. (3), then the derivation becomes

0 =

n∑
j=2

(
payj−1

1 + |ayj−1|
− yj

)(
pyj−1

(1 + |ayj−1|)2

)
,

=
n∑

j=2

p2ay2j−1 − pyj−1yj(1 + |ayj−1|)
(1 + |ayj−1|)3

,

n∑
j=2

p2ay2j−1

(1 + |ayj−1|)3
=

n∑
j=2

pyj−1yj(1 + |ayj−1|)
(1 + |ayj−1|)3

.

Take one solution of the above equation, and the following equations hold

p2ay2j−1 = pyjyj−1(1 + |ayj−1|),

a =


yj

yj−1(p− yj)
, if a is non-negative

− yj

yj−1(p+ yj)
, if a is negative
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Fig. 1 Minimum error of Eq. (5) (Emin) with respect to p.

Put the above a into Eq. (5), and we have these relations

Emin =



∑n
j=2


pyj

p− yj

1 +

∣∣∣∣∣ yj

p− yj

∣∣∣∣∣
− yj


2

, if a is non-negative,

∑n
j=2


− pyj

p+ yj

1 +

∣∣∣∣∣ − yj

p+ yj

∣∣∣∣∣
− yj


2

, if a is negative.

(8)

The relation between Emin and p can be seen by neglecting the summation and
considering y = 1 as shown in Fig. 1c and 1d. From those figures, if a is positive,

250



Makhrus F.: The effect of amplitude modification in S-shaped activation. . .

then Emin slowly decreases and becomes constant when p increases. However, if a
is negative then Emin slowly increases until it becomes a constant, as p increases.

2.3 Arctan AF

Similar to the previous method, we use Eq. (1) as the model, and the error function
is Eq. (5). Take the derivative of Eq. (5) and equal to zero to obtain the optimum
a as shown in Eq. (6). Consider the function f(·) is arctan AF as in Eq. (4), then
the derivation becomes

0 =
n∑

j=2

(p arctan(ayj−1)− yj)
pyj−1

1 + a2y2j−1

,

=
n∑

j=2

p2yj−1 arctan(ayj−1)− pyjyj−1

1 + a2y2j−1

.

Take one of the solutions of the above equation, and we have these equations

p arctan(ayj−1) = yj ,

tan arctan(ayj−1) = tan
yj

p
,

a =
1

yj−1
tan

yj

p
.

Put the above a to the error function Eq. (5) to obtain Emin, as shown below

Emin =
n∑

j=2

(
p arctan

(
tan

(
y

p

))
− yj

)2

. (9)

The relation between Emin and p can be seen in Fig. 1b by neglecting the summation
term and assuming y = 1. In that figure, Emin is decreasing while p is increasing.

All the figures in Fig. 1, show that the relations between Emin and amplitude p
for S-shaped AFs can be summarized into two patterns. The first pattern is that
Emin increases and goes to a constant when p increases, as shown in Fig. 1a and 1d.
The second pattern is that Emin decreases and goes to a constant when p increases,
as shown in Fig. 1b and 1c.

3. Linear combination model

The previous section explains the relations of AFs’ amplitude to the accuracy of a
single neuron model. This section observes whether those relations also hold in a
more complex model. Now, the used model is a linear combination which consists
of two variables and an intercept, as shown in Eq. (10). This model can be regarded
as a single neuron with two inputs and a bias.

ȳj = ayj−1 + byj−2 + c. (10)
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The optimum coefficients of the model Eq. (10) are obtained by minimizing the er-
ror function Eq. (5). However, solving a model analytically with higher dimensions
is complex. Therefore we minimize the error function Eq. (5) with respect to ȳ.
The below subsections show the minimization steps for sigmoid, softsign, and arc-
tan AFs. In addition, some experiments are performed to support the theoretical
results.

3.1 Sigmoid AF

Consider f(·) in Eq. (5) as sigmoid AF as in Eq. (2). Taking the derivative of
Eq. (5) with respect to ȳ and equalizing it to zero, one will reach

0 =
n∑

j=3

(
p

1 + e−ȳj
− yj

)(
pe−ȳj

(1 + e−ȳj )2

)
,

=
n∑

j=3

p2e−ȳj − pyje
−ȳj (1 + e−ȳj )

(1 + e−ȳj )3
,

n∑
j=3

p2e−ȳj

(1 + e−ȳj )3
=

n∑
j=3

pyje
−ȳj (1 + e−ȳj )

(1 + e−ȳj )3
.

Take one solution from the above equation. Hence we have this relation

p2e−ȳj = pyje
−ȳj (1 + e−ȳj ),

p

yj
− 1 = e−ȳj ,

ȳj = − ln

(
p

yj
− 1

)
. (11)

Plug Eq. (11) into the error function Eq. (5), and then the minimum error Emin

is equal to Eq. (7). In other words, the effect of sigmoid AFs’ amplitude on the
accuracy of the linear combination model is equal to the effect in a single variable
linear function.

3.2 Softsign AF

Similar to the above sigmoid AF, we minimize Eq. (5) with respect to ȳ where f(·)
is softsign AF as in Eq. (3) to obtain

0 =
n∑

j=3

(
pȳj

1 + |ȳj |
− yj

)(
p

(1 + |ȳj |)2

)
,

=
n∑

j=3

(
p2ȳj

(1 + |ȳj |)3

)(
pyj

(1 + |ȳj |)2

)
.
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Take one of the solutions of the above equation, then

p2ȳj = pyj(1 + |ȳj |),

ȳj =


yj

p− yj
, if a is non negative,

− yj

p+ yj
, if a is negative.

(12)

Plug Eq. (12) into the error function Eq. (5), then the relation between Emin and
p are the same as Eq. (8).

3.3 Arctan AF

Take the derivative of Eq. (5) with respect to ȳ where f(·) is arctan AF as in Eq. (4)
to obtain

0 =
n∑

j=3

2(p arctan(ȳ)− y)
p

1 + ȳ2
,

=
n∑

j=3

p2 arctan(ȳ)

1 + ȳ2
− py

1 + ȳ2
.

Take one solution of the above equation, and the result is

p2 arctan(ȳ) = yp,

tan arctan(ȳ) = tan

(
y

p

)
,

ȳ = tan

(
y

p

)
. (13)

Plug Eq. (13) into the error function Eq. (5) to see the relation between p and
Emin, and we have Eq. (9). Therefore, a linear combination with two variables and
a bias as a model has the same amplitude and minimum error relation as a linear
function model.

3.4 Experiments

In addition to the above analytic solutions, several experiments are conducted to
see whether the analytic solutions hold in real applications. These experiments use
Eq. (10) as the model with a = b = c = 0.1, Eq. (5) as the objective function,
Eqs. (2), (3), and (4) as the AFs, the gradient descent as the minimization method
and ten foreign exchanges as the datasets, namely AUD-USD, EUR-USD, GBP-
USD, ARS-USD, CAD-USD, CHF-USD, HKD-USD, IDR-USD, JPY-USD, and
ZAR-USD. The stopping criterion of the gradient descent method is ||∇E||2 < ϵ.
The value of ϵ depends on the foreign exchanges since they have different condition
of gradient magnitudes when near to the minimum. Therefore, we set ϵ in the
range of [2× 10−4, 6× 10−4]. The stepsize α (learning rate) varies according to the
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p 0.1 1 5 10 20 30 40 50

α 10−3 10−4 10−4 10−5 10−5 10−6 10−6 10−7

Tab. I Stepsize α for each p.

amplitude p, as shown in Tab. I. The smaller p uses the bigger α and vice versa,
depending on the stability of the searching process.

