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Abstract: A literature survey was conducted to appraise the recent applications
of artifical intelligence (AI)-based modeling studies in the environmental engineer-
ing field. A number of studies on artificial neural networks (ANN), fuzzy logic
and adaptive neuro-fuzzy systems (ANFIS) were reviewed and important aspects
of these models were highlighted. The results of the extensive literature survey
showed that most AI-based prediction models were implemented for the solution of
water/wastewater (55.7%) and air pollution (30.8%) related environmental prob-
lems compared to solid waste (13.5%) management studies. The present literature
review indicated that among the many types of ANNs, the three-layer feed-forward
and back-propagation (FFBP) networks were considered as one of the simplest and
the most widely used network type. In general, the Levenberg-Marquardt algo-
rithm (LMA) was found as the best-suited training algorithm for several complex
and nonlinear real-life problems of environmental engineering. The literature sur-
vey showed that for water and wastewater treatment processes, most of AI-based
prediction models were introduced to estimate the performance of various biolog-
ical and chemical treatment processes, and to control effluent pollutant loads and
flowrates from a specific system. In air polution related environmental problems,
forecasting of ozone (O3) and nitrogen dioxide (NO2) levels, daily and/or hourly
particulate matter (PM2.5 and PM10) emissions, and sulfur dioxide (SO2) and car-
bon monoxide (CO) concentrations were found to be widely modeled. For solid
waste management applications, reseachers conducted studies to model weight of
waste generation, solid waste composition, and total rate of waste generation.
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1. Introduction

The real-life environmental problems are very complex and highly dependent on
several process configurations, different influent characteristics and various oper-
ational conditions, such as organic loading rates, influent pH, toxic organic com-
pounds, influent flowrate, hydraulic and sludge retention times, temperature varia-
tions, biomass concentration, and doses of applied chemicals, etc. For a sustainable
control of environmental related problems, the proposed systems must be contin-
uously monitored and properly controlled due to possible instabilities in circum-
stance conditions. Therefore, the complicated inter-relationships among a number
of system factors in the process may be explicated through a number of attempts
in developing representative AI-based prediction models allowing the investigation
of the key variables in greater detail [1].

Inspired by the capacities of the human brain, artifical intelligence (AI)-based
models integrate the specific attributes of various disciplines, such as mathematics,
statistics, physics, computer science, and just recently, environmental engineering
applications. The AI-based prediction models have a significant potential for solv-
ing complex environmental applications that include large amounts of independent
parameters and nonlinear relationships. Because of their predictive capabilities
and nonlinear characteristics, several artificial intelligence-based modeling tech-
niques, such as artificial neural networks, fuzzy logic, and adaptive neuro-fuzzy
inference systems have recently been conducted in the modeling of various real-
life processes in the environmental engineering field [1–3]. Among these AI-based
prediction methods, black-box models, such as artificial neural networks (ANN),
are very attractive as they do not require prior knowledge regarding the struc-
ture and relationships that exist between important variables. When processes are
not adequately understood or parameter determination is impractical, there is a
distinctive advantage for such black-box modeling. Since their learning abilities
make them adaptive to system changes, new forecasting models based on ANN,
such as the adaptive neuro-fuzzy inference system (ANFIS), have recently become
a popular universal approximator that represents highly nonlinear functions. The
ANFIS incorporates a Sugeno-type fuzzy inference system into an adaptive neu-
ral network structure consisting of several nodes connected through directional
links. As another popular AI-based modeling technique, the fuzzy logic methodol-
ogy has also been conducted by many researchers as an established and promising
method for modeling of various types of environmental problems in recent years
[4–10]. Turkdogan-Aydinol and Yetilmezsoy [1] reported that the applicability of
the fuzzy logic model is very simple and there is no need to define the complex re-
actions and their mathematical or biochemical equations. Moreover, due to highly
nonlinear structure of the fuzzy logic model, a complex environmental system can
be easily modelled [1]. It is also reported that artificial intelligence-based control of
real-time process variables may provide several potential advantages, such as pro-
tection of the system from possible risks associated with significant fluctuations in
influent characteristics, optimization of the process at a reasonable cost, providing
a rapid evaluation and estimation of pollutant loads and emissions on energetic ba-
sis, and also development of a continuous early-warning strategy without requiring
a complex model structure and tedious parameter estimation procedures [1].
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Based on the above-mentioned facts, in this study, a literature survey was con-
ducted to evaluate a great deal of flexibility models for their use in real-life appli-
cations of environmental engineering field. This study offers an extensive review of
recent applications of various AI-based prediction models conducted in the funda-
mental research areas of environmental engineering, such as water and wastewater
treatment processes, air pollution related problems and waste management studies.

