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Abstract: Night-time light (NTL) radiance has a great potential in analyses of
dynamic changes in patterns of human activities, and socio-economic and demo-
graphic factors. However, most of those analyses are focused on factors at global
scales such as the population size, gross domestic product, electric power con-
sumption, fossil fuel carbon dioxide emission etc. In this study we investigate the
relationships between three urban lighting indicators and monthly averaged NTL
radiance obtained from NASA’s Black Marble monthly NTL composites for 4 study
areas in the Czech Republic at local scale. The Pearson correlation analysis was
used to identify a strength of the correlations between the indicators and radiance
at near-nadir for two different snow conditions. The results from the correlation
show that radiance has a strong positive correlation with the number of street-
lighting points and their total nominal power, while for the average mast height
there were observed moderate correlation coefficients. However, the areas with
larger scales have higher correlation coefficients. Moreover, we found that the cor-
relation coefficients are higher for snow-covered condition radiances. Generalized
linear (GL) regression analysis was used to examine an association between the ra-
diance and selected indicators. Owing to the excess zeros and overdispersion in the
data, the zero-inflated regression performs better than the GL regression. Results
from the regression analysis evince a statistically significant relationship between
the radiance and selected indicators.
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1. Introduction

Urban lighting planning represents a key element for ensuring sufficient illumina-
tion in order to improve environment perception and facilitate orientation, safety
and security during low lighting levels or adverse weather conditions [26] by means
of urban lighting installations. There have been published several studies revealing
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that the appropriate urban lighting installations can improve not only the percep-
tion of space and pedestrians’ mobility behaviour in cities and municipalities when
darkness falls [33, 1, 34, 29, 9, 15]. However, they can also have impact on road
safety [13, 3, 46, 21, 35, 23].

Every part of a city has its own functional utilization which should always be
in accordance with a given urban lighting that can be differentiate to the utility
lighting and architectural lighting [26]. The urban lighting installations differ in
technical lighting parameters, construction and design solutions, geometrical ar-
rangements, and geographical locations creating a complicated heterogeneity of
spatial patterns of the illumination characteristics across different land uses, such
as main roads, commercial and institutional areas, residential areas etc. NTL im-
agery provides a powerful geospatial resource to detect low radiance at night, and
thus it is able to perceive dynamic changes of the world in human activities and
environmental changes, locally and globally [52] through the measure of the radi-
ance from space. NTL data have been extensively used in mapping urban areas
[41, 47, 18] and in estimating socio-economic factors such as population changes
[51, 2], gross domestic product [6, 19], income [20], electric power consumption [5],
and freight traffic [42]. Some studies have also been concerned with mapping of
conflicts and disasters and environmental changes such as fisheries [43, 17], and
light pollution [24].

However, most of these studies investigating the relationships between NTL
radiances and human-linked patterns were performed at macro scales. The NTL
data used in these studies were mainly collected from the Defense Meteorological
Satellite Program’s Operational Linescan System (DMSP–OLS). Nevertheless, this
data suffer, among others shortcomings, mainly from coarse spatial resolution, lack
of on-board calibration, and signal saturation in bright urban core areas (radio-
metric resolution of six bits) [11, 27]. The major challenge is the lack of a finer
spatial resolution to record the detailed spatial and temporal patterns of the NTL
radiances at local scales. NASA’s Black Marble NTLs product suite represents the
new generation of the NTL data that has a vast improvement in spatial resolution
over DMSP-OLS, and thus offers more detailed characterization of natural and
artificial spatial patterns of light that escape to space.

This paper is aimed at the investigation of the relationship between the NTL
radiance and three selected urban lighting indicators within 4 urban study areas in
the Czech Republic. The urban lighting indicators we chose in this study are the
number of street-lighting points (NSLPs), total nominal power of street-lighting
points (TNPSLPs), and average mast height of street-lighting points (AMHSLPs).
The correlation analysis was used to identify the most promising indicators suitable
for use in the subsequent regression analysis. It is hypothesized that the NTL data
could be a good proxy for some of the above-mentioned indicators.

The rest of the paper is structured as follows. In Section 2, employed data
in the investigation process are described, including the NTL data, and ancillary
GIS data. In Section 3, the data pre-processing steps and statistical analysis are
explained. In Section 4, the results of the correlation and regression analyses are
summarized. In Section 5, the main conclusions of this paper are presented.
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2. Study areas and datasets

In this study we incorporate both satellite imagery, and spatial GIS layers intended
for the study areas in the Czech Republic. Detailed description of the study areas
and used datasets will be presented in the following sub-sections.

2.1 Study areas

The considered study areas are located in the Czech Republic representing two cities
(study areas 1 and 3), one town (study area 2), and one village (study area 4) with
different urban forms and population sizes. The principle of the selection was to
include the areas with different geographic and demographic characteristics so as
to make sample more representative. These areas were used in the investigation
of the relationship between the NTL radiance and the urban lighting indicators.
Geographical locations of the study areas within the Czech Republic with their
names can be seen in Fig. 1.