The foreign exchange datasets are normalized using min-max normalization
into values between [0, 0.1]. The datasets are obtained from Investing.com, which
consist of 200 daily average prices from July 2019 until June 2020. The learning
processes of these experiments minimize Eq. (5), and the approximated solutions
are used to calculate the root mean of Eq. (5) or root mean square error (RMSE).
We choose RMSE rather than Eq. (5) to describe the errors since they are close to
the actual values of foreign exchanges. In addition, the relations between RMSE
and p are similar to the relations between Eq. (5) and p. The results of these
experiments can be seen in Fig. 2. It consists of 3 subfigures showing the relations
between RMSE and amplitudes p of sigmoid (Fig. 2a), softsign (Fig. 2b), and arctan
AFs (Fig. 2c) in numerical solutions using foreign exchange datasets.
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Fig. 2 The RMSE of the linear combination model Eq. (10) with respect to ampli-
tude p using foreign exchange datasets.
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From Fig. 2a, all the datasets have relations between RMSE and the amplitudes
p of sigmoid AF similar to the theoretical observation, which are Eq. (7) or Fig. 1a.
The relations are that the RMSE increase slightly, while p increase. Fig. 2b shows
that the relations between RMSE and amplitudes p of softsign AF for all foreign
exchanges follow the theoretical analysis in Eq. (8) or Fig. 1c. It means that the
RMSE are decreasing to a constant when p are increasing. Similar to the results of
softsign AF, from Fig. 2c, arctan AF also has the RMSE that decrease to constants
when p increase as shown in Fig. 1b. Therefore, all the relations between RMSE of
the linear combination model and the amplitudes p of sigmoid, softsign and arctan
AFs match in both theoretical and experimental.

4. Feed-forward neural network model

This section explains the relations between the amplitudes of AFs and the accuracy
of FNN model using some experiments without theoretical analyzes. The theoreti-
cal analyzes of FNN are assumed to be similar to the previous simple models. The
FNN model consists of an input, a hidden, and an output layers. The input and
hidden layers consist of three input neurons, and the output layer has only one neu-
ron. The initial weights of all neurons and bias connections are 0.1. The objective
function is Eq. (5), and the optimization process uses the gradient descent method
with stopping criterion is ||∇E||2 < ϵ and 2×10−4 < ϵ < 6×10−4. The stepsizes α
(learning rates) for each amplitude p are shown in Tab. I. The datasets are similar
to the previous section. They consist of 400 tuples divided into 200 tuples as train-
ing data and another 200 tuples as testing data. The datasets are normalized using
min-max normalization into [0, 0.1]. The AFs in these experiments are sigmoid,
softsign, arctan, and tanh AFs. We add tanh AF to see whether it has similar
patterns to the other AFs, although there is no theoretical analysis for tanh AF.

The experiments consist of training and testing processes. The first experiments
are training processes using 200 training data, where the results can be seen in
Fig. 3. The figure consists of four subfigures showing the relation between RMSE
and p for each AF. Fig. 3a shows that the RMSE-p relations in sigmoid AF are
similar to the theoretical analysis in Fig. 1a, where the RMSE are increasing to
constants when p are increasing although the increments are small. These patterns
hold in all foreign exchanges.

The other result is Fig. 3b which shows the RMSE and p relations of softsign
AF in log-scale. From that figure, it can be seen that all the foreign exchanges have
RMSE and p relations which are similar to the theoretical analysis in Fig. 1c, where
RMSE decrease to constants when the amplitudes p increase. These patterns in
softsign AF are also applied in arctan and tanh AFs, as seen in Figs. 3c and 3d.

The second experiments are testing processes using 200 testing data, where the
results can be seen in Fig. 4. The figure consists of four subfigures showing the
errors of testing processes for each AF. From all the subfigures, it can be concluded
that RMSE-p relations are similar to the relation in training processes Fig. 3.
Therefore, the effects of the amplitudes p are not only in the training processes but
also in the testing processes with similar patterns.
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Fig. 3 The RMSE of FNN model based on amplitudes p in the training processes.

To see whether the minimization processes of Eq. (5) using the FNN model
reach near the exact minimum, we need to see the convergence processes in each
epoch given in Fig. 5–7. There are three sample figures showing the convergence
processes in each epoch namely USD-AUD, USD-HKD, and USD-CHF datasets.
The other datasets have similar convergence rates as those three datasets.

From Fig. 5a, using dataset USD-AUD, it can be seen that the amplitude p in
sigmoid AF does not significantly influence the minimum RMSE. The minimum
RMSE when p = (0.1, 1.0, 10, 20) are RMSE = (0.00423, 0.00426, 0.00433, 0.00435)
respectively. Their differences are around 4–5 decimal places which are insignificant
compared to the maximum value in the dataset, which is 0.1. The other results are
shown in Fig. 5b, 5c, and 5d for softsign, arctan, and tanh AFs. Those three AFs
have similar patterns of RMSE-p relations, where the RMSE are decreasing, when
p are increasing. The minimum RMSE of those AFs are 0.00423 when p = (0.1, 1),
and 0.001044 when p = (10, 20). In other words, the accuracy of high p is four
times better than low p. In addition, the convergence rates of arctan and tanh AFs
are similar, yet softsign AF has different convergence speeds.

256



Makhrus F.: The effect of amplitude modification in S-shaped activation. . .

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 10 20 30 40 50

R
M
S
E

p

(a) Sigmoid AF.

0.0001

0.001

0.01

0.1

0 10 20 30 40 50

R
M
S
E

p

(b) Softsign AF.

0.0001

0.001

0.01

0.1

0 10 20 30 40 50

R
M
S
E

p

(c) Arctan AF.

0.0001

0.001

0.01

0.1

0 10 20 30 40 50

R
M
S
E

p

(d) Tanh AF.

Fig. 4 The RMSE of FNN model based on amplitudes p in the testing processes.

Move to USD-HKD dataset. The results can be seen in Fig. 6. Similar to the
results of USD-AUD dataset, in USD-HKD dataset, the amplitudes p in sigmoid
AF do not influence the accuracy since the minimum RMSE of all p are similar in
the range of [0.02441, 0.02522]. These results can be seen in Fig. 6a. On the other
hand, the minimum RMSE of softsign, arctan, and tanh AFs are decreasing when
p are increasing. These can be seen in Fig. 6b, 6c, and 6d. From those figures,
it can be seen that when p = (0.1, 1), the minimum RMSE are in the range of
[0.02418, 0.02434] for those three AFs. However, when p = (10, 20), the minimum
RMSE are in the range of [0.00354, 0.00355]. Therefore, big p gives 14 times better
accuracy than small p. In addition to the accuracy, the convergence rates of those
three AFs are similar for the same amplitudes p.

The last example dataset is USD-CHF. The minimization process of this dataset
can be seen in Fig. 7. As the results in USD-AUD and USD-HKD, the amplitudes
p of sigmoid AF in USD-CHF dataset do not impact the minimum RMSE signifi-
cantly, as can be seen in Fig. 7a. That minimum RMSE are in [0.00122, 0.00125]
for all p. Although the minimum RMSE of each p are similar, convergence rates
are different without specific patterns. Contrary to the sigmoid AF, the other three
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Fig. 5 The convergence of RMSE in each epoch during the training processes using
USD-AUD dataset and FNN model.

AFs, namely softsign, arctan, and tanh AFs, have their minimum RMSE influenced
by their amplitudes p, as seen in Fig. 7b, 7c, and 7d. That minimum RMSE are
in [0.00113, 0.00115] when p = (0.1, 1) and [0.000534, 0.000535] when p = (10, 20).
In other words, the big p has around two times better accuracy than the small
p. Furthermore, the convergence rates of those three AFs when p = (10, 20) are
almost 15 times slower than when p = (0.1, 1). The learning rate α causes this slow
convergence for big p, as shown in Tab. I. The other cause is the characteristic of
the USD-CHF dataset, which is more irregular than USD-AUD and USD-HKD.
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Fig. 6 The convergence of RMSE in each epoch during the training processes using
USD-HKD dataset and FNN model.