2. Modeling Tools

In this section, the basis of the widely used AI-based techniques, such as artificial
neural networks, fuzzy logic and adaptive neuro-fuzzy inference systems, are briefly
summarized and important mathematical aspects of these methods are highlighted.
Moreover, computational issues, advantages and particular theoretical principles
are described, and some metholodogical techniques are discussed to make a com-
parative assessment of the present AI-based prediction models.

2.1 Artificial neural networks (ANN)

To better control a specific environmental process, a robust mathematical tool for
predicting the process performance must be developed based on past observations
of certain key parameters. Modeling a multivariate system is highly difficult due to
the complexity of the environmental processes exhibiting nonlinear behavior that
are difficult to describe by linear mathematical models [11]. Although determinis-
tic models (also called white-box models) may provide insight into the mechanism,
they require hard work before being applied to a specific environmental process.
As an alternative to physical models, artificial neural networks (ANNs) are a valu-
able forecast tool in environmental sciences. They can be used effectively due to
their learning capabilities and their low computational costs [12]. Because of their
reliable, robust, and salient characteristics in capturing the nonlinear relationships
between variables (multi-input/output) in multivariate systems, numerous appli-
cations of ANN-based models have been successfully utilized in the field of envi-
ronmental engineering in the past decade [13].

The ANN-based models are meant to interact with objects in the real world in
the same way that the biological nervous system does. The calibration of ANN-
based models is easier than the white-box models as fewer parameters are used in
the model development process. For this reason, artificial intelligence techniques
using ANN have recently become immensely popular and attractive mathematical
tools for both modeling and controlling of several complex environmental processes.
When the measured variables begin showing difference in response to ANN, the
model can be retrained using the newer data used for cross-checking. These facts
and the quality of the results they provide make the ANN-based models more
attractive than conventional models [14].

A simple diagram of an ANN model is depicted in Fig. 1. As seen in Fig. 1,
each neuron is connected to several of its neighbors, with varying coefficients or
weights representing the relative influence of the different neuron inputs to other
neurons. The weighted sum of the inputs are transferred to the hidden neurons,
where it is transformed using an activation function, such as a tangent sigmoid
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activation function. In turn, the outputs of the hidden neurons act as inputs to
the output neuron where they undergo another transformation. The output of a
feed-forward ANN with one hidden layer and one output neural network is given
as follows [11]:

Yo = fo




HN∑

j=1

WOj ∗ fh

(
m∑

i=1

WHij ∗Xit + bj

)
+ bo


 , (1)

where WH ij is the weight of the link between the ith input and the jth hidden
neuron, m is the number of input neurons, WOj is the weight of the link between
the jth hidden neuron and the output neuron, fh is the hidden neuron activation
function, fo is the output neuron activation function, bj is the bias of the jth
hidden neurons, bo is the bias of the output neuron, and HN is the number of
hidden neurons.

Hamed et al. [11] reported that the tangent sigmoid (tansig) activation func-
tions for the input and hidden neurons are needed to introduce nonlinearity into
the network in order to make nets more powerful than plain perceptrons. Moreover,
the authors reported that a linear activation function, such as purelin, could be
selected for the output neuron since it is appropriate for continuous valued targets.
The mathematical definitions of these functions are given as follows [15]:

f (x) =
2

(1 + e−2x)
− 1 (2)

f (x) = x. (3)

Among the many types of ANNs, back-propagation (BP) networks have recently
been considered as one of the simplest and most widely used network models [16].
The learning process of a BP network consists of two main iterative steps: forward
computing of data stream and backward propagation of error signals. During for-
ward computing, original data is transmitted from the input layer to the output
layer through the hidden processing layer, with the neurons of each layer only affect-
ing the neurons of the succeeding layer. One of the main advantages of BP networks
over other types of networks is that if the desired output cannot be obtained from
the output layer, the error is propagated backwards through the network against
the direction of forward computing [16,17]. According to the error signal of BP, the
network changes the network connection of all layers to determine the best weight
set and realize the correct network output [17]. Therefore, with these two steps
performing iteratively, the error between network output and desired output can
be minimized using the delta rule [16].

The network training is a process by which the connection weights and biases
of the ANN are adapted through a continuous process of simulation by the em-
bedded network’s environment. The training function applies the inputs to the
new network, calculates the outputs, compares them to the associated targets, and
calculates a mean square error. If the error goal is met, or if the maximum number
of epochs is reached, the training is stopped and the training function returns the
new network and a training record. Otherwise, the training goes through another
epoch. During the adaptation phase, the training algorithm receives part of the
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Fig. 1 Simple schematic of an ANN model (adapted from Hamed [11]).

data (inputs and outputs) and automatically develops the ANN model. After de-
velopment, the model could generate the appropriate responses for simulations with
varying levels of data input. When the learning is complete, the neural network is
used for prediction. The primary goal of training is to minimize an error function
by searching for a set of connection strengths and biases that causes the ANN to
produce outputs equal or close to the targets. In other words, the training aims
at estimating the parameters (WHij , WOj , bj , and bo) by minimizing an error
function, such as the mean square error (MSE), of the output values expressed as
follows [11]:

MSE =
N∑

t=1

(Ya − Yo)
2

N
, (4)

where MSE is the mean squared error, N is the number of data points, Ya is
the target output, and Yo is the network output. In general, ANNs are sensitive
to the number of neurons in their hidden layers. Too few neurons may lead to
underfitting. Conversely, too many neurons may contribute to overfitting, wherein
all training points fit well, although the fitting curve may take wild oscillations
between the points. In this case, the error on the training set is driven to a very
small value, however, when new data is presented to the network, the error becomes
enlarged. Although the network has memorized the training examples, it has not
learned to generalize to new situations. This can be prevented either by training
with Bayesian regulation, a modification of the Levenberg-Marquardt algorithm
(LMA), or by using early stopping with any of the other training routines. In
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turn, this requires that the user pass a validation set to the training algorithm,
in addition to the standard training set [18]. However, in practice, it is difficult
to know which training algorithm will perform fastest for a given problem. It will
depend on many factors, including the complexity of the problem and the number
of data points in the training set [19].

In general, on networks that contain up to a few hundred weights, the LMA will
have the fastest convergence. The Quasi-Newton methods are often the next fastest
algorithms on networks of moderate size, while the Broyden–Fletcher–Goldfarb–
Shanno (BFGS) Quasi–Newton BP algorithm is generally faster than the conjugate
gradient algorithms. Of the conjugate gradient algorithms, the Powell-Beale pro-
cedure requires the most storage, but usually has the fastest convergence. Mean-
while, the Polak-Ribiére has performance similar to the Powell-Beale, the storage
requirements for which (4 vectors) are slightly larger than for the Fletcher-Reeves
(3 vectors). The Fletcher-Reeves generally converges in fewer iterations than the
Resilient back-propagation algorithm (Rprop). Although more computation is re-
quired in each iteration, the Rprop and the scaled conjugate gradient algorithm
do not require a line search and have small storage requirements. They are rea-
sonably fast, and are very useful for large problems. The variable learning rate
algorithm is usually much slower than the other methods, and has approximately
the same storage requirements as Rprop, however, it can still be useful for some
problems. The one-step secant algorithm requires less storage and computation
per epoch than does the BFGS algorithm, however, it requires slightly more stor-
age and computation per epoch than do the conjugate gradient algorithms. This
algorithm can be considered a compromise between the Quasi-Newton algorithms
and the conjugate gradient algorithms. In the batch gradient methods, the weights
and biases are updated in the direction of the negative gradient of the performance
function. The comparative features of the various training algorithms described
herein are adapted from the recent work of Yetilmezsoy and Sapci-Zengin [15].

Based on the above-mentioned facts, it can be noted that the performance of the
various algorithms can be affected by the accuracy required of the approximation,
which is dependent on the mean square error, versus that of several representative
algorithms. When the problem formulation has a combinatorial nature, the defini-
tion of each process parameter results in a complex interaction of variables used in
the calculations. A number of benchmark comparisons of the various training algo-
rithms are needed in order to choose the best-suited algorithm for obtaining a good
performance on the laborious interactive and nonlinear problems. In general, the
LMA will have the fastest convergence on combinatorial function approximation
(or nonlinear regression) problems [18].

Since ANN-based models contain no preconceptions regarding what the model
shape will be, they are ideal for cases with low system knowledge. They are useful
for functional prediction and system modeling where the physical processes are not
understood or are highly complex. Consequently, it is believed that ANN-based
techniques, which have recently been applied to various environmental problems,
may provide a good alternative to statistical and theoretical techniques, as well
as to iterative problems, because of their speed and capability of learning, robust-
ness, nonlinear characteristics, non-parametric regression capabilities, generaliza-
tion properties, and ease of working with regards to high-dimensional data.
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2.2 Fuzzy logic methodology

The fuzzy logic system based on linguistic expressions includes uncertainty rather
than numerical probabilistic, statistical, or perturbation approaches. Fuzzy set
theory [20] was introduced to provide a definition for uncertainties caused by im-
precision and vagueness present in real-world applications [21,22]. Rihani et al.
[23] reported that fuzzy logic has recently become a useful tool for modeling highly
complex systems whose behaviors are not well understood. Considering the com-
plex qualitative relationships among the variables in an environmental system, the
fuzzy logic methodology has the advantage of the relatively simple mathematical
calculations in linguistic terms instead of complicated equations used in the con-
ventional methods. Since a fuzzy logic-based model does not need to handle tedious
empirical formulations and complex mathematical expressions, this technique pro-
vides a transparent and a systematic analysis for the interpretation of dynamic
behavior of an environmental-based problem by a set of logical connectives [3].

Jantzen [24] reported that a general fuzzy system has basically four compo-
nents: fuzzification, fuzzy rule base, fuzzy output engine, and defuzzification. In
fuzzification step, numerical inputs and output variables are converted into lin-
guistic terms or some specific adjectives (such as low, high, big, small, etc.), and
the corresponding degrees of the one or more several membership functions are
determined [25]. Since multiple measured crisp inputs first have to be mapped
into the specific fuzzy membership functions, Sozen et al. [26] reported that the
fuzzification process requires good understanding of all the variables.

Fuzzy rule base contains some rules that include all possible fuzzy relations be-
tween inputs and outputs. In fuzzy set theory, there are no mathematical equations
and model parameters, and therefore, all the uncertainties, non-linear relationships,
and model complications are included in the descriptive fuzzy inference procedure
in the form of IF–THEN statements [27]. The fuzzy inference engine takes into
account all the predefined fuzzy rules in the fuzzy rule base and learns how to
transform a set of inputs to corresponding outputs [27]. In this step, two kinds
of inference operators, minimization (min) and product (prod), are basically per-
formed in collection of all the relations among inputs and outputs fuzzy sets in
the fuzzy rule base [3,2,28]. Since decision is based on all of the rules in the fuzzy
inference system, the rules must be combined in order to make the decision. Ag-
gregation is the process by which the fuzzy sets that represent the outputs of each
rule are combined into a single fuzzy set. The input of the aggregation process is
the list of fuzzy sets that represent the outputs of each rule. The output of the
aggregation process is a fuzzy set. There are a number of different aggregation
methods available, such as: maximum (max), sum of the each rule’s output set
(sum), and the probabilistic OR (probor) method. The nature of the information
retrieval dictates that the determination of the ranking should be done based on
all of the rules. In general, the sum aggregation method appears to be a much
better fit [29]. Altunkaynak et al. [25] reported that fuzzy inference part, the sec-
ond phase of the fuzzy logic controller, includes many fuzzy conditional statements
derived from the knowledge of an expert and/or available literature. In this phase,
fuzzy rule base stores the knowledge and rules expressed in the IF–THEN format
for deriving the outputs [28]. Moreover, the data base contains descriptions of the
input and output variables, and the decision making logic evaluates the control
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rules [30]. Since the objective of fuzzy logic is to explain the relationships between
input and output variables (or actions and conclusions) and then estimates the
parameters of the model, therefore, some implications are needed to be defined in
the form of IF–THEN (IF premise THEN consequent) logical statements, called
rules [23,31]. Instead of a definition for the developed fuzzy set categories, such
as moderately low, low, moderate, moderately high, high, etc., the membership
functions can be defined as A, B, C, D, E, etc., to simplify processing of the rules
[3].

In the defuzzification step, linguistic results obtained from the fuzzy inference
are translated into a crisp numerical output (real value) by using the rule base
provided [28,30]. In the literature, several defuzzification methods, such as centre
of gravity (COG or centroid), bisector of area, mean of maxima, leftmost maximum,
rightmost maximum, have been reported [24]. It is appearent from several fuzzy
logic-based studies [1,3,25,27,29,32] that the centroid method is the most widely
used defuzzification technique, since it satisfies the underlying properties of the
system and exhibits the best performance. It is determined as follows [1,3,26,27]:

(yi)d =

n∑
i=1

µ (yi) yi

n∑
i=1

µ (yi)
, (5)

where (yi)d is the defuzzified output, yi is the output value (or the centroidal
distance from the origin) in the ith subset, and µ(yi) is the membership value of
the output value in the ith subset. For the continuous case, the summations in
Eq. (5) are replaced by integrals, as given by Sadiq et al. [32]. On the basis
of above-mentioned fuzzy steps, a detailed schematic of a sample MISO (multiple
inputs and single output) fuzzy system is depicted in Fig. 2.

The situations of uncertainties in fuzzy-logic are defined via giving appropriate
membership functions to the elements of the set that represent the situation. The
value of the variation between 0 and 1 (the highest level) for each element is called
membership degree and its value in subset is called membership function [33]. In
fuzzy models, the shape of membership functions of fuzzy sets can be triangular,
trapezoidal, bell-shaped, sigmoidal, or another appropriate form, depending on the
nature of the system being studied [31,34]. Among them, triangular and trapezoidal
shaped membership functions are predominant in current applications of the fuzzy
set theory, due to their simplicity in both design and implementation based on little
information [3,23]. A schematic overview of the trapezoidal-based membership
function is given in Fig. 2. The trapezoidal curve is the membership function of a
vector, x, and depends on four scalar parameters, a, b, c, d, as follows [1,3,25,26,35]:

µ (x) = µ (x; a, b, c, d) =





0, x ≤ a
x−a
b−a , a ≤ x ≤ b

1, b ≤ x ≤ c
d−x
d−c , c ≤ x ≤ d

0, d ≤ x





. (6)

In the applications of the fuzzy system in both control and forecasting, there
are two types of fuzzy inference systems, namely, Mamdani-type [36] and Takagi-
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Fig. 2 A detailed schematic of a sample MISO fuzzy system (adapted from
Yetilmezsoy et al. [3]).

Sugeno-type [37] fuzzy systems [23,38,39]. Sadrzadeh et al. [39] reported that
each IF–THEN rule produces a fuzzy set for the output variable in the Mamdani
approach, and hence defuzzification step is indispensable to obtain crisp values of
the output variable. Because of allowing a simplified representation and interpre-
tation of the fuzzy rules, Mamdani’s fuzzy inference method is the most commonly
applied fuzzy methodology [1,3,27,31,35,40].
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Fig. 3 A schematic overview of the trapezoidal-based membership function.

2.3 Adaptive neuro-fuzzy inference systems (ANFIS)

The ANN-based methods have been successfully used in various disciplines for
modeling, however, the lack of interpretation is one of the major drawbacks of
their utilization. Wieland et al. [12] reported that one of the major shortcomings
of ANNs is that they do not reveal causal relationships between major system
components and thus are unable to improve the explicit knowledge of the user.
Another problem is due to the fact that reasoning is only done from the inputs to
the outputs. In cases where the opposite is requested (i.e., deriving inputs leading
to a given output), neural networks can hardly be used. There are also some basic
aspects of fuzzy inference system that are in need of better understanding [41]. In
order to overcome the problematic combinations of ANNs and fuzzy systems, a
new system combining ANN and the fuzzy system, called the adaptive network-
based fuzzy inference system, was proposed by Jang [41]. However, even before
Jang [41] published his paper, Lin and Lee [42] and Wang and Mendel [43] had
already published their respective works on adaptive neuro-fuzzy inference systems.
Jang and Sun [44] expressed that adaptive neuro-fuzzy inference systems and the
adaptive network-based fuzzy inference systems have the same aim. Therefore,
they used adaptive neuro-fuzzy inference systems (ANFIS) to stand for adaptive
network-based fuzzy inference systems.

Operation of the ANFIS looks like FFBP network. Consequent parameters are
calculated forward while premise parameters are calculated backward [45]. The
ANFIS is composed of two parts, antecedent and conclusion, which are connected
to each other by fuzzy rules based on the network form. There are two learning
methods in neural section of the system: Hybrid learning method and BP learning
method. In fuzzy section, only zero or first order Sugeno inference system or
Tsukamoto inference system can be used, and output variables are obtained by
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applying fuzzy rules to fuzzy sets of input variables [37,41,45,46]:

Rule 1: If x is A1 and y is B1, then f1 = p1x + q1y + r1 (7)

Rule 2: If x is A2 and y is B2, then f2 = p2x + q2y + r2, (8)

where p1, p2, q1 and q2, are linear parameters, and A1, A2, B1 and B2 nonlinear
parameters. The first-order Sugeno FIS (type-3 fuzzy reasoning) is depicted in
Fig. 4a, and the corresponding equivalent ANFIS architecture (type-3 ANFIS) is
illustrated in Fig. 4b. The corresponding equivalent ANFIS architecture consists
of five layers, namely, a fuzzy layer, a product layer, a normalized layer, a defuzzy
layer and a total output layer.

As shown in Fig. 4b, each node in the ANFIS architecture is characterized
by a node function with fixed or adjustable parameters. Model parameters values
are determined through the learning or training phase of a neural network, while
model performance is evaluated by the sufficiently fitted training and testing data.
Moreover, model performance evaluates error values, such as root mean square
error (RMSE), which are, in turn, minimized by back-propagation and the hybrid
learning algorithms allowed by ANFIS. As shown through the ANFIS architecture,
nodes found in the same layer have similar functions. The following sections discuss
the relationship between the output and input of each layer in the ANFIS.

As seen in Fig. 4b, Layer 1 is the fuzzy layer, in which x and y are the input of
nodes A1, A2, B1 and B2, respectively. A1, A2, B1 and B2 are the linguistic labels
used in the fuzzy theory for dividing the membership functions. Parameters in this
layer are referred to as premise parameters. Every node i in Layer 1 is an adaptive
node with a specific function. Nodes in Layer 1 implement fuzzy membership
functions, mapping input variables to corresponding fuzzy membership values. The
membership relationship between the output and input functions of this layer can
be expressed as [47]:

Q1,i = µAi (x) , for i = 1, 2 or, (9)

Q1,i = µBi (y) , for i = 1, 2, (10)

where x or y is the input to node i, and Ai or Bi is the linguistic label (such as small,
large, etc.) associated with this node function, Q1,i denotes the output functions,
and µAi(x) or µBi(y) usually denotes the bell-shaped membership functions with
a maximum equal to 1 and a minimum equal to 0, such as [41]:

µAi (x) =
1

1 +
[(

x−ci

ai

)2
]

bi

(11)

or

µAi (x) = exp

[
−

(
x− ci

ai

)2
]

, (12)

where (ai, bi and ci) is the parameter set. As the values of these parameters
change, the bell-shaped functions vary accordingly, thus exhibiting various forms of
membership functions on linguistic label, Ai. In fact, any continuous and piecewise
differentiable functions, such as commonly used trapezoidal and triangular-shaped
membership functions, are also be used as node functions in this layer [41].
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Fig. 4 (a) The first-order Sugeno FIS (type-3 fuzzy reasoning) and (b) equivalent
ANFIS architecture (type-3 ANFIS) (adapted from Jang [41]).

Layer 2 is the product layer that consists of two fixed circle nodes labeled π,
which multiply the incoming signals and provide the outputs of the product. The
output w1 and w2 are the weight functions of the next layer. The output of this
layer is the product of the input signal, which is defined as follows [41,47]:

Q2,i = wi = µAi (x)µBi (y) , for i = 1, 2, (13)

where Q2,i denotes the output of Layer 2. Each node output represents the firing
strength of a rule [41].

The third layer is the normalized layer whose nodes are labeled N. The ith node
calculates the ratio of the ith rules firing strength to the sum of all rule’s firing
strengths. Its function is to normalize the weight function in the following process
[41,47]:

Q3,i = wi =
wi

w1 + w2
, for i = 1, 2, (14)

where Q3,i denotes the output of Layer 3. The outputs of this layer are called
normalized firing strengths.

The fourth layer is the defuzzy layer whose nodes are adaptive. Every node i
in this layer is an adaptive node with a specific function. The output equation is
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wi (pix + qiy + ri), where pi, qi and ri denote the linear parameters or so-called
consequent parameