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Abstract: In this paper, a defence mechanism is proposed against adversarial at-
tacks. The defence is based on an ensemble classifier that is adversarially trained.
This is accomplished by generating adversarial attacks from four different attack
methods, i.e., Jacobian-based saliency map attack (JSMA), projected gradient de-
scent (PGD), momentum iterative method (MIM), and fast gradient signed method
(FGSM). The adversarial examples are used to identify the robust machine-learning
algorithms which eventually participate in the ensemble. The adversarial attacks
are divided into seen and unseen attacks. To validate our work, the experiments
are conducted using NSLKDD, UNSW-NB15 and CICIDS17 datasets. Grid search
for the ensemble is used to optimise results. The parameter used for performance
evaluations is accuracy, F1 score and AUC score. It is shown that an adversarially
trained ensemble classifier produces better results.
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1. Introduction

An intrusion detection system (IDS) is an important tool to ensure the security of
the network. Traditional intrusion detection systems mainly rely on expert knowl-
edge to build rule sets to detect network attacks. However, the attack method of
network attacks is changing rapidly, and traditional rule-based intrusion detection
systems can not cope with this [1]. Therefore, in recent years, many researchers
have begun to use machine learning (ML) algorithms to build intrusion detection
systems [2].

Many machine learning-based intrusion detection systems have been proposed.
However, it has been shown that ML algorithms are vulnerable to adversarial
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attacks [3–5], which means that by adding a small perturbation to the input data,
the machine learning algorithm can be fooled and the prediction results can be
changed. Thus an attacker can change the prediction result of the IDS by using
an adversarial attack, which implies that the IDS can be easily bypassed, greatly
affecting the security of the network [6–10].

Generally, adversarial attacks can be divided into two types: white box and
block box [11]. In the white box, the attacker has access to the parameters, the
architecture of the ML algorithm and training

data. Therefore, the attacker can use the ML algorithm to train a substitute
model and then use the substitute model to generate adversarial examples. The
adversarial examples generated from the substitute model can also be used to
attack the machine learning-based intrusion detection system. In the black box,
the attacker does not have access to the parameters, architecture and training data.
Therefore, an adversary acts as a normal user and only knows the output of the
model.

In this paper, the ML models are tested against adversarial attacks on multiple
datasets. To secure the IDS-based ML models ensemble-based adversarial training
is proposed. The experiments are conducted in various scenarios and evaluated on
performance parameters. The study conducts an experiment which includes the
unseen attack methods. To the best of our knowledge, the evaluation of the unseen
attack methods are very limited in literature as compared to the seen attacks. The
paper is organized as follows: Section 2 explains the background knowledge to
generate an adversarial attack. Section 3 discussed the related work of adversarial
attack, adversarial training and ensemble-based adversarial training. Section 4
explains the experiments conducted duriabickang the study. In Section 5, results
are discussed and in Section 6 we conclude our work.

2. Adversarial generation methods

For adversarial attack generation, different methods are used in the literature.
This paper uses four different adversarial attack generation techniques: namely
FGSM, JSMA, PGD and MIM which are described in the following section. For
the generation of adversarial attacks, the procedure used is described in Fig. 1 [12].
The multi-layer perceptron model is developed for the generation of adversarial
attacks. The test dataset is utilized from the original dataset. The adversarial test
dataset is created separately for each attack method with the same procedure as
mentioned in Fig. 1.

The adversarial dataset thus created using adversarial attack methods is tested
in various experiments.

2.1 Multi-layer perceptron

Multi-layer perceptron (MLP) [13] is a deep learning technique which is used for ad-
versarial attack generation. It is a feed-forward neural network with fully connected
three layers. The first layer is an input layer that receives the input to be processed.
The last layer is the output layer provides the predictions and classification of the
received input. The hidden layer or the middle layer is the computation engine
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Fig. 1 Adversarial generation method.

where all the inputs are processed. MLP is made of neurons called perceptron. In
Fig. 2, the structure of a perceptron is given.

Fig. 2 Structure of perceptron.

In the MLP network, every perceptron receives n features (x1, x2, . . . , xn) as
input and each feature is associated with weights (w1, w2, . . . , wn). The input
features are passed on to an input function u, which processes the weighted sum
of the input features as given in Eq. (3).

u(x) =

n∑
i=1

wixi. (1)

The outcome of this computation is then passed onto an activation function f ,
which will produce the output of the perceptron. For example, a step function can
act as an activation function as given in Eq. (4).

y = f(u(x)) =

{
1, if u(x) > θ,
0, otherwise,

(2)

where θ is the threshold parameter.

2.2 Fast gradient sign attack

Fast gradient sign attack (FGSM) was first proposed in 2014 [14]. The FGSM at-
tack on neural networks is formulated with the help of gradients. The neural net-
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work reduces the loss by adjusting weights through the feedback of back-propagated
gradients. To attack the neural network, the FGSM attack increases the loss us-
ing the same back-propagated gradients. The FGSM-based adversarial attack is
formulated as given in Eq. (3):

x′ = x+ ϵ · sgn(∇xJ(θ, x, y)), (3)

where x is the input to the model, ϵ is the magnitude of the perturbation and
J(θ, x, y) is the gradient of the adversarial loss.

2.3 Jacobian-based saliency map attack

Jacobian-based saliency map attack (JSMA) was proposed in 2016 [15]. The aim
was to misclassify by minimizing the modified features involved in a generation
of adversarial examples. In this method, a saliency map is created for the input
test sample which has the saliency values for each feature. This saliency value
suggests how much the classification process is influenced. According to the saliency
value each feature is selected in decreasing order. The process continues until
the misclassification occurs due to the feature threshold. This process provides
adversarial examples similar to the original sample [16].

2.4 Projected gradient descent

The projected gradient descent (PGD) [17] attack is widely regarded as one of
the strongest attack methods. It is also competitive with C&W [18] and FGSM
[14] attacks. This method adopts the multi-step variant of FGSM, i.e., projected
gradient descent (PGD) on the negative loss function [17]

x0
t+1 = Clipx+η(x

0
t + α · sgn(∇xL(x0, θ, y))), (4)

where α is the variant step size at step t, L is the cost function and the Clip
function guarantees that the output falls in the valid input value (0, . . . , 255).

PGD iteratively resumes from many points in the l∞ balls around data points
from the respective evaluation sets. As PGD does not explicitly minimise the lp-
norm of the perturbation, to evaluate vigorously at N distinct thresholds, PGD
attack required to be restarted N times which linearly raises the cost of the attack.

2.5 Momentum iterative method

Boosting adversarial attacks with momentum is a technique that increases the effec-
tiveness of these attacks by adding a momentum term to the input perturbations.
The momentum term helps the perturbations to continue moving in the direction
that causes the model to make a mistake, rather than getting stuck in a local min-
imum. This makes the attacks more likely to succeed, and can also make them
more powerful by allowing them to evade detection by defensive mechanisms. The
expression for boosting adversarial attacks with momentum is typically given as
follows:

x′ = x+ α · sgn(∇xJ(x, y)) + β · v, (5)
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where: x′ is the perturbed input, x is the original input, α is the step size or
learning rate, J(x, y) is the cost function, ∇xJ(x, y) is the gradient of the cost
function with respect to x, β is the momentum term and v is the previous update
direction. The sgn(∇xJ(x, y)) term is used to find the direction of the gradient
and move the input in that direction. The β · v term is used to add momentum to
the perturbations, making them continue moving in the same direction.

3. Related work

The following section details the related work done by others.

3.1 Adversarial attacks without defence

Tab. I summarises the previous work in which adversarial attacks are implemented
without any defence method.

In [19], on the NSLKDD dataset [20], the authors evaluated adversarial attacks
in a black box scenario. Three distinct black-box attack types were introduced.
The adversary trained a substitute C&W [21] model in the first attack. The second
attack utilises zero-order optimization (ZOO) while the third attack is generated
with the GAN algorithm. Accuracy, precision, recall, false alarm, and F1 score
are the parameters used to measure the performance of classifiers. The first attack
employing a substitute model has less of an effect than the second and third strate-
gies. The second method outperformed other black-box attacks, but it required a
huge number of queries and computational capacity to calculate gradients.

The authors in [8] used a neural network for the development of the intrusion
detection system. The model has been trained with the NSLKDD dataset. For the
generation of adversarial attacks, FGSM is used. The study showed the results with
various performance parameters. The overall results declined after the adversarial
attack.

In [22], the authors employed four adversarial generation techniques: the limited-
memory Broyden-Fletcher-Goldfarb-Shanno method (L-BFGS) [23] the PGD at-
tack, the stochastic approximation simultaneous perturbation (SPSA) [24] and the
momentum iterative fast gradient sign method MI-FGSM. Multiple algorithms, in-
cluding deep neural network (DNN), support vector machine (SVM), random for-
est (RF) and LR were chosen for the experiment and trained using the NSLKDD
dataset. Accuracy, precision rate, recall rate, F1 score, and success rate are mea-
sured following an adversarial attack. After the attack, the performance parameters
of all targeted models decreased. The effective adversarial generation method is
MI-FGSM in comparison with others.

The research in [25] selected three techniques to develop adversarial attacks:
particle swarm optimization (PSO), a genetic algorithm (GA), and a generative
adversarial network (GAN). For testing adversarial attacks, the NSLKDD and
UNSW-NB15 [26] datasets are utilised. Multiple baseline classifiers, including K-
NN (k-nearest neighbor), RF, MLP, SVM, DT, NB, gradient boosting (GB), LR,
quadratic discriminant analysis (QDA), linear discriminant analysis (LDA), and
bagging (BAG), have been tested against an adversarial attack. Across all trained
classifiers, the evasion rate decreased. The author also indicates that the adversarial
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sample created to mislead one ML classifier can also mislead others. The results on
the UNSW-NB15 dataset using the PSO algorithm for the adversarial generation
with the accuracy of 98% against GB, 85% against LDA and 97% against BAG.

3.2 Adversarial attacks with defence

Different authors have suggested various approaches for defence against adversarial
attacks. A few of the authors also contributed to adversarial training as defense
method against adversarial attacks as summarized in Tab. II.

In the study [10] a defence known as Def-IDS was suggested. The authors
created attack cases using two different ways. Multi-source adversarial training
(MAT), based on FGSM, BIM, DeepFool [27], and JSMA, is the first technique.
The second technique, known as multi-class GAN (MGAN), uses the input as the
original data and then uses GAN to produce mimic data. They test against each
adversarial attack, such as FGSM, BIM, DeepFool, and JSMA, and then train the
classifiers by mixing adversarial instances from both proposed techniques. The
effectiveness of DEF-IDS against all attacks is greater than 90%. The work is
limited in that only one dataset and neural networks were utilised to train and test
the adversarial samples.

In [28], the authors used adversarial training methods to defend IDS against
adversarial attacks. In this study, CICIDS17 [29] dataset is divided into four sets
for training IDS, testing IDS, training adversarial detector and testing adversarial
detector. The adversarial examples are produced using four attacks method which
include FGSM, basic iterative method (BIM), C&W and PGD, all belong to the
white box category. Performance parameters include precision, recall, F1 score and
accuracy. RF & K-NN performed similarly in all the performance parameters with
the F1 score of 95%. The AdaBoost algorithm did not surpass the results of the
RF with 87.66% accuracy while SVM failed in picking up the adversarial attack
with a recall of 79%.

In [9], the authors experimented on the DOS attack records taken from NSLKDD
and CICIDS17 datasets. For feature selection, the recursive feature elimination
with linear SVMs method was used which provided the highest AUC on the orig-
inal dataset. The extracted features from the feature selection method provide
41 features for NSLKDD and 77 features for CICIDS17. Four adversarial attack
methods were used FGSM, JSMA, Deepfool and C&W for each distance metric.
The goal was to misclassify the attack record as a normal record. The authors have
chosen multiple ML algorithms to test adversarial examples. Evaluation of original
datasets for baseline performance shows DT and RF are among the finest while
NB and denoising autoencoder (DA) underperformed. AUC decreased for both
datasets by 13% on the NSL-KDD dataset and 40% on the CICIDS17 dataset.
The model was then trained on three adversarial generation methods while one
was selected for testing purposes. The performance of the classifiers declined by
4% on the NSLKDD and 18% on the CICIDS17. In these conditions, RF was the
most robust which only experienced a 0.1% of AUC decrease on both datasets.

In the study [30] the author uses machine learning-based IDS in industrial con-
trol systems (ICS) and explored how vulnerable these systems might be to threats
from the outside. The main goal of the study is to look into how adversarial learn-
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ing can be used to attack supervised models and make adversarial samples using
the JSMA attack. The goal is to figure out how adversarial samples affect the abil-
ity of two famous classifiers, random forest and J48, to do their job. Experiments
done on a real dataset from a power system show that adversarial samples caused
the models’ performance to drop by 6 and 11 percentage points, respectively. But
after going through adversarial training, the classifications were more reliable. The
results show how important it is to think about hostile attacks and set up defences
to improve the security of IDSs in ICS.

The study in [31] looks at how well common machine learning methods work as
intrusion detection models to protect against attacks from malicious people. The
author highlights the complexity of industrial internet of things (IIoT) systems
and the possibility of adversarial attacks on machine learning-based intrusion de-
tection systems (IDSs) in such environments. The paper describes a system called
EIFDAA. The main parts of the EIFDAA framework are adversarial training and
adversarial examination. Adversarial evaluation is used to find IDSs that do not
work well in adversarial settings, while adversarial training is used to make weak
IDSs work better. The framework uses five well-known adversarial attack algo-
rithms, such as FGSM, BIM, PGD, DeepFool, and WGAN-GP, to turn attack
samples into adversarial samples and mimic the adversarial environment. Exper-
iments with the X-IIoTID dataset show that the lost adversarial detection rate
to zero. The improved IDSs that were adversarially trained work well to stop
adversarial attacks.

The author in [32] uses the CICIDS17 dataset. The author proposed adversar-
ial training and ensemble learning with adversarial training as a defence method
against adversarial attacks. For testing the classifiers, they have to include decision
tree (DT), SVM, XGBoost, LR, and DNN. Six attack methods have been included:
decision tree attack, JSMA, FGSM, PGD, C&W, and ZOO Attack. All classifiers
are affected by adversarial attacks with an average performance loss of 0.45, indi-
cating that adversarial attacks pose a danger to ML-based NIDS. LR is the most
effective classifier against adversarial attacks for ML-based NIDSs, with an average
F1 score of 0.52. The strongest transferability property is achieved by creating ad-
versarial samples with DNN. Their findings indicate that 84% of adversarial attack
methods may be transferred to DNN.

Our proposed defence method is ensemble-based adversarial training. The liter-
ature shows in Tab. II and Tab. III that adversarial training has been mostly used
by researchers among other techniques. In our study, adversarial training based on
an ensemble classifier is tested on the three datasets. We have used three datasets
to validate our work as in the literature researchers have used a maximum of two.
Our work also tested both the attack types white box as seen attack and black box
as unseen attack. The use of ensemble classifiers as the defence method against
adversarial attacks on machine learning-based IDS has also not been widely tested.

4. Ensemble adversarial training

Adversarial training is one of the techniques to defend against adversarial at-
tacks for a ML-based intrusion detection system. In this study, we have proposed
ensemble-based adversarial training to make our IDS perform better against ad-
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Year 2022 [32]
Dataset CICIDS17
ML classifier DT, SVM, XGBoost, LR, DNN
Attack method DT Attack, JSMA, FGSM, PGD, C&W, ZOO Attack
Defence Adv. T. and ensemble learning with Adv. T.
Attack type White box
P.P F1 score, AUC score
S.C Single dataset

Tab. III Ensemble adversarial training based defence (“P.P” represents perfor-
mance parameter, “S.C” represents shortcoming, “Adv.T.” represents adversarial
training).

versarial attacks. For the ensemble of classifiers, we have selected the following
four techniques: DT, RF, K-NN and LR. SVM and NB have been removed from
the ensemble as their performance is inconsistent and erratic results are sometimes
generated against adversarial attacks [12].

This study uses the NSLKDD, UNSW-NB15 and CICIDS17 datasets. All three
datasets are pre-processed which includes one hot encoding which is used to convert
categorical data into ones and zeros, and StandardScaler for resizing the distribu-
tion of data. The attack classes in the datasets are treated as they are except
for the NSLKDD where the 39 classes are converted into four [‘dos’, ‘r2l’, ‘probe’,
‘u2r’]. The datasets were further divided into train and test and evaluated as a
multi-classification problem.

For the experiments, Python 3.7 version is used along with the Sklearn library
for classification and the CleverHans library for the generation of adversarial at-
tacks. Different types of experiments are conducted to evaluate each dataset.

4.1 Type of experiments

Tab. IV summarizes each type of experiment performed:

1. The baseline performance of each classifier.

2. Classifiers trained with the originals dataset and tested against adversarial
attack FGSM-based in an unseen scenario.

3. Adversarial training with multiple attacks (JSMA, MIM and PGD) against
adversarial attack (FGSM) in an unseen attack scenario.

4. Classifier trained with the original dataset for ensemble and tested against
original datasets.

5. Classifiers trained with the original dataset for ensemble and tested against
adversarial FGSM-based attack.

6. Classifiers trained with adversarial samples of multiple attacks (JSMA, MIM
and PGD) for ensemble and tested against the original dataset.

7. Classifiers trained with adversarial samples of multiple attacks (JSMA, MIM
and PGD) for ensemble and tested against adversarial attack (FGSM).
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S.no.
Model trained on Model test on

Ensemble
Original JSMA, PGD, MIM Original FGSM

i. Yes – Yes – –
ii. Yes – – Yes –
iii. – Yes – Yes –
iv. Yes – Yes – Yes
v. Yes – – Yes Yes
vi. – Yes Yes - Yes
vii. – Yes – Yes Yes

Tab. IV Summarizes each type of experiment performed.

We have selected the FGSM attack for testing while the models have not been
trained on it (unseen attack scenario). (FGSM is used as an unseen attack as in our
previous work, we tested JSMA and FGSM extensively in an unseen scenario [12]).
In the first two experiments, Fig. 3 is used for the testing of the baseline perfor-
mance of the classifiers on an original and adversarial dataset based on FGSM. The
remaining experiments used Fig. 4. In the third experiment the ML classifiers are
trained with the adversarial samples of JSMA, MIM and PGD. The adversarially

Fig. 3 Machine learning classifiers accuracy for original/adversarial test dataset.

Fig. 4 Ensemble adversarial training against original/adversarial test dataset.
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trained classifiers tested against FGSM for the unseen adversarial attack. In the
fourth experiment, the ensemble of the classifiers is created and tested on the origi-
nal dataset. In the fifth experiment, the ensemble created in the fourth experiment
is tested against FGSM as an unseen attack.

In the sixth experiment, the ensemble of classifiers is trained on the multiple ad-
versarial datasets created using JSMA, MIM and PGD. This is then tested against
the original dataset while in the last experiment, the ensemble is tested against
FGSM as an unseen adversarial attack. Three performance parameters have been
used to compare the results of all the datasets, i.e., accuracy, F1 score and AUC
score.

5. Experiment results

Tabs. V–VII summarize the complete results for NSLKDD, UNSW-NB15, and CI-
CIDS17 respectively. Each table consists of the results of all seven experiments
(as described in Tab. IV in columns i-vii). Each classifier result is shown in
rows whereas the ensemble consists of DT, RF, K-NN and LR models. Accuracy,
F1 score and AUC score are calculated for each of the experiments. An analysis of
the results is presented below.

5.1 NSLKDD analysis

In the first experiment, the ML classifiers are tested for the baseline performance.
All the classifiers perform above 76% except NB which has 46% of accuracy as
shown in Tab. V(i). The second experiment is conducted for testing the adversar-
ial samples based on the FGSM attack against ML classifiers trained on original
datasets. The performance in terms of accuracy drops for all the classifiers ex-
cept K-NNh which shows better performance against adversarial attacks which
can be observed in Tab. V(ii). The SVM and LR are most affected and sensitive
to adversarial attacks as shown by dropped accuracy of 57% and 54% respectively.

In the third type of experiment, classifiers have been trained by including the
samples of multiple adversarial attack-based datasets generated through methods
like JSMA, MIM and PGD. The adversarially trained classifiers tested against
FGSM as an unseen attack. The results of this experiment can be observed in
Tab. V(iii). All the classifiers performed well and were above 90% except SVM.
When comparing experiments (ii) and (iii), as they both are unseen attacks, the
DT improved by 41%, RF by 36%, SVM by 56%, K-NN by 20%, logistic regression
(LR) by 65% and NB by 52%. This shows that when a model is trained on the
adversarial attack, even if it encounters a new unseen attack, the performance is
better when compared to no training at all. The performance of K-NN must be
highlighted here that it is improved by 20% in Tab. V(iii) although it performed
well as compared to the other classifiers in (i) and (ii). The performance of the
classifiers against the unseen attack are considered as black box attack type.

Now considering the F1 score for the third experiment, the performance of all
the classifiers has improved but prominent in this case are K-NN and LR with
92% and 85% respectively. Apart from these two classifiers, the remaining ones
are still struggling against adversarial attacks. The AUC score in Tab. V(iii) also
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indicates the classifier health which is above 95% in the majority of cases due to
the adversarial training of classifiers.

In the fourth experiment given in Tab. V(iv), the ensemble of classifiers is used
to test the original dataset without any adversarial training. The result we have
observed in Tab. V(iv) is the baseline performance for the ensemble classifier on
the original dataset and is comparable with the results obtained in Tab. V(i).

In the fifth experiment, the ensemble classifiers are now tested against FGSM-
based adversarial attacks in an unseen category in Tab. V(v). The experiment
result shows that the ensemble classifier accuracy decreased as compared to ex-
periment in Tab. V(iv) as is to be expected. But its performance is better when
compared it to its counterpart in Tab. V(ii) where the individual classifier’s per-
formance decrease is greater except for K-NN.

In the sixth experiment, the ensemble classifiers are adversarially trained by in-
cluding the adversarial samples of JSMA, MIM and PGD in Tab. V(vi) and tested
against the original dataset. The comparison of this experiment with the results of
Tab. V(iv) shows a major improvement with an increase of 13% in accuracy. The
improvement in the result is due to the robust ensemble classifier which is adver-
sarially trained. Comparing the result observed in Tab. V(vi) to all the previous
result in Tab. V on original dataset, the ensemble based adversarially trained out
beat all of them.

The same ensemble classifier is used in the seventh experiment and is now
tested against FGSM as an unseen attack. An accuracy of 98.6% is obtained which
outperforms both their counterparts in experiments Tab. V(iii) and Tab. V(v).

The F1 score is also reflecting the same as we have observed in the case of
accuracy that as our defence becomes stronger the records are correctly identified.
In experiments Tab. V(iv) and Tab. V(v), F1 score is low but the results for
experiments Tab. V(vi) and Tab. V(vii) are up to the mark. The AUC score
tells us the model’s capability to identify the between the classes. The AUC score
observed for NSLKDD is above 90% in almost every experiment.

5.2 UNSW-NB15 analysis

The results obtained for the UNSW-NB15 dataset are given in Tab. VI. The baseline
performance for the classifiers is observed in the experiment Tab. VI(i) where DT
and RF performed well with an accuracy of 73% and 74%. The second experiment
shows similar trends as observed in the case of the NSLKDD dataset. All the
classifiers have deteriorated performance in Tab. VI(ii).

The results in Tab. VI(iii) (classifiers trained with multiple adversarial attacks)
are much better when compared with the results in experiment Tab. VI(ii). The
prominent classifiers which showed improvement due to adversarial training with
multiple attacks are DT, RF and K-NN which improved by 51%, 42% and 41%
respectively. A similar trend is observed for the F1 score and the AUC score while
the AUC score for the majority of the classifier is above 80%.

In experiment four when the ensemble is tested against the original dataset, it
gives 73% accuracy. The same model accuracy is decreased by 20% when tested
against FGSM in experiment five. When the ensemble is trained using multiple
adversarial attacks and tested against the original dataset it provides 85% accuracy,
an increase of 12%, as obtained in experiment Tab. VI(vi).
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The seventh experiment tests the ensemble against FGSM as an unseen attack
which gives 78% accuracy. This validates the use of an ensemble as the performance
of the ensemble is better than any of the individual classifiers as given in experiment
Tab. VI(iii). The best of the individual classifiers is K-NN with 77% accuracy
whereas the ensemble accuracy is better by 1%. This same trend is observed in all
three datasets.

The results for the F1 score for the UNSW-NB15 dataset are improved to some
extent. The result in experiment Tab. VI(vi) is improved by 8% and the result in
experiment Tab. VI(vii) is improved by 14% when compared to their counterparts
in experiments Tab. VI (iv) and Tab. VI(v) respectively. The AUC score is well
above the mark for all the ensemble experiments.

In all the experiments in Tab. VI similar trend is observed as in Tab. V for
NSLKDD dataset with different level of impact in different experiments.

5.3 CICIDS17 analysis

Tab. VII gives the results of the experiments conducted with the CICIDS17 dataset.
In the first experiment, the baseline performance is obtained which is then com-
pared with the second experiment results that are obtained by using the adversarial
attack. As can be seen from second experiment results in Tab. VII(ii), all the clas-
sifiers have their accuracy degraded. The K-NN performs well among others with
84% accuracy while the worst performer against an adversarial attack is LR with
50% accuracy. It is worth to be noted here that K-NN performed well for multiple
experiment conduct for NSLKDD and UNSW-NB15 datasets.

In the third experiment, all the classifier performances increase in comparison
with Tab. VII(ii) due to adversarial training. Both the DT and K-NN perform
well with an accuracy of 94% each. The results show a similar pattern as observed
in other datasets that the nature of transferability in which the model trained on
the different attacks can perform well even with the unseen attacks in adversarial
cases.

In the fourth experiment Tab. VII(iv), the ensemble is trained and tested on the
original dataset. The same ensemble in the fifth experiment is then tested against
FGSM where the performance decreases by 17%. A similar drop in the F1 score
can be seen in Tab. VII(v).

In the sixth and seven experiments Tab. VII(vi and vii), the ensemble is trained
on multiple adversarial attacks. For the sixth experiment, the ensemble is tested
against an original dataset and in the seventh experiment tested against FGSM.
The performance of both experiments is up to the mark. The AUC score of the
CICIDS17 dataset in comparison with the other two datasets is better.

5.4 Comparison of dataset

For all the ensemble-based experiments, the results obtained for accuracy in the
CICIDS17 dataset are better than the other two datasets. Similarly, it is observed
that the F1 score is much better and improved as can be seen when comparing
the three Tab. VIII(iv with column vi) for the unseen adversarial-based attack.
Comparing the overall performance with respect to datasets, it is observed that
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the UNSW-NB15 dataset has the worst performance. To improve the result of the
UNSW-NB15 dataset, optimization of the ensemble classifier is undertaken. Grid-
search method for the optimization is used and results are presented in Tab. VIII.
The before and after optimization results reflect the improvement achieved. In
the fourth experiment, the accuracy and F1 score are improved by 1% as a result
of grid search optimization. In the fifth experiment, the accuracy and F1 score
increased by 3%. For the seventh experiment where the ensemble is trained on
multiple adversarial attacks and tested against FGSM, there is an improvement of
3%.

UNSW-NB15 Performance Before After
experiment parameters optimization optimization

En. without Adv.T., testing Accuracy 0.73 0.74
the original dataset F1 Score 0.45 0.46
(iv) AUC Score 0.94 0.94

En. without Adv.T., testing Accuracy 0.52 0.55
unseen Adv. datasets (FGSM) F1 Score 0.21 0.23
(v) AUC Score 0.77 0.77

En. with Adv.T. (multiple Accuracy 0.85 0.85
attacks), testing original F1 Score 0.53 0.53
test (vi) AUC Score 0.96 0.96

En. with Adv.T. (multiple , Accuracy 0.78 0.81
attacks) testing unseen Adv. F1 Score 0.35 0.35
dataset (FGSM) (vii) AUC Score 0.93 0.93

Tab. VIII Optimization of UNSW-NB15 dataset on ensemble classifiers (“Adv.”
represents adversarial, “Adv.T.” represents adversarial training, “En.” represents
ensemble).

6. Conclusion

In this research, the ML models for intrusion detection systems are tested against
adversarial attacks in a variety of scenarios. ML classifiers are also trained on
adversarial datasets generated by JSMA, MIM, and PGD. The adversarial attack
is built with FGSM and tested against ML classifiers in an unknown environment
in which the model is uninformed of the attack. Transferability is a concept that
describes how adversarial examples developed on one model can be utilised against
other models. In this paper, we suggest building an ensemble classifier based on the
best-performing ML algorithm against adversarial attacks. The ensemble classifier
is then trained on a variety of adversarial datasets and evaluated against adversarial
attacks. By integrating adversarial datasets in our training, we can defend the
ensemble classifier with transferability. When compared to an untrained ensemble,
the outcome of an adversarial-trained ensemble is superior.
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