Czech Republic

Study Area 1

Study Area 2

Study Area 3

Study Area 4

Fig. 1 Location of the study areas in the Czech Republic. The considered study
areas are represented by the red polygons (Study Area 1 – Hradec Králové, Study
Area 2 – Dolńı Čermná, Study Area – Frenštát pod Radhoštěm, Study Area 4 –
Nové Sedlice).
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2.2 Datasets

2.2.1 Night-time lights imagery

The NTL data from the NASA’s Black Marble night-time lights product suite
(VNP46; [38]) at 15 arc-second spatial resolution (around 500 m) is used for investi-
gating of the relationships between the NTL radiance and urban lighting indicators.
The NTL product suite can be created owing to the Visible Infrared Imaging Ra-
diometer Suite (VIIRS) sensor onboard the Environmental Satellite System Suomi
National Polar Partnership (NPP) [32], launched in October 2011. This satellite is
equipped with a specific panchromatic sensor which is designed for measuring (or
sensing) night-time lights – the Day and Night Band (DNB) [31]. It represents a
significant improvement in terms of data availability and observing characteristics
over DMSP–OLS [12], the previous system for collecting NTLs.

The NASA’s Black Marble products suite consists of four products, such as
top-of-atmosphere (TOA) DNB radiance along with ancillary data (VNP46A1;
[38]), lunar BRDF-corrected radiance (VNP46A2; [38]), monthly composite radi-
ance (VNP46A3; [38]) and annual composite radiance (VNP46A4; [38]) [44]. For
the purpose of this study we used the VNP46A3 product including 28 scientific
datasets (layers) with the information on the NTL composites, the number of ob-
servations, quality, and standard deviation for multi-view zenith angle categories
(near-nadir, off-nadir, and all angles) and snow status (snow-covered and snow-
free), land water mask, platform, latitude, and longitude [37]. The monthly NTL
composites were generated from moon-free and moon-lit atmospherically and lunar-
BRDF-corrected NTL from the product VNP46A2 [45]. All scientific datasets store
the data in the standard land Hierarchical Data Format-Earth Observing System
(HDF–EOS) format [37]. Appropriate HDF–EOS files were downloaded from the
data centre of NASA’s Level-1 and Atmosphere Archive and Distribution System
(LAADS) Distributed Active Archive Centers (DAACs) through its web interface
(https://ladsweb.modaps.eosdis.nasa.gov/).

2.2.2 Ancillary open GIS data

Data on the urban lighting installations were downloaded in comma-separated val-
ues files through geo-portals as open data administrated by a given city or munic-
ipality. These files contain several attributes which characterize a given lighting
installation. From this set of attributes we chose only three attributes called the
urban lighting indicators: the NSLPs, (TNPSLPs), and (AMHSLPs). To separate
administrative regions of study areas we used the Data200 database (downloaded
from the link Data200) which represents a digital geographic model of the territory
of the Czech Republic and it is managed by the Czech Office for Surveying, Map-
ping and Cadastre (ČÚZK). From this database we used only the polygon vector
layers represent the administrative borders of the study areas.
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3. Methodology

3.1 Imagery preprocessing

3.1.1 Converting, mosaicking, re-projecting, and clipping

From the downloaded HDF5 files of the VNP46A3 product for the area of the
Czech Republic the NTL temporal radiance composites were used and further pre-
processed. The datasets of NTL temporal radiance composites for view zenith
angle of category near-nadir and two different snow conditions (snow-free and snow-
covered) were exported as raster layers in the GeoTiff file format. The exported
layers had a coordinate system of WGS 84. The study areas are placed in the
region of the Czech Republic which is covered by two tiles, namely the h19v03
and h19v04 tiles from the Suomi-NPP VIIRS linear latitude/longitude tile grid.
These tiles were then mosaicked and re-projected to S–JTSK/Krovak Easth North
coordinate system using gdal warp command utilities. Finally, we performed raster
clipping in order to obtain the final raster composites for all study areas. All the
mentioned raster operations are performed with the use of Geospatial Data Ab-
straction Library (GDAL) and its Python wrappers. Fig. 2 shows the steps of this
procedure.

3.1.2 Spatio-temporal gap-filling of night-time lights radiance

Remote sensing data often contains low-quality or missing pixel values across the
image scene that they cover [16]. In chosen data product VNP46A3 from the
NASA's Black Marble product suite there are certain pixel positions with no data
(or gaps), especially during winter or summer solstices. These gaps are mainly
caused either by cloud contamination or solar illumination in summer [7, 53, 44]. In
the case of selected study areas these gaps exist in the original January, February,
March, May, June, July, and December VIIRS DNB composites with the most
serious missing values in the May, and July composites and almost all missing
values in the June. Therefore, this month was excluded from the analysis. To deal
with this issue in remaining months we used the spatio-temporal prediction method
proposed by [16] which predict missing values through quantile regression and its
prediction algorithm is described elsewhere [16]. In our prediction procedure, we
assumed that for each study area the selected urban lighting indicators remained
unchanged from the time in which the urban lighting masterplan was created to 1
year onwards.

Our procedure for filling in missing data is outlined below:

1. Subset selection: For each study area, we determined the year and month of
urban lighting masterplan creation. From that time-stamp a 1 year onwards
we selected the VIIRS DNB monthly composites for both snow conditions and
stacked them sequentially into 2 separate 12-month time series. Therefore,
each pixel has 12 time series radiance values for two different snow conditions.
In that original time series we identified radiance composites in which more
than 50% pixels [16] have no data and excluded them from further steps of
the procedure. In that case all the radiance composites for the June were
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excluded. Thus, the final two time series to fill missing values in have only
11 months.

2. Gapfill algorithm application: In the second step, we applied the gapfill
algorithm on the snow-free and snow-covered time series. The gapfill al-
gorithm fills the missing values based on neighbouring observations within a
spatial and temporal window expressed in four dimensions (dim 1 (longitude),
dim 2 (latitude), dim 3 (month of the year), dim 4 (year)).

The selected datasets act as the neighbouring observations to fill the missing
values in, comprises two individually rank-4 tensors of shape (nx, ny, ns, na),
where nx and ny are the spatial extents of the composites (images), ns is the
number of composites within a year, and na is the number of years. In our
case, both selected datasets (for the snow-covered and snow-free conditions)
have a different spatial extent (based on the study area size) of radiance val-
ues consist of 99 images with the ns = 11 (11 months) and na = 9 (between
the years 2013–2021). The prediction method predicts each missing value
separately and its procedure includes four steps. In the first step, selecting
sufficiently large spatio-temporal neighbourhood prediction set for the predic-
tion of target missing value is performed. The selection is based on iteratively
increasing the initial spatial extent of the neighbourhood until two criteria
are fulfilled which are described in greater detail in [16]. In step 2, scoring
sub-images in the spatio-temporal neighbourhood prediction set according
to scoring procedure described in [16] is carried out. In the last two steps,
the empirical quantile of the target missing value is estimated and quantile
regression is applied to the observed values of the prediction set [16].

3.2 GIS data preprocessing

In this paper we also incorporate the spatial GIS layers of administrative boundaries
representing the study areas and comma-separated values files including parameters
about the urban-lighting installations for that areas. Administrative boundaries
were obtained from the “Data200” database which is a digital geographic model
of territory of the Czech Republic organised in 8 thematic layers and provided as
open database [8]. The comma-separated values files were obtained from the city
municipalities within an initiative of open data. Thematic layers of administrative
boundaries were used to create rectangular grids with their horizontal and vertical
spacing equal to a spatial resolution of the VIIRS DNB monthly composites in
order to calculate radiance values for each grid. These grids were created in Quan-
tum GIS (QGIS) using the native routines “Create grid” and “Clip”. For these
grids, radiance values were calculated from the spatio-temporal gap filled VIIRS
DNB monthly composites using the native routine “Zonal statistics” which weights
pixel contribution by the area of a given rectangle. After that we imported the
comma-separated values files into QGIS and exported them as ESRI shapefile point
layers. By using the expression functions from the “array” and “geometry” groups
through the QGIS Field Calculator tool we calculated statistic for chosen urban
lighting parameters per each rectangle within a given study area grid, namely for
the NSLPs, TNPSLPs and AMHSLPs.
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Fig. 2 Procedure of NTL radiance composites preprocessing.
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3.3 Statistical analysis

3.3.1 Basic correlation

First, we examined the correlations between the NTL data and chosen urban light-
ing indicators for all study areas so as to identify bivariate relations between the
radiance and indicators. We employed the radiances for both snow conditions in
the correlations in order to be able to capture and examine possible differences.
We assume that the most of the operational time of the urban-lighting installations
is overlapping with the satellite overpass in the study areas. All variables used in
the correlation analysis and their meanings are summarized in Tab. I.

Variable Meaning of the variables

y1 Number of street-lighting points (NSLPs)
y2 Total nominal power of street-lighting points (TNPSLPs)
y3 Average mast height of street-lighting points (AMHSLPs)
x Monthly averaged radiance

Tab. I All variables used in the correlation analysis.

In order to measure the strength of the linear relationships between the indi-
cators and the radiance, we computed sample Pearson correlation coefficients. 66
sample correlation coefficients were calculated for each study area, thus in total
264 sample correlation coefficients across all 4 study areas. We interpreted the
high or strong correlations as correlations with the correlation coefficient above
the value of 0.5, since these correlation values indicate that a variable tend to be
good for modelling their linear relationship [14]. With the calculated sample cor-
relation coefficients, the p-values were also determined providing the significances
of the correlation coefficients. The p-values lower than 0.05 at 95% confidence
level indicates statistically significant non-zero correlations. The analysis shows
which correlations are statistically significant and which indicators correlate with
the radiance. The results from the correlation analysis are presented in Fig. 3.

3.3.2 Simple regression analysis

In this section we introduce generalized linear (GL) regression and zero-inflated
regression analyses in order to investigate the relationships between the radiance
and indicators, thus ascertain the causal effect of the radiance upon the indicators.
In other words, the indicators represent the response variables, and the radiance
represents the explanatory variable. We note that in the regression analysis we
used the radiance values for both snow conditions and for 4 months, such as the
January, April, July, and October, as we suppose that these months are the most
representative during a year. Tab. II shows the descriptive statistics of the response
variables and Fig. 4 shows their respective histograms. Before the determination
of the appropriate regression model, we performed the Poisson distribution testing
on the response variables, such as the NSLPs and TNPSLPs in order to find out,
whether or not the response variables are from the Poisson distribution. We chose
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Fig. 3 Sample correlation coefficients and their p-values for all study areas and all
variables for both snow conditions (SC – snow covered, SF – snow free).

Variable Minimum Maximum Mean Variance

y1 0 581 20.424 2595.401
y2 0 38622 1956.617 24358960.550

Tab. II Descriptive statistics for chosen response variables y1 and y2.

the Shapiro–Wilk’s test over the Kolmogorov–Smirnov test due to its better per-
formance even for small sample sizes [36]. The null and alternative hypotheses are
as follows:

HO: The response distribution is normal,

HA: The response distribution is not normal.

383



Neural Network World 5/2023, 375–396

Fig. 4 Histograms for both response variables (y1 – left, y2 – right).

We computed a test statistic with the degree of confidence at 95%, or 0.05 sig-
nificance. Results from computed test statistics for both responses are summarized
in Tab. III. From the results we can reject the null hypothesis for both responses,
since calculated p-values are less than 5% (p < 0.05), and thus implying that both
responses are Poisson distributed. The presence of significant overdispersion in the
data is apparent from Tab. II, where the variance values are much larger than the
mean values. The Poisson regression model is based on the assumption that the
response variable follows the probability mass function (PMF), which is usually
given by [10]:

Variable W p-value

y1 0.456606 < 0.001
y2 0.453553 < 0.001

Tab. III Results from Shapiro–Wilk normality tests for both response variables.

P(yi;µi) =
e−µiµyi

i

yi!
, yi = 0, 1, 2, . . . , n, µi > 0. (1)

However, this PMF assume that the variance of Poisson randomly distributed
variable equals its mean value so as to follow the expression Var(yi) = E(yi).
Therefore, we used the GL regression model in which the response variable yi
assumes the following form of PMF [49]:

P(yi;µi, δ) =
µi(µi + δyi)

yi−1e−µi−δyi

yi!
, yi = 0, 1, 2, . . . , n, µi > 0, (2)

where the δ is the dispersion parameter where its values lie in the interval max(−1,
−µi

4 ) < δ < 1. The mean and variance of the response variable yi are given by the
following formulae [22]:
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Mean(yi) =
µi

1− δ
, (3)

Var(yi) =
µi

(1− δ)3
. (4)

Afterwards, the GL model with one predictor was used with the following form
with the random and systematic components defined as [10]:{

Random component: yi ∼ P(yi;µi, δ),

Systematic component: logµi = β0 + β1xi,
(5)

where the yi is the response variable, log is the logarithmic link function, µi is the
expected value of the response, xi is the explanatory variable, and β0 and β1 are
the regression parameters. The systematic component can be written as:

µi = eβ0+β1xi . (6)

The results from the GL model for the response variables y1 and y2 are summa-
rized in Tab. IV and Tab. V, respectively. The p-values of β1 regression parameters
are very low for both response variables across all 4 study areas and months even
for both snow conditions. This could indicate that the NSLPs and TNPSLPs
are strongly dependent on the radiance. However, the model evinces a significant
overdispersion based on the calculated ratios of deviance to degrees of freedom ( rddf )
which should be close to 1 as much as possible. It has a serious consequence on the
trustworthiness of the test statistic as the variable will generally appear to be more
significant that warranted by the data [10], and thus lead to misleading inference
for the regression parameter. From the plotted histograms depicted in Tab. 4 it
can be seen, that both variables have lot of zero values that can not be accounted
only by the Poisson distribution [48]. Excessive amount of zero’s values can cause
extreme overdispersion in the model, and thus we used the zero-inflated Poisson
(ZIP) model to adjust the model for this phenomena [25, 50]. The ZIP model com-
prises two regression portions, such as the logistic and Poisson regressions. The
logistic regression predicts only the zero count due to excessive zeros, and Pois-
son regression predicts both the zero and non-zero counts [48]. Thus, the random
component of the model comprises of two PMFs which are used to calculate the
probability of observing a zero count and counts (including zeros) and are given by
the following formulae [48]:

P(yi|xi, zi) =

{
pi + (1− pi)e

−µi , yi = 0,

(1− pi)
e−µiµ

yi
i

yi!
, yi > 0,

(7)

where the µi is the Poisson mean, xi represents the covariates for the logistic
regression part, zi represents the covariates for the Poisson regression part and pi
is the probability of extra zeros.

In the case in which the pi = 0 the model is simplified to a regular Poisson
model [39]. The results from the inflation and count portions for both response
variables y1 and y2 are summarized in Tab. VI and Tab. VII, respectively. Both
models were compared by calculation the likelihood measure of Akaike information
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Study Area 1

Julians Date β1 p-value rd
df AIC n

2021001 – SC 0.003 < 0.001 42.677 27291 608
2020092 – SC 0.004 < 0.001 30.892 20149 608
2020214 – SC 0.005 < 0.001 29.479 19293 608
2020306 – SC 0.004 < 0.001 35.354 22853 608
2021001 – SF 0.006 < 0.001 28.672 18804 608
2020092 – SF 0.004 < 0.001 26.760 17646 608
2020214 – SF 0.005 < 0.001 25.337 16783 608
2020306 – SF 0.007 < 0.001 37.411 24100 608

Study Area 2

Julians Date β1 p-value rd
df AIC n

2021001 – SC 0.035 < 0.001 4.358 516 102
2020092 – SC 0.187 < 0.001 2.693 350 102
2020214 – SC 0.173 < 0.001 3.169 397 102
2020306 – SC 0.211 < 0.001 3.675 448 102
2021001 – SF 0.111 < 0.001 7.906 871 102
2020092 – SF 0.191 < 0.001 2.622 342 102
2020214 – SF 0.200 < 0.001 2.999 380 102
2020306 – SF 0.299 < 0.001 2.659 346 102

Study Area 3

Julians Date β1 p-value rd
df AIC n

2019001 – SC 0.003 < 0.001 20.271 1790 84
2018091 – SC 0.016 < 0.001 9.021 868 84
2018213 – SC 0.019 < 0.001 9.444 902 84
2018305 – SC 0.017 < 0.001 10.104 956 84
2019001 – SF 0.014 < 0.001 15.729 1417 84
2018091 – SF 0.016 < 0.001 13.059 1198 84
2018213 – SF 0.019 < 0.001 14.744 1337 84
2018305 – SF 0.018 < 0.001 14.912 1350 84

Study Area 4

Julians Date β1 p-value rd
df AIC n

2015001 – SC 0.054 < 0.001 7.381 150 18
2015091 – SC 0.070 < 0.001 5.524 120 18
2015213 – SC 0.070 < 0.001 6.478 135 18
2014305 – SC 0.047 < 0.001 7.248 148 18
2015001 – SF 0.046 < 0.001 8.062 161 18
2015091 – SF 0.094 < 0.001 6.208 131 18
2015213 – SF 0.057 < 0.001 7.966 159 18
2014305 – SF 0.042 < 0.001 8.216 163 18

Tab. IV Results from the GL model for the response variable y1 with different
sample sizes 608, 102, 84, and 18 ( rddf – ratio of deviance to degrees of freedom).
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Study Area 1

Julians Date β1 p-value rd
df AIC n

2021001 – SC 0.003 < 0.001 3981.565 2415543 608
2020092 – SC 0.004 < 0.001 2930.363 1778514 608
2020214 – SC 0.005 < 0.001 2722.698 1652669 608
2020306 – SC 0.004 < 0.001 3260.585 1978629 608
2021001 – SF 0.006 < 0.001 2650.581 1608966 608
2020092 – SF 0.005 < 0.001 2511.066 1524420 608
2020214 – SF 0.005 < 0.001 2378.754 1444239 608
2020306 – SF 0.008 < 0.001 3497.650 2122290 608

Study Area 2

Julians Date β1 p-value rd
df AIC n

2021001 – SC 0.033 < 0.001 319.454 32118 102
2020092 – SC 0.179 < 0.001 199.678 20141 102
2020214 – SC 0.166 < 0.001 239.728 24146 102
2020306 – SC 0.202 < 0.001 264.762 26649 102
2021001 – SF 0.106 < 0.001 524.521 52625 102
2020092 – SF 0.183 < 0.001 197.639 19937 102
2020214 – SF 0.190 < 0.001 228.603 23033 102
2020306 – SF 0.285 < 0.001 203.564 20529 102

Study Area 3

Julians Date β1 p-value rd
df AIC n

2019001 – SC 0.003 < 0.001 1834.626 150697 84
2018091 – SC 0.015 < 0.001 904.238 74406 84
2018213 – SC 0.018 < 0.001 953.281 78427 84
2018305 – SC 0.016 < 0.001 965.863 79459 84
2019001 – SF 0.013 < 0.001 1455.045 119572 84
2018091 – SF 0.015 < 0.001 1216.042 99973 84
2018213 – SF 0.018 < 0.001 1404.663 115440 84
2018305 – SF 0.018 < 0.001 1272.580 104610 84

Study Area 4

Julians Date β1 p-value rd
df AIC n

2015001 – SC 0.065 < 0.001 575.735 9275 18
2015091 – SC 0.085 < 0.001 361.929 5854 18
2015213 – SC 0.085 < 0.001 452.918 7310 18
2014305 – SC 0.054 < 0.001 570.406 9190 18
2015001 – SF 0.056 < 0.001 628.882 10125 18
2015091 – SF 0.119 < 0.001 418.934 6766 18
2015213 – SF 0.066 < 0.001 662.745 10667 18
2014305 – SF 0.049 < 0.001 687.544 11064 18

Tab. V Results from the GL model for the response variable y2 with different
sample sizes 608, 102, 84, and 18 ( rddf – ratio of deviance to degrees of freedom).
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Study Area 1

Julians Date βc
1 pc-value βz

1 pz-value AIC n

2021001 – SC 0.002 < 0.001 -0.027 < 0.001 14287 608
2020092 – SC 0.003 < 0.001 -0.029 < 0.001 10469 608
2020214 – SC 0.003 < 0.001 -0.027 < 0.001 10111 608
2020306 – SC 0.003 < 0.001 -0.030 < 0.001 11953 608
2021001 – SF 0.005 < 0.001 -0.026 < 0.001 10490 608
2020092 – SF 0.003 < 0.001 -0.028 < 0.001 9208 608
2020214 – SF 0.004 < 0.001 -0.028 < 0.001 8818 608
2020306 – SF 0.005 < 0.001 -0.031 < 0.001 14119 608

Study Area 2

Julians Date βc
1 pc-value βz

1 pz-value AIC n

2021001 – SC 0.019 < 0.001 -0.110 0.002 308 102
2020092 – SC 0.121 < 0.001 -0.525 < 0.001 238 102
2020214 – SC 0.111 < 0.001 -0.525 < 0.001 242 102
2020306 – SC 0.126 < 0.001 -1.309 0.002 265 102
2021001 – SF 0.063 < 0.001 -0.130 0.001 451 102
2020092 – SF 0.126 < 0.001 -0.496 < 0.001 237 102
2020214 – SF 0.127 < 0.001 -0.556 < 0.001 249 102
2020306 – SF 0.192 < 0.001 -0.593 < 0.001 235 102

Study Area 3

Julians Date βc
1 pc-value βz

1 pz-value AIC n

2019001 – SC 0.002 < 0.001 -0.009 < 0.001 1023 84
2018091 – SC 0.011 < 0.001 -0.033 < 0.001 542 84
2018213 – SC 0.013 < 0.001 -0.037 < 0.001 572 84
2018305 – SC 0.012 < 0.001 -0.033 < 0.001 615 84
2019001 – SF 0.009 < 0.001 -0.028 < 0.001 843 84
2018091 – SF 0.011 < 0.001 -0.040 < 0.001 713 84
2018213 – SF 0.012 < 0.001 -0.036 < 0.001 806 84
2018305 – SF 0.012 < 0.001 -0.031 < 0.001 889 84

Study Area 4

Julians Date βc
1 pc-value βz

1 pz-value AIC n

2015001 – SC -0.001 0.863 -0.244 0.062 88 18
2015091 – SC 0.021 0.026 -0.328 0.071 83 18
2015213 – SC 0.013 0.192 -0.264 0.050 88 18
2014305 – SC 0.008 0.278 -0.29 0.076 87 18
2015001 – SF 0.002 0.803 -0.209 0.099 92 18
2015091 – SF 0.014 0.315 -0.306 0.033 88 18
2015213 – SF -0.006 0.601 -0.309 0.032 87 18
2014305 – SF 0.002 0.764 -0.552 0.124 88 18

Tab. VI Results from the ZIP model for the response variable y1 with different
sample sizes 608, 102, 84, and 18 (c – count model, z – zero-inflation model).
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Study Area 1

Julians Date βc
1 pc-value βz

1 pz-value AIC n

2021001 – SC 0.003 < 0.001 -0.027 < 0.001 1163191 608
2020092 – SC 0.003 < 0.001 -0.029 < 0.001 834696 608
2020214 – SC 0.004 < 0.001 -0.027 < 0.001 764996 608
2020306 – SC 0.003 < 0.001 -0.030 < 0.001 930256 608
2021001 – SF 0.005 < 0.001 -0.026 < 0.001 805507 608
2020092 – SF 0.003 < 0.001 -0.028 < 0.001 703020 608
2020214 – SF 0.004 < 0.001 -0.028 < 0.001 666013 608
2020306 – SF 0.005 < 0.001 -0.031 < 0.001 1164106 608

Study Area 2

Julians Date βc
1 pc-value βz

1 pz-value AIC n

2021001 – SC 0.017 < 0.001 -0.111 0.001 10224 102
2020092 – SC 0.107 < 0.001 -0.539 < 0.001 6598 102
2020214 – SC 0.099 < 0.001 -0.531 < 0.001 6949 102
2020306 – SC 0.114 < 0.001 -1.294 0.001 7928 102
2021001 – SF 0.053 < 0.001 -0.130 0.001 16836 102
2020092 – SF 0.111 < 0.001 -0.511 < 0.001 6820 102
2020214 – SF 0.111 < 0.001 -0.567 < 0.001 7760 102
2020306 – SF 0.169 < 0.001 -0.613 < 0.001 6240 102

Study Area 3

Julians Date βc
1 pc-value βz

1 pz-value AIC n

2019001 – SC 0.002 < 0.001 -0.009 < 0.001 65901 84
2018091 – SC 0.010 < 0.001 -0.033 < 0.001 29418 84
2018213 – SC 0.012 < 0.001 -0.037 < 0.001 32630 84
2018305 – SC 0.011 < 0.001 -0.033 < 0.001 33968 84
2019001 – SF 0.008 < 0.001 -0.028 < 0.001 51664 84
2018091 – SF 0.010 < 0.001 -0.04 < 0.001 40964 84
2018213 – SF 0.011 < 0.001 -0.036 < 0.001 50362 84
2018305 – SF 0.011 < 0.001 -0.031 < 0.001 50798 84

Study Area 4

Julians Date βc
1 pc-value βz

1 pz-value AIC n

2015001 – SC 0.016 < 0.001 -0.244 0.062 4575 18
2015091 – SC 0.043 < 0.001 -0.328 0.071 3095 18
2015213 – SC 0.036 < 0.001 -0.264 0.05 3740 18
2014305 – SC 0.021 < 0.001 -0.290 0.076 4076 18
2015001 – SF 0.016 < 0.001 -0.209 0.099 4427 18
2015091 – SF 0.050 < 0.001 -0.306 0.033 3845 18
2015213 – SF 0.013 < 0.001 -0.309 0.032 4723 18
2014305 – SF 0.013 < 0.001 -0.552 0.124 4548 18

Tab. VII Results from the ZIP model for the response variable y2 with different
sample sizes 608, 102, 84, and 18 (c – count model, z – zero-inflation model).

389



Neural Network World 5/2023, 375–396

criteria (AIC). It can be seen that the AIC values are significantly lower for the
ZIP model which indicates that the model fits on the data much better than the
GL model.

4. Results and discussion

4.1 Results of correlation analysis

Fig. 3 shows the calculated sample correlation coefficients with their respective p-
values for all study areas between the radiance and indicators. All the correlations
are positive which in general indicates that the indicator values increase as the
radiance increases. The strongest statistically significant correlations were found
between the radiance and NSLPs, and the radiance and TNPSLPs for the study
areas 1, 2, and 3. Moreover, these correlations are probably slightly higher on av-
erage for the radiances at snow-covered condition with the highest value of sample
correlation coefficient r = 0.881 (p <0.001). However, the correlation coefficients
for the study area 4 evince in general appreciably lower correlation values compared
to the other ones with the lowest value of correlation coefficient 0.458. The most
remarkable decrease in the correlation coefficients was observed in the correlation
between the radiance and AMHSLPs. In the case of this relationship, the correla-
tion presents and opposite behaviour with the moderate correlation values for the
first three study areas and high correlation values for the study area 4.

According to the calculated correlation values between the radiance and all vari-
ables for all study areas, we excluded the AMHSLPs indicator from the subsequent
regression analysis due to the moderate correlation values around value 0.5 [30] and
low p-values. It is suggested that the radiance could serve as a better proxy for the
NSLPs and TNPSLPs than for the AMHSLPs. Therefore, the NSLPs points and
TNPSLPs were incorporated into the subsequent regression analysis.

4.2 Results of regression analysis

We used the GL and ZIP models to examine the relationships between the radiance
and chosen responses for all study areas and both snow conditions. Results from the
GL regression are suffered from the excess zeros and significant overdispersion which
can lead to the invalid inference about the significance of estimated beta coefficients
due to their underestimated standard errors [40]. Therefore, we included the ZIP
model in the analysis that can effectively take into account both issues and can
improve the accuracy of the model. To compare both models we used the AIC as
we assumed that in the most study areas there are sufficient sample sizes [4]. Values
of the AIC resulted from the ZIP regression for all study areas are much better
than in the case of the GL regression, and thus the ZIP model indicates better
model fit. The estimated values from the ZIP model for β1s from the count model
are nearly positive in all study areas and for both responses and snow conditions.
To better interpretation of the estimated coefficients we calculated their incidence
rate ratio described mathematically in the following form:

IRRi = eβi . (8)
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From the estimated coefficients in the count model part (risk group, not always
zero) of the ZIP model was found that one unit increase in the radiance can increase
the expected rate of the NSLPs in the area by up to 21.17%. A similar maximum
increase (18.41%) was indicated also in the relationship between the radiance and
TNPSLPs. This was observed in the study area 2. Minimum increase in both
responses based on the one unit increase in the radiance was observed in the study
area 4. In all study areas, on average, one unit increase in the radiance increases
the expected rate of the NSLPs and TNPSLPs by 3.44% and 3.58%, respectively.
Estimated coefficients from the zero-inflation part (non-risk group, always zero
group) carry negative signs which means that if there is no street-lighting point,
and thus zero total nominal power, the incidence of the radiance on the response
is substantially less.

5. Conclusions and future work

This paper shows the investigation of the relationships between the NTL data and
urban lighting indicators for the local urban areas in the Czech Republic by using
the correlation and regression analyses. The sample Pearson correlation coefficients
between the radiance for two snow conditions and three selected indicators, the
NSLPs, TNPSLPs, and AMHSLPs, at 95% confidence interval were calculated
for 4 study areas. NSLPs and TNPSLPs evince strong statistically significant
positive correlation with the radiance in the study areas 1, 2, and 3 and moderate
correlation in the study area 4 with the correlation coefficients around value of
0.5. Opposite behaviour of correlation values was found between the radiance
and AMHSLPs where the moderate correlation values were observed for the study
areas 1, 2, and 3 and higher correlation values for the study area 4. The correlation
analysis also reveals that the higher values of correlation coefficients are present
mostly for radiances at snow-covered condition. One reason that could explain
the discrepancy between correlation results for the first three study areas and the
fourth is associated with a scale of each study area. This is in accordance what
was found by [28].

Subsequently, we turned into inferencing about interpreting statistically signif-
icance of the relationships with the use of simple regression analysis. Given that
the AMHSLPs generates somewhat lower correlation coefficient values with the
radiance nearly in the most study areas, we did not include it into the regres-
sion analysis. The regression analysis showed that the ZIP model was a better
model than the GL model in terms of AIC. The results obtained from the ZIP
model indicate that there is an association between the radiance and urban light-
ing installations, both in terms of number of the NSLPs and TNPSLPs. From the
count model part was observed that the increase in radiance increases values of
both responses. On the contrary, the zero-inflation part reveals that no presence
of street-lighting points, and thus zero value of total nominal power is associated
with substantial less incidence of the radiance.

Our study contributes to the studies of socio-economic activities based on the
NTL data at small and medium sized areas. In this paper, we showed that NTL
data has positive correlation with the urban lighting installation indicators, in
terms of the number of street-lighting points and total nominal power on smaller
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and medium scales. Furthermore, with the use of regression analysis it was ob-
served that there is a statistically significant relationship between the radiance and
those indicators. However, several limitations and issues in this study should be
addressed as follows:

1. Spatial resolution of the NTL composites might be still too coarse to gener-
ate better causal explanations by the use of these regression models. NTL
data from such coarse spatial resolution produce radiance patterns which can
record the NTL radiance contributions from other light sources and not only
from street-lighting.

2. The possible presence of clouds in the NTL data can induce a distortion of the
upwelling radiance. They can cause substantial drops in the NTL radiance,
especially in the presence of thick clouds. Misclassification of clouds is another
substantial source of the radiance outliers [44].

3. Operating times of street-lighting installations are not the same from differ-
ent points of view. For instance, the times of sunset and sunrise are different
during different climatic conditions. This is most evident during the win-
ter and summer months. Development of energy saving strategies (turning
on/off, dimming) regulating number of luminaire burning hours is another
point of view. Therefore, the radiance contribution from street-lighting is
time dependent.

4. VIIRS sensor is not able to measure of incoming light in the intense blue
”peak” of white LEDs [27]. Thus, the values of radiance can be inaccurate
with respect to the fact that, nowadays, in the most cities the high-pressure
sodium laps are replaced by the white LEDs.

5. Non-spatial regression analysis that can not accounted for spatial variations
of parameters across the space.

Despite these limitations and issues, the present study offers valuable results
and perspectives for future work. In future work we would like to study found as-
sociations more deeply employing spatial statistics in order to obtain better causal
explanations and improve the accuracy of the model.
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Kekula F., Hrubeš P.: An empirical study of relationships between urban. . .

[3] BULLOUGH J.D., DONNELL E.T., REA M.S. To illuminate or not to illuminate:
Roadway lighting as it affects traffic safety at intersections. Accident Analysis &
Prevention. 2013, 53, pp. 65–77, doi: https://doi.org/10.1016/j.aap.2012.12.
029. ISSN 0001-4575.

[4] CAMPBELL H. The consequences of checking for zero-inflation and overdispersion
in the analysis of count data. Methods in Ecology and Evolution. 2021, 12(4), pp.
665–680, doi: https://doi.org/10.1111/2041-210X.13559.

[5] CHEN X., NORDHAUS W.D. Using luminosity data as a proxy for economic statis-
tics. Proceedings of the National Academy of Sciences. 2011, 108(21), pp. 8589–8594,
doi: 10.1073/pnas.1017031108.

[6] CHEN X., NORDHAUS W.D. VIIRS Nighttime Lights in the Estimation of Cross-
Sectional and Time-Series GDP. Remote Sensing. 2019, 11(9), doi: 10.3390/rs
11091057. ISSN 2072-4292.

[7] COESFELD J., KUESTER T., KUECHLY H.U., KYBA C.C.M. Reducing Variabil-
ity and Removing Natural Light from Nighttime Satellite Imagery: A Case Study
Using the VIIRS DNB. Sensors. 2020, 20(11), doi: 10.3390/s20113287. ISSN 1424-
8220.
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