5. Discussion

The previous FNN experiments show that the amplitude and forecasting accuracy
relationship follows the theoretical analysis of simple models. However, those exper-
iments use an initial weight, which is 0.1. Therefore, observing whether other initial
weights have similar relations is necessary. In order to do this, a few experiments
are conducted using four initial weights: 0.01, 0.05, 0.2, and 0.3. The FNNs’ archi-
tecture and the stopping condition are similar to the previous FNN experiments,
namely: three layers architecture (3-3-1), ||∇E||2 < ϵ and 2× 10−4 < ϵ < 6× 10−4
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Fig. 7 The convergence of RMSE in each epoch during the training processes using
USD-CHF dataset and FNN model.

as the stopping criterion, 400 tuples divided into 200 tuples as training data and
the remaining tuples as testing data, and normalized dataset using min-max nor-
malization into [0, 0.1].

The results can be seen in Fig. 8. The figure contains four subfigures showing
the relation between the accuracy (RMSE) and the amplitude p using different
initial weights and four AFs. Fig. 8a shows that the relation between RMSE and p
using sigmoid AF and different initial weights is similar to the theoretical analysis
presented in Fig. 1a. Meanwhile, when using softsign, arctan, and tanh AFs,
those relations are similar to the theoretical analysis depicted in Fig. 1b and 1c
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for all initial weights. Therefore, initial weights do not influence the RMSE and p
relations. However, a few initial weights fail to reach the minimum of the objective
function, e.g, Fig. 8a on initial weight = 0.3 and p = (40, 50) and Fig. 8d on initial
weight = 0.3 and p = (30, 40, 50).
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Fig. 8 The RMSE of training FNN model based on amplitudes p and different
initial values.

This happen when amplitude p is high. A high amplitude makes the objective
function steep near the minimum, and the minimum region shrinks, as shown in
Fig. 9. Therefore, the convergence can fail using an initial weight far from the
minimum region. From that figure, each subfigure shows the map of the objective
function RMSE using a simple model Eq. (14) and tanh AF. We use a simple model
of two variables since it can be represented using a 2D graph, and we choose tanh
AF for giving an illustration as the representative of other AFs. The subfigures
show that the red areas indicating the objective functions’ minimum decrease when
p increase. Since the initial weight ≥ 0.3 is far from the minimum region when using
p = 30 as shown in Fig. 9d, it fails to converge.

ȳj = ayj−1 + b (14)
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(a) p = 0.1. (b) p = 1.

(c) p = 10. (d) p = 30.

Fig. 9 The map of RMSE using model Eq. (14) and different amplitude p of tanh
AF.

In addition to the initial weight issues, observing the relation between FNNs’
accuracy and the amplitude p using different FNN architectures is necessary. There
are two architectures to observe for representation: Architecture A and B. A is an
architecture with three neurons in the input layer, six neurons in the hidden layer,
and one neuron in the output layer (3-6-1). At the same time, B is an architecture
with four layers consisting of three input neurons, three neurons in the first hidden
layer, two neurons in the second hidden layer, and one neurons in the output layer
(3-3-2-1). The training parameters of these experiments are similar to the initial
weight experiments above. The results of these experiments are shown in Fig. 10.
In that figure, four subfigures describe the RMSE and p relations of four AFs. Each
subfigure has training and testing results. Those subfigures show that all the AFs
follow the RMSE and p relations as the theoretical analysis Fig. 2. All the AFs
increase the accuracy when p increase, except the sigmoid AF. Therefore, based on
these experiments, the FNN architectures do not influence the relations between
RMSE and p.

Modifying the amplitudes of bounded AFs was introduced by [31], where the
outputs of the AF are bounded dynamically. These boundaries increase or decrease
based on the derivative of the cost function with respect to the amplitude during
the network training. Therefore, these AFs are called trainable AFs. In general,
bounded AFs use [0, 1], [−1, 1], or

[
π
2 ,−π

2

]
as their outputs, yet in trainable AFs,
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Fig. 10 The RMSE of training FNN model using architecture A(3-6-1) and B(3-
3-2-1).

their outputs can be larger or smaller than those ranges. This paper observes
a modification of the AFs’ amplitudes with fixed numbers rather than trainable
values. The amplitudes can be greater than the maximum input values of the neural
network. Therefore, to compare the proposed modifications’ performances, we
provide the performance comparisons between trainable AFs and fixed amplitude
modification AFs using the FNN model. The FNN model consists of an input layer
with three neurons, a hidden layer with three neurons, and an output layer with
one neuron. The initial weights of all neurons and bias connections are 0.1.

The FNN using trainable AFs works like regular FNN. However, in the training
process, the amplitudes of the AFs are changed in every epoch. These changes are
based on the derivative of the cost function Eq. (5) with respect to the amplitudes.
On the other hand, the fixed amplitude AF uses p = 10. These experiments use
the gradient descent method to look for the minimum error of function Eq. (5).
The stopping criterion is ||∇E||2 does not change significantly (<10−10) within 40
epochs. The stepsize α (learning rates) is 10−5. The input data to the FNN
are normalized using min-max normalization into [0, 0.1]. The results of these
experiments can be seen in Tab. II and Tab. III.
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Dataset
Sigmoid Softsign Arctan Tanh

ptb p = 10 ptb p = 10 ptb p = 10 ptb p = 10

AUD-USD 4.269 4.338 4.228 1.043 4.225 1.043 4.225 1.043

EUR-USD 2.838 2.846 2.825 0.872 2.824 0.872 2.824 0.872

GBP-USD 4.141 4.179 4.131 1.330 4.131 1.331 4.131 1.332

USD-ARS 3.402 3.549 3.388 0.829 3.384 0.826 3.384 0.826

USD-CAD 5.293 5.509 5.274 1.196 5.266 1.200 5.266 1.199

USD-CHF 1.224 1.245 1.222 0.533 1.222 0.533 1.222 0.534

USD-HKD 24.194 25.283 23.968 3.522 23.632 3.518 23.632 3.534

USD-IDR 7.459 7.832 7.423 1.482 7.406 1.488 7.406 1.488

USD-JPY 2.454 2.535 2.447 1.289 2.444 1.290 2.444 1.292

USD-ZAR 10.179 10.671 10.130 1.545 10.105 1.554 10.105 1.555

Tab. II The RMSE (×10−3) of FNN model using trainable AF (ptb) and fixed
amplitude p = 10 in training processes.

Sigmoid Softsign Arctan Tanh

ptb p = 10 ptb p = 10 ptb p = 10 ptb p = 10

AUD-USD 9.598 9.761 9.504 1.025 9.495 1.002 9.495 1.000

EUR-USD 4.033 4.118 4.085 1.123 4.084 1.124 4.084 1.124

GBP-USD 5.828 5.900 5.825 0.943 5.823 0.939 5.823 0.942

USD-ARS 19.069 19.912 18.980 0.778 18.957 0.631 18.957 0.633

USD-CAD 5.728 5.964 5.710 1.022 5.701 1.023 5.701 1.023

USD-CHF 5.985 6.086 5.957 0.573 5.954 0.603 5.954 0.617

USD-HKD 34.337 35.614 34.046 0.953 33.592 0.822 33.591 0.833

USD-IDR 3.378 3.552 3.360 0.965 3.352 0.961 3.352 0.961

USD-JPY 5.227 5.441 5.216 0.933 5.209 0.938 5.209 0.960

USD-ZAR 10.291 10.861 10.230 1.622 10.200 1.608 10.200 1.582

Tab. III The RMSE (×10−3) of FNN model using trainable AF (ptb) and fixed
amplitude p = 10 in testing processes.

Tab. II shows RMSE comparisons of the training processes between FNN with
trainable AF denoted by ptb and fix amplitude p = 10. The first column of the
table is the foreign exchanges. The second and third columns show the RMSE of
sigmoid AF. The RMSE of ptb are slightly better than p = 10, which are 0.25 times
on average. The fourth and fifth columns are the results of softsign AF. From that
columns, it can be concluded that static amplitude p = 10 has better RMSE than
ptb, which is seven times on average. The last four columns present the RMSE
of arctan and tanh AFs, which have similar results as softsign AF. The arctan
and tanh AFs using fixed amplitude p = 10 are more accurate seven times than
trainable amplitude ptb.

In addition, Tab. III compares RMSE in the testing processes. The results are
similar to the training processes where the trainable AF gives slightly better accu-
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racy than the fixed AF (p = 10) when implemented using sigmoid AF. However,
trainable AFs do not perform better than fixed AFs (p = 10) when they are applied
in softsign, arctan, and tanh AFs.

The results above show that softsign, arctan, and tanh AFs with fixed and high
amplitudes are more accurate than sigmoid AF. Those three AFs have positive and
negative output values compared to sigmoid AF, which only has positive output
values. Therefore, it is interesting to see the performance comparison of those three
AFs with linear AF. Linear AF is similar to those three AFs as it has positive and
negative output values, but it is unbounded. Some experiments implement this
comparison using the same FNN architecture and parameters as previous trainable
AF experiments. The results can be seen in Tab. IV. From that table, it can be
seen that softsign, arctan, and tanh AFs with amplitude p = 10 perform better
than linear AF both in training and testing processes.

Dataset

Training Testing

Linear Softsign Arctan Tanh Linear Softsign Arctan Tanh

p = 10 p = 10 p = 10 p = 10 p = 10 p = 10

USD-AUD 3.906 1.043 1.043 1.043 8.769 1.025 1.002 1.000

USD-EUR 2.615 0.872 0.872 0.872 3.778 1.123 1.124 1.124

USD-GBP 3.826 1.330 1.331 1.332 5.375 0.943 0.939 0.942

USD-ARS 3.130 0.829 0.826 0.826 17.494 0.778 0.631 0.633

USD-CAD 4.876 1.196 1.200 1.199 5.271 1.022 1.023 1.023

USD-CHF 1.138 0.533 0.533 0.534 5.491 0.573 0.603 0.617

USD-HKD 22.070 3.522 3.518 3.534 31.261 0.953 0.822 0.833

USD-IDR 6.850 1.482 1.488 1.488 3.100 0.965 0.961 0.961

USD-JPY 2.293 1.289 1.290 1.292 4.812 0.933 0.938 0.960

USD-ZAR 9.353 1.545 1.554 1.555 9.384 1.622 1.608 1.582

Tab. IV The RMSE (×10−3) of FNN model using linear, softsign, arctan, and
tanh AFs in the training and testing processes.

All the above experiments use Eq. (5) as the cost function, which is a square
error function. However, in FNN, it is common to use the absolute error function
Eq. (15) as the cost function [33]. Therefore, in the subsequent experiments, there
are some implementations of amplitude AF modification in the FNN model with
the absolute error function as the cost function. The architecture and parameters
of the FNN model are the same as previous. However, the learning rate is 10−8 as
the most stable learning rate in this objective function, and the stopping criterion
is that ||∇E||2 does not change significantly (<10−10) within 40 epochs or the max-
imum epoch equals 105. The absolute error function is defined as follows

E =
∑
j

|f(ȳj)− yj |, (15)

where f(ȳj) is the output of FNN at time j, and yj is the real value at time j.
The results of these experiments can be seen in Tab. V for the training processes
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and VI for the testing processes. Those tables show the MAE of the training and
testing processes using softsign, arctan, and tanh AFs. We leave the discussion
of sigmoid AF in this experiment since it does not give better accuracy when p
increases. Tab. V shows that a higher amplitude p = 10 gives higher accuracy
than low amplitudes p = (0.1, 1). In addition, the results shown in Tab. VI are
similar to Tab. V where the amplitude p = 10 has less MAE than low amplitudes
p = (0.1, 1). Therefore, the characteristics of the minimum error between two cost
functions, namely square error and absolute error in the FNN model, are similar,
although we do not observe amplitudes p > 10.

Dataset
Softsign Arctan Tanh

p = 0.1 p = 1 p = 10 p = 0.1 p = 1 p = 10 p = 0.1 p = 1 p = 10

USD-AUD 2.706 2.539 0.712 18.160 2.498 0.717 18.160 2.498 0.717

USD-EUR 2.526 2.192 1.014 2.707 2.164 1.219 2.707 2.164 1.219

USD-GBP 4.061 3.368 0.940 3.863 3.320 0.944 3.863 3.320 0.944

USD-ARS 52.095 2.386 0.290 50.492 2.334 0.293 50.492 2.334 0.293

USD-CAD 49.488 3.112 0.734 47.885 3.047 0.733 47.886 3.047 0.733

USD-CHF 12.647 0.918 0.494 11.056 0.904 0.575 11.057 0.904 0.575

USD-HKD 56.132 21.728 2.267 54.527 21.144 2.262 54.527 21.145 2.262

USD-IDR 65.690 4.204 0.768 64.082 4.102 0.750 64.083 4.102 0.750

USD-JPY 44.400 1.794 0.835 42.799 1.760 0.827 42.799 1.760 0.827

USD-ZAR 62.262 6.076 1.118 60.655 5.938 1.120 60.656 5.938 1.120

Tab. V The MAE (×10−3) of FNN model using softsign, arctan, and tanh AFs in
the training processes.

Dataset
Softsign Arctan Tanh

p = 0.1 p = 1 p = 10 p = 0.1 p = 1 p = 10 p = 0.1 p = 1 p = 10

USD-AUD 7.351 6.901 0.729 25.969 6.761 0.719 25.969 6.761 0.719

USD-EUR 3.206 3.199 1.396 3.242 3.158 1.692 3.242 3.158 1.692

USD-GBP 6.380 3.932 0.750 5.773 3.875 0.759 5.773 3.875 0.759

USD-ARS 69.932 17.637 0.181 68.323 17.214 0.160 68.323 17.214 0.160

USD-CAD 47.347 4.053 0.812 45.745 3.966 0.810 45.745 3.966 0.810

USD-CHF 7.178 5.216 1.584 5.589 5.134 2.334 5.589 5.134 2.333

USD-HKD 21.829 42.263 0.522 20.234 39.960 0.446 20.235 39.961 0.446

USD-IDR 66.144 3.179 0.627 64.537 3.101 0.619 64.537 3.101 0.619

USD-JPY 39.793 4.770 0.833 38.193 4.674 0.735 38.194 4.674 0.731

USD-ZAR 69.032 10.335 1.292 67.424 10.035 1.290 67.424 10.035 1.290

Tab. VI The MAE (×10−3) of FNN model using softsign, arctan, and tanh AFs
in the testing processes.
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6. Conclusion

This paper observes the amplitude modification effect in S-shaped activation func-
tions, namely sigmoid, softsign, arctan, and tanh, to the accuracy of feed-forward
neural network (FNN) regression. We provide theoretical analyzes of that effect
by using simplified FNN model. In addition, some experiments of time series pre-
diction are conducted using ten foreign exchange datasets to verify the theoretical
analyzes. The results show that higher amplitude gives higher accuracy up to 3–10
times than low amplitude. These occur in softsign, arctan, and tanh AFs, yet they
do not apply in sigmoid AF. These happen in either square or absolute error as the
cost function. They are not influenced by the FNNs’ architecture and the choice of
the initial weight. However, the choice of the initial weight influences the conver-
gence process. Therefore, it is necessary to choose an initial weight that is near the
optimum weight. The tested amplitudes are ≥ 100 times than the maximum input
values to the FNN. Besides, the stable learning rate when using high amplitude AF
tends to be smaller than using low amplitude since the condition of the objective
function is steep.
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