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Abstract: The intelligent transportation system seeks to reduce traffic and im-
prove the driving experience. They give us a lot of data that we can use to improve
services for both the public and transportation officials by feeding it into machine
learning systems. Most importantly, Traffic environment refers to everything that
might have an impact on how much traffic is moving down the road, including traf-
fic signals, accidents, protests, and even road repairs that might result in a backup.
A motorist or rider can make an informed choice if they have previous knowledge
that is very close to approximate all the above and many more real-world circum-
stances that can affect traffic. Additionally, it aids in the development of driverless
vehicles. Traffic data have been growing dramatically in recent decades, and we are
moving toward big data concepts for transportation. The current approaches for
predicting traffic flow use some traffic prediction models, however they are still in-
adequate to handle practical situations. We thus aimed to focus on the traffic flow
forecast problem using the traffic data and prediction models. The proposed model
called DRGNN, a dilated recurrent graph neural network framework aims to effec-
tively analyze and predict the traffic pattern by considering the spatial (space) and
temporal (time) aspects of the real-time traffic data considering social relationships
between internet of vehicles which indeed produced accurate and valuable insights
that could help in deploying the model in any suitable real-time traffic monitoring
and prediction system.
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1. Introduction

The internet of things (IoT) refers to a new world in which billions of smart objects
automatically communicate and interact with one another. A new paradigm—the
social internet of things (SIoT) in which IoT and social networks are combined
in a novel way pertaining to be one of the most important areas in this sector.
A complete review of the SIoT system [1] has been analyzed and the social IoT
based existing scenario in smart cities was explored. SIoT could be elucidated
using a broader sense that primarily comprises of six components namely relation-
ship management, architecture, trust management, information, web services, and
SIoT tools, which includes datasets and platforms. Intelligent Traffic Management
Systems (ITMS) were established as a result of the rise of the internet of things
and its use in smart cities, which provides the ideal platform for tackling traffic-
related challenges. In terms of determining the best route, lowering average wait
times, traffic congestion, the cost of travel, and the level of air pollution, our pro-
posed approach aids in resolving the multiple difficulties that traffic management
authorities confront. Graph neural networks (GNNs), an innovative and rapidly
expanding lineage of neural network models, can interpret multifarious commu-
nications happening. in the object layer and have been demonstrated to produce
cutting-edge results across various challenges in IoT environments. A survey where
GNN [2] can be employed in IoT networks has been investigated. Graphs in a va-
riety of real-world contexts [3], including transportation networks, social networks,
and skeleton-based human behaviors, include both spatial and time fluctuations.
With variable node distributions and different edge linking relations, the topolog-
ical structures of graphs change over time. The goal of the proposed DRGNNs is
to simulate the spatial and temporal dependencies in dynamic graphs integrating
the concept of social internet.

2. Related works

In this section, various GNN approaches emphasized in the literature have been
reviewed first, followed by the role of GNN in traffic prediction, and next the impact
of SIoT in various real time applications is discussed.

Zhao et al. [4] proposed a novel network architecture called persistence enhanced
GNN which influenced permanent homological information to reassign weights to
the messages sent between the nodes in the graph during the time of convolution
which helps to utilize the structural information in real time graphs. It involved
fewer computational steps with back propagation learning, but attention was re-
quired in order to increase the accuracy rate. Wang et al. [5] discussed a GNN
based approach for predicting protein B-factor in a biophysical breakdown by con-
structing persistent spectral graphs to expose both topological persistence and
geometric shape from high-dimensional datasets which proved a notable perfor-
mance in molecular data, but it did not integrate any machine learning models
to improvise the prediction accuracy. Casas et al. [6] proposed a new methodol-
ogy called SPAGNN, spatially aware graph neural networks to produce a socially
consistent, probabilistic estimation of future trajectories of autonomous vehicles
based on object detection and relational behaviour forecasting. Raster maps with
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various information about roads, traffic lights, and lanes were encoded in distinct
channels in order to facilitate convolutional neural network (CNN) learning. How-
ever, agents like cycles and pedestrians were not considered in trajectory prediction.
Xie et al. [7] suggested a graph neural based algorithm for predicting traffic speed
prediction in urban roads and named a sequential graph neural network (SeqGNN).
In this paper, the authors have constructed a graph model using the connectivity
of road segments in which the properties of road segments are mapped as nodes,
and the connections between them are represented as edges. But the external
influential factors like weather and points of interest were not considered. Peng
et al. [8] Proposed a prediction technique called DynGRCNN, dynamic graph re-
current convolutional neural network meant for estimating urban traffic passenger
flow which integrated the relationship among passengers with a GNN and added
spatial temporal features in the learning mechanism. It was able to achieve bet-
ter accuracy but was not applicable to complex traffic order forecasting and route
planning tasks were not accomplished. Diehl et al. [9] suggested that including
plenteous interactions in the traffic dataset could decrease the prediction error by
30% and increase accuracy and so proposed the GNN for modelling traffic partic-
ipant interaction. The authors also concluded that integration of this model with
recurrent neural network could be tried out. Gao et al. [10] proposed a knowledge
based graph convolutional network by introducing supplementary info as position
vectors integrating structure and text representations using a gate mechanism to
perform classification and prediction tasks. This model has not considered category
information to classify the entities.

In 2010, the first significant step in fusing social networks with IoT was taken
by Kranz et al. [11], wherein the authors suggested that people might use their
own smart objects as well as those of their friends to share the services they pro-
vide. Hence, social networks and IoT are successfully integrated to establish an
effective relationship. Subgraph matching with dynamic weight (SMDW), a sub-
graph matching alternative has been proposed by Jiang et al. [12] which was able
to overcome the issue of the core subgraph getting updated whenever the chang-
ing communities based on user’s interest were tracked. The tests built on real
datasets have been created to assess the performance of the suggested model by
contrasting it with leading traditional models in this field and the data processing
has been completed through the edge layer. Wang et al. [13] suggested an inter-
community detection method based on compressive sensing (CS) over graphs. The
measurement matrix is constructed by using the likelihood of two nodes encoun-
tering one other, and the encounter probability and edge clustering coefficient are
utilized to build a new metric for each connection. The intercommunity linkages
are then detected using a CS-based detection technique which further requires real-
time management and analysis. Perera et al. [14] analyzed the primary concept
of enabling sensing of IoT data as a service model architecture, by examining the
socio-economic benefits and challenges associated with the socio-IoT community.
Therefore, providing sensing as a service, location-based recommendations also
play an important role. Hu et al. [15] Proposed a graph based IoT model meant
for service recommendation and automation where context-aware data was taken
to construct the IoT context graph with different semantic relationships and ef-
fective biased random walk method was followed to capture the neighborhoods of
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nodes. Heterogeneity was achieved where the complexity was high. Friji et al. [16]
devised a framework to aid multi-user coordinated navigation to promote safety
for pedestrians during COVID. Weighted graphs representing the social relations
connecting the different IoT devices were constructed, and community detection
was performed based on the social relations along with graph based routing was
carried out but was not scalable.

From the above literature works and studies carried out, we could infer that the
potential of graph application in social network of things is broad, extensive, and
still requires a comprehensive structural analysis and augmented graph systems to
populate precise, stable real-time implementation scenarios. Therefore, we propose
DRGNN model that primarily focuses on serving as an ideal platform for tackling
traffic-related challenges in terms of determining the best route, lowering average
wait times, traffic congestion, the cost of travel, and others among the socially
extended connections.

Section 3 discusses the modelling and implementation of DRGNN with detailed
algorithms, Section 4 analyses the results obtained, and Section 5 describes the
conclusion and future work respectively.

3. Methodology

A conventional way of using graphs in convolution neural networks [17] was sug-
gested which in turn lead to the inception of graph convolutions. Graph convo-
lution networks (GCNs) are a type of neural network that may be used to learn
from graphs. GCN’s basic concept is to apply convolution on a graph. GCN takes
a graph as input instead of a two-dimensional array in a traditional convolutional
network.

The purpose of graph convolution [18] enables to determine signal/feature func-
tion on a graph G = (V,E). We present an efficient DRGNN – dilated recurrent
graph neural network model – a graph based recurrent network model as shown
in Fig. 1 that incorporates spatial and temporal features captured simultaneously
from traffic data on a dilated graph network integrated with GRU (gated recur-
rent unit). The algorithm involves the collection of data, construction of adjacency
matrix, achieving dynamicity via the constructed and refined complex graph net-
work, friendship selection, and obtaining the feature embeddings via the graph
convolutions and forecasting the outputs.

3.1 Dataset preparation and graph construction

A collection of vehicle traffic datasets collected over six months between two sites
during a given length of time with total observation points of count 449. The road
network is labeled as G from the raw (CSV) and city pulse information model
with required metadata. Initially, the topological structure of the road network is
described by an unweighted graph G = (V,E), where each road is regarded as a
node, with V = v1, v2, . . . , vn, the number of nodes is denoted by n and E being a
collection of edges. To express the link between roadways, the adjacency matrix A
is utilized. We view the traffic data on the road network G as an attribute feature
of each node in the network. Any traffic related information, namely density,
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Fig. 1 DRGNN architecture. 

3.1 Dataset preparation and graph construction 

A collection of vehicle traffic datasets collected over six months between two 
sites during a given length of time with total observation points of count 449. The 
road network is labeled as 𝐺 from the raw (CSV) and city pulse information 
model with required metadata. Initially, the topological structure of the road 
network is described by an unweighted graph 𝐺 𝑉, 𝐸 , where each road is 
regarded as a node, with 𝑉  𝑣 , 𝑣 , … , 𝑣 , the number of nodes is denoted by 𝑁 
and 𝐸 being a collection of edges. To express the link between roadways, the 
adjacency matrix 𝐀 is utilized. We view the traffic data on the road network 𝑅 as 
an attribute feature of each node 𝑛 in the network. Any traffic related 
information, namely density, speed, and flow of traffic can be included in the 
node attribute features. The mapping function 𝑓 can be computed based on the 
topology of road network 𝐺 and feature matrix 𝐌, followed by the calculation of 
traffic information in the next 𝑇 seconds. 

3.2 Obtaining spatial and temporal dependence 

In traffic forecasting, acquiring the complicated spatial dependence [19] is a 
major challenge. The CNN model can capture the intricate topology of an urban 
road network since it is shaped more like a graph than a two-dimensional grid and 
thus captures spatial dependence effectively. Using GCN model, the topological 
link between the center road and its surrounding roads can be calculated 
encapsulating road attributes and the topological structure of the road network 
and then the spatial dependence can be computed. Temporal aspects of action 
segmentation in videos and detection of frames were analyzed in the literature 
[20] initially. According to our suggested methodology, the network receives the 
current traffic data as well as the concealed status at time 𝑡 1 to determine the 
traffic state at time 𝑡. While the model captures current traffic information, it also 
retains the changing pattern of prior traffic data and possess potential to 
effectively acquire the temporal dependence.  

Fig. 1 DRGNN architecture.

speed, and flow of traffic can be included in the node attribute features. Based
on the topology of road network G and attribute features the calculation of traffic
information in the next t seconds can be computed.

3.2 Obtaining spatial and temporal dependence

In traffic forecasting, acquiring the complicated spatial dependence [19] is a major
challenge. The CNN model can capture the intricate topology of an urban road
network since it is shaped more like a graph than a two-dimensional grid and thus
captures spatial dependence effectively. Using GCN model, the topological link
between the center road and its surrounding roads can be calculated encapsulating
road attributes and the topological structure of the road network and then the
spatial dependence can be computed. Temporal aspects of action segmentation
in videos and detection of frames were analyzed in the literature [20] initially.
According to our suggested methodology, the network receives the current traffic
data as well as the concealed status at time t− 1 to determine the traffic state at
time t. While the model captures current traffic information, it also retains the
changing pattern of prior traffic data and possess potential to effectively acquire
the temporal dependence.

3.3 Link and relations between devices

SIoT devices have a variety of social relationships. The information about the
devices, such as who owns them and where they are located geographically helps
to create connections between the devices. The following three social ties [21] are
considered in this methodology based on the relations between entities:

(i) Co-location based relation (CLOR): The spatial characteristics of the devices
are used to infer this relationship. As a result, if a group of devices exists
in a specific location, CLOR relationships exist between them. The devices
can either be stationary or move around. As a result, during roaming their
CLOR relationships with other devices can be modified on the fly.
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(ii) Social object relation (SOR): When two gadgets interact in a constant or
sporadic manner, a SOR is formed. The requirements for establishing the
relationships are dictated by the policies of the owners. A SOR relationship
can be established between two devices if they are co-located and commu-
nicate data for a set amount of time. For example, between two smart cars
when they are adjacent together in traffic.

(iii) Social friendship relation (SFR): High-weight linkages are established be-
tween devices that have the same owner that is from the same source in
case of vehicles. The owner’s social network can then be utilized to create
less weighted relationships between devices which relies on how many friends
each owner can have either as immediate friends or friends of friends, and
then gets devised onto the SIoT network.

3.4 Algorithm construction and implementation

The implementation of the proposed DRGNN methodology is depicted sequentially
in the algorithms defined hence forth. Algorithm 1 focuses on constructing a graph
network topology from the numerical road data (primarily based on latitude and
longitude) and establishing relationships between each of the nodes. A weighted
adjacency graph matrix is obtained. The weighted matrix is optimized and refined
to obtain the closest neighbors in Algorithm 2. Algorithm 3 mainly focuses on
friendship selection between the selected nodes to pass on to the graph convolutions.
Algorithm 4 obtains the spectral, temporal, and spatio-temporal aspects of the
nodes upon which the hyper-parameters are fined tuned, neural net layers are
modified and model inference is established. Spatial and temporal parameters will
be the dependent variables of our model based on which traffic pattern is predicted.

3.4.1 Algorithm 1 – Construction of adjacency matrix

The traffic data is converted into a complex network where the relationships be-
tween vehicles are established. A vehicle would build a relationship with N vehicles
(note that vehicles are considered as nodes) in that defined range of distance and
at that time instant. Thus, the spectral (distance and position of vehicle) and the
temporal at a time instants T, T + k, T + 2k (for instance 5, 10, 15 seconds) as-
pects of the traffic data are obtained and analyzed in the graph based convolutional
networks.

Edge calculation and establishment of relationship is done in the following ways:

1) If any two vehicles (vertices) are in the same location (same latitude and
longitude) and assume that the distance between the vehicles is less than 50
meters, establish a SFR (social friendship relation) between the vertices. Note
that the distance between the vehicle can be varied based on the application.

2) If any two vehicles, already in the SFR relationship, have a sideway connec-
tion (i.e., mathematically in the same row and distance is + or −50 meters),
then establish a CLOR (co-location object relationship) between the vehicles.

3) If there exists a main start point and all the vehicles (vertices) project them-
selves from that point, establish a POR (parent object relationship)
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4) The edgeWeight values are computed to construct the adjacency matrix
A{V,E}. A non-zero entry at position (i, j) indicates a connection (edge) be-
tween vehicles i and j. The value in the entry (i, j) represents the edgeWeight
between vehicles i and j.

Algorithm 1 Construction of adjacency matrix.

Input data: Nodes with vertices V {v1, v2, . . . , vn}, number of nodes n, edges
E{e1, e2, . . . , em}, number of edges m, graph G(V,E)
Output data: Adjacency matrix A{V,E} comprising of all the nodes (vehicles)
and their routes (edges) with V vertices and E edges in (V × E) dimension

// i ranges from 1 to n
for ∀vi do
// j ranges from 1 to m
for ∀ei do
if sameRoute(vi, ej) == 1 then
if sameLocation(vi, ej) == 1 then
if distance(vi, ej) <= 50 meters then
// establishSFRrelation()
if sidewaysExists(vi, ej) == 1 then
// establishCLORrelation()
if centralStartPoint(vi, ej) == 1 then
// establishPORrelation()
edgeWeight = 1

else
edgeWeight = distance(vi, ej)

end if
establishCLORrelation(vi, ej , edgeWeight)

end if
establishSFRrelation(vi, ej , edgeWeight)

end if
establishFriendship(vi, ej , edgeWeight)

end if
end if
A{V,E} ← edgeWeight

end for
end for

3.4.2 Algorithm 2 – Establishing weighted matrix

To obtain an optimized and refined weighted matrix Mw by finding closest neigh-
bours and removing nodes with negligible weights. Each time the network graph
changes, embeddings will also be updated to achieve dynamicity, Algorithm 2 is
proposed as follows:
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Algorithm 2 Establishing weighted matrix.

Input data: Adjacency matrix –A{V,E} with V×E dimension with edgeWeight
Output data: Weighted matrix Mw comprising of selective neighbour nodes

// compute node embedding Ri

define Ri

//deg(vi) represents the number of edges connected to vi
Ri → deg(vi)× (

∑
i∈neighbours V (i, j))

// define temporary node
ηt → tempNode()
Sstart → Ri/

∑
i Ri

for i : 1 to n do
V(i,−) ← selectNode(Sstart)
defineStart(ηt)→ V(i,−)

//dynamicity where location/position/columns vary
for j : 1 to m do
if neighbourExists(Vi,j) ̸= edgeWeight then
V(i+1,j+1) ← selectClosestNeighbour()

else
V(i+1,j+1) ← selectPreviousVertex ()

end if
removeLinks()
updateWeights()

end for
include ηt into matrix Mw

end for

3.4.3 Algorithm 3 – Friendship selection

Friendship selection – a mechanism in which every object can use its friendships to
find the needed service in a distributed fashion, using only local knowledge. Multi-
ple efficient friendship selection mechanisms for social IoT27 were indeed observed
that this paper suggested the use of an external object called a smart social agent
that is required to establish a relation between the objects or nodes. Thus, the
selection of social agents within the social IoT network could be quite challeng-
ing. The parental object relationship (POR) is described as a relationship between
similar products or vehicles created by the same manufacturer over the same time
period. Furthermore, objects, like humans, can form co-location object relation-
ships (CLOR) and co-work object relationships (CWOR) when they share their
private like cohabitation or public and professional working experiences. Another
sort of relationship is the ownership object relationship (OOR), which is specified
for vehicles, smart phones etc. owned by the same user. The social object relation-
ship (SOR) is created when two or more objects come into contact for only social
reasons (e.g., when friends’ devices or sensors come into contact). The friendship
selection process depends on the parameters established by these relationships.
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Algorithm 3 Friendship selection.

Input data: Vertices, vi and vi+1 from the weighted matrix Mw comprising of
selective neighbour nodes
Output data: Selective road topology graph with established relationships

Consider the vertices, vi and vi+1

if weight(vi) == weight(vi+1) then
addFriend()

else
findFriend()
check weight and type of friendship
if (isExists(friend(vi+1))) then
graph(type, vi, weight)

else
graph(dummyNode)

end if
end if

3.4.4 Algorithm 4 – Construction of DRGNN

Obtaining the spectral, temporal, and spatio-temporal aspects of the nodes in order
to construct the DRGNN model is depicted in Algorithm 4 as follows:

Algorithm 4 Construction of DRGNN.

//Define parameters – param()
Let learningRate = 0.001, epochs = 50, batchSize = 32 & 64,

trainRate = 0.8, sequenceLength = 5

//Define layers

a) SpectralConvolution()
Input: tensor input X, trainable parameter θ, represented as diagonal matrix
called as parameterized filter in spectral domain input channel size sin,
output channel size sout, kernel input size k
Output: spectral tensor output matsconv, kernel output size η,Y←X[sin×k][η],
where Y is the reshaped version of tensor input X.

// Note that it is important to reshape all the calculated values to the output
kernel size
// Apply transpose to X, reshaping the dimensions

X← reshape([X]T, [−1, η])
// kernel matrix will be in dimension k × k
// Transform the node features (graph signal) into the spectral domain
tempmat = X · kernel
// reshaping the dimensions
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tempmat ← reshape(tempmat, [−1, sin, k, η])
// Apply transpose to tempmat

matker ← reshape([tempmat]
T, [−1, sin, k])

// filter application
matsconv ← ([matker]× θ])· reshape(η, sout)
// spectral tensor output
return(matsconv)

b) TemporalConvolution()
Input: tensor input X, kernel size k, time t,
Xin ← X[:, k − 1 : t, :], dilation stride r
Output: convolved weightsWT with respect to time t where t ∈ {1, . . . , tk−1}

// Steps to perform temporal convolution with dilation and apply a GLU
activation
define GLU (X)
// GLU= linear+sigmoid
Linear function: l(x) = m(x) + b
Sigmoid function: s(x) = 1

1+e−x

// dimensions [k, sin, 2sout] define the shape of the weight matrix,
// where each element in the matrix represents a weight parameter
// to be learned by the model
WT = matrix[k,sin,2sout]

bias time = matrix[0][2sout]
// bias time is a constant added to the weights to maintain stability
Xconv = (Xin,WT)+ bias time
// kt represents kernel size in temporal dimension
Xconv = dilations(filterEnlarge(kt + (kt − 1)(r − 1)))
return(Xconv[0 : sout] +GLU(Xin))

c) SpatialConvolution()
Input: Input channel size sin and weighted matrix with spectral feature vectors
{Lat, Long}, dilation stride r
Output: Convolved weightsWS with respect to spatial factors S∈{SLat(i)SLong(i)

,

. . . , i+ 1}

// Steps to perform spatial convolution with dilation
WS = matrix[ks,sin,sout]

bias space = matrix[0][sout]
Xspatial = spectralConvolution(X, [−1, η, sin], ks, sin, sout )+ bias space
Xspatial = dilations(filterEnlarge(ks + (ks − 1)(r − 1)))
XspatialOut = reshape(Xspatial, (η, sout))
return(XspatialOut +Xinput)

d) spatio-temporalConvolution()
// where ct represents input channel size and ct−1 represents output channel
// size from the previous time step (t–1)
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// where cs represents input channel size and ct+1 represents output channel
// size from the next time step (t+ 1)
layer = temporalConvolution(X, kt, cs, ct−1)
layer = spatialConvolution(X, kt, ct, ct+1)
Xfinal = layerNormalization(layer)
return(Xfinal)

e) recurrentNetwork()
Input: current state ht , previous state ht−1 and input state Xt

Output: output layer Yt, weight at output Why

// update of the current state ht based on the previous state ht−1 and the
// input state Xt

ht = f(ht−1, Xt)
// specific calculation for updating ht, where Whh is the weight for the
// recurrent connection and Wxh is the weight for the input connection
ht = tanh(Whhht−1 +WxhXt)
// the output Yt is obtained by multiplying the current state ht

// by the weight Why

Yt = Whyht

→ update through X1, . . . , Xn−1 layers recurrently

f) mainFunction()
graph(weight (W ), vertices V (i, j))

g) preprocess()
scaledLaplace(W )
// where d[i]d[j] represents diagonal elements

L [i, j] = L[i,j]√
d[i]d[j]

// where λ represents regularization parameter, identitymat represents
// identity matrix
return(2L/(λ− identitymat))

h) normalize()
// Weights are normalized within the range of 0 to 1

W←W[0, 1]

i) train()
// train the model
buildLayers(X, k, sin, sout)

j) defineParameters()
modelInference(pred, inputs, batchsize, step index, step time)

k) saveModel()
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This algorithm primarily focuses on obtaining the temporal and spatial aspects
of the graph data to bring in the traffic flow forecast and recommendation. The
initial parameters such as epochs, batch size, learning rate are defined. The spectral
convolution layer focuses on obtaining the trainable parameters and outputs the
spectral tensor with a given kernel size and weights. The temporal convolution
obtains the time aspect also as input parameter, and outputs the updated weights.
The dilation adds kernel level skipping to the layers that yields to even more precise
prediction. The spatio-temporal convolution combines the weighted outputs of
space and time aspect with regard to traffic data and the updated weights are
normalized to obtain the final output. The recurrent network creates a cycle for
the sequence of traffic data and makes predictions. The kernel size is obtained, and
the output is normalized. Thus, the model is saved and trained with the inputs,
and inference is made.

4. Results and discussion

The traffic forecast using DRGNN are employed, and the observations made are
discussed. The primary focus of the graph-based convolution is employed on the
real time traffic data by the proposed methodology. The DRGNN model is built
and evaluated upon the traffic data that serves the purpose of forecasting the traffic
pattern and interpreting the results to the user.

4.1 Insights of dataset

We use the historical obtained from the dataset as input and compute the final
prediction through the graph convolutional neural network. The dataset is ac-
cessible under the name “CityPulse Smart City Datasets” on the internet which
includes various attributes like vehicle id, latitude, longitude, timestamp, distance
in meters, type of road, etc. Totally 449 observation points were derived from a
collection of vehicle traffic datasets collected over a six-month period between two
sites during a given length of time. A combination of four datasets is obtained.
The duration of traffic captured includes a period of data captured with a time
frame difference of six months, say, from February to July. An adjacency matrix
and a feature matrix are generated from the data. The adjacency matrix in traffic
networks is computed based on the separation between sensors in terms of distance.
The dataset contained some missing data, therefore we used the linear interpola-
tion approach to fill in the missing values. In the experiments, the input data was
standardized to the range [0, 1]. In addition, a training set of 80% of the data and
a testing set of 20% of the data were used in this study.

4.2 Model setup

Our model’s key parameters are batch size, the number of hidden layers, training
epoch, and learning rate (LR). In the experiment, we manually changed the learning
rate to 0.001, the batch size to 64, and the training epoch to the maximum of 150.
As different hidden units can significantly affect prediction accuracy, the number of
hidden units in the model is an important parameter. In order to get the optimal
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value, we tested with several hidden units before comparing the predictions made
for various epochs.

4.3 Evaluation metrics

The following listed metrics are taken into consideration for the parametric evalu-
ation of our model namely root mean square error (RMSE), mean absolute error
(MAE), R2, accuracy (acc) and variance (var) as per the Eqs. (1), (2), (3), (4) and
(5)

RMSE =

√√√√ 1

n

n∑
i=1

(
Yi − Ŷl

)
, (1)

MAE =
1

n

∑n

i=1

∣∣∣Yi − Ŷl

∣∣∣ (2)

R2 = 1−

∑n
i=1

(
Yi − Ŷl

)2

∑n
i=1

(
Yi − Ȳ

)2 , (3)

acc = 1−

∥∥∥Y − Ŷ
∥∥∥
F

∥Y ∥F
, (4)

var =

k∑
i=1

(
Yi − Ŷ

)2

k − 1
, (5)

where Yi represents the actual values and Ŷl denotes the predicted values of Y at
time l, n is the number of observations or data points, Yi represents each individual
data point, Ȳ is the mean of the actual values and k represents the number of folds.

4.4 Result analysis

The DRGNNmodel that operates on the traffic data is evaluated and the results are
also obtained for the weather analysis and pollution analysis. The Tab. I represents
the different parameters based on which the traffic data is analyzed. The minimum

LR Batch size Epochs acc RMSE MAE R2 var

32 50 0.5795 14.5698 14.2340 0.8532 0.8631
0.0001 64 75 0.6923 12.0321 11.3450 0.6231 0.6012

64 100 0.8143 10.9030 7.5483 0.3820 0.3874

64 25 0.7743 11.6701 10.4950 0.5784 0.5892
0.00001 64 50 0.8212 10.5001 7.3049 0.4269 0.4890

64 150 0.8991 6.5272 4.3867 0.7785 0.7721

Tab. I Hyper-parameter performance of DRGNN model.
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RMSE value, minimumMAE, the maximum accuracy, variance factors of the model
that is trained for different parameters are listed.

Tab. I shows the performance of the proposed model that is trained for different
learning rates. It is evident that the model yielded a maximum accuracy of 89%,
with a minimum RMSE value of 6.52, MAE score of 4.38, variance of 0.77, with a
batch size of 64 trained for 150 epochs and learning rate of 10−5. The model, when
trained for a batch size of 64 for 100 epochs and learning rate of 104 produced an
output of maximum accuracy 81% and minimum RMSE value of 10.90, minimum
MAE score of 7.54, R2 value of 0.38.

The parameter output of the actual and predicted result depicts the near and
far ranges in which the predicted pattern differs from the actual forecast for the
model trained for 75 epochs and 100 epochs thereby as shown in Fig. 2 and 3
when the model is trained with a learning rate of 10−4. Fig. 4 shows the graphical
representation of the performance of the model when trained with a learning rate
of 10−5.

The RMSE values during training initially appears to be discrete when trained
for minimal epochs. Later on, which the RMSE values are found to be continuous
mainly due to varying dynamicity of the nodes and improved gradient factors. The
loss is also observed to reduce with steep curve and attain a fixed threshold. The
MAE score is found to jump between minimal variant values and reach a stable
point. An accuracy of 82% and 89% was achieved for the model when trained
for 50 and 150 epochs respectively for the given spatial (space – location, latitude,
longitude) and temporal aspect with respect to time frame. The model was trained
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The minimum RMSE value, minimum MAE, the maximum accuracy, variance 
factors of the model that is trained for different parameters are listed. 
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32 50 0.5795 14.5698 14.2340 0.8532 0.8631 
64 75 0.6923 12.0321 11.3450 0.6231 0.6012 
64 100 0.8143 10.9030 7.5483 0.3820 0.3874 

 
0.00001 
 

64 25 0.7743 11.6701 10.4950 0.5784 0.5892 
64 50 0.8212 10.5001 7.3049 0.4269 0.4890 
64 150 0.8991 6.5272 4.3867 0.7785 0.7721 

 

Tab. I  Hyper-parameter performance of DRGNN model. 

Tab 1 shows the performance metrics of the proposed model that is trained for 
different learning rates. It is evident that the model yielded a maximum accuracy 
of 89%, with a minimum RMSE value of 6.52, MAE score of 4.38, variance of 
0.77, with a batch size of 64 trained for 150 epochs and learning rate of 10-5.  The 
model, when trained for a batch size of 64 for 100 epochs and learning rate of 
10-4  produced an output of maximum accuracy 81% and minimum RMSE value 
of 10.90, minimum MAE score of 7.54, R2 value of 0.38. 

 
Fig. 2a DRGNN model trained for LR 10-4 for 75 epochs. 

  

Fig. 2 DRGNN model trained for LR 10−4 for 75 epochs.
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Fig. 2b DRGNN model trained for LR 10-4 for 100 epochs. 

The parameter output of the actual and predicted result depicts the near and far 
ranges in which the predicted pattern differs from the actual forecast for the 
model trained for 75 epochs and 100 epochs thereby as shown in Fig. 2a and 2b 
when the model is trained with a learning rate of 10-4. Tab. 2 shows the graphical 
representation of the performance of the model when trained with a learning rate 
of 10-5. 
 

25 Epochs 50 Epochs 150 Epochs 

 

 

Fig. 3 DRGNN model trained for LR 10−4 for 100 epochs.

with better optimization function called Adam optimizer and dilations were added,
which is chosen to be the alternated option for the enhanced model so as it suits well
for sparse data with dynamic learning rate which led to a maximum accuracy of
89% with dynamic nodes for 150 epochs. The dynamicity of graph nodes indeed was
achieved using a random function that led to the constructive selection of different
node every time the model is re-run. The prediction traffic pattern was forecasted
for a time space of 5, 10 and 15 seconds with the spatial aspect of varying latitude
and longitude. The dynamicity factor was achieved as every time the model is run,
the nodes are allocated randomly, and the topology is reconstructed dynamically.

Tab. II shows the constructive comparison between different models that are
evaluated for the given scenario. The prediction results of the proposed model seem
to elevate better when compared with other conventional models say density-based
spatial clustering of applications with noise (DBSCAN), historical average (HA)
and auto regressive integrated moving average (ARIMA). For a time instant T , the
accuracy and RMSE of HA, ARIMA are 87%, 7.44 and 82%, 10.04 respectively
where the DRGNN seems to perform well with a precision accuracy of 85% and
RMSE score of 5.89. For any arbitrary additive value of k, the DRGNN model
outperforms with a maximum accuracy of 89% ultimately. The GCN and DRGNN
model shows slight differences with the performance where the MAE, Accuracy,
and variance are significantly better for the proposed model with 4.123, 87%, 0.732
values for time instant T + k. The loss values of the trained model seem to be
negligible. From the results as tabulated and depicted above, we could conclude
that the implication of graph based network in traffic prediction, finds the best ap-
plication as different parameters could be analyzed at a single stretch with minimal
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ranges in which the predicted pattern differs from the actual forecast for the 
model trained for 75 epochs and 100 epochs thereby as shown in Fig. 2a and 2b 
when the model is trained with a learning rate of 10-4. Tab. 2 shows the graphical 
representation of the performance of the model when trained with a learning rate 
of 10-5. 
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Tab. II  Comparing the performance of dilated recurrent graph neural network 
model trained for LR 10-5 for 25, 50 and 150 epochs. 

The RMSE values during training initially appears to be discrete when trained for 
minimal epochs. Later on, which the RMSE values are found to be continuous 
mainly due to varying dynamicity of the nodes and improved gradient factors. 
The loss is also observed to reduce with steep curve and attain a fixed threshold. 
The MAE score is found to jump between minimal variant values and reach a 
stable point. An accuracy of 82% and 89% was achieved for the model when 
trained for 50 and 150 epochs respectively for the given spatial (space – location, 
latitude, longitude) and temporal aspect with respect to time frame. The model 
was trained with better optimization function called Adam optimizer and dilations 
were added, which is chosen to be the alternated option for the enhanced model 

Fig. 4 Comparing the performance of dilated recurrent graph neural network model
trained for LR 10−5 for 25, 50 and 150 epochs.
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Temporal series Model Evaluation metrics

factor RMSE MAE acc R2 var Loss

DBSCAN 5.667 3.231 0.794 0.701 0.690 *
HA 7.442 4.014 0.873 0.712 0.712 *

T ARIMA 10.043 7.683 0.827 0.002 * *
GCN 7.792 5.352 0.867 0.684 0.684 *
DRGNN 5.896 4.234 0.856 0.702 0.665 0.0012

DBSCAN 5.667 3.231 0.794 0.701 0.690 *
HA 7.442 4.014 0.873 0.712 0.712 *

T + k ARIMA 9.345 7.689 0.827 0.003 * *
GCN 8.335 5.611 0.858 0.640 0.640 *
DRGNN 5.962 4.123 0.878 0.762 0.732 0.0032

DBSCAN 5.667 3.231 0.794 0.701 0.690 *
HA 7.442 4.014 0.873 0.712 0.712 *

T + 2k ARIMA 10.053 7.695 0.827 * 0.003 *
GCN 9.265 6.289 0.842 0.633 0.559 *
DRGNN 6.025 4.082 0.899 0.821 0.814 0.0026

Tab. II Comparison between state-of-the-art models with DRGNN.

memory and computation power. The spatial, temporal and the spatio-temporal
aspect of the road network could be determined using the graph based recurrent
neural network, which helps in precise traffic monitoring and prediction.

5. Conclusion

The social network of things, being widely used and also holding interdisciplinary
aspects of multiple revolutionary technological systems, an efficient method for
analyzing the network is required underway. Thus, our proposed model aims to
integrate parametric factors associated with social IoT networks namely the static
traffic information and dynamic external parameters concerned with the traffic
based social IoT data. The urban road network has been modelled using a graph
network, where the nodes of the graphs represent the roads and the edges reflect
the connections between the roadways, and the attributes of the nodes are depicted
to be the traffic information on the roads with the spatio-temporal factor taken
into consideration. The robustness and the accuracy of the model are analysed and
evaluated. The proposed model could be able to capture the spatial and temporal
features from traffic data and does not limit itself from just forecasting of traffic,
but rather be applied to other aspects of spatio-temporal tasks involved in any other
social IoT networks since our model is dynamic and scalable. DRGNN model with
a learning rate of 10−5 at 150 epochs attained the maximum accuracy of 89%
and outperformed the state-of-the-art models in predicting the traffic pattern. In
future, varying the dilation rate could be tried on different real time datasets to
make informed traffic analysis.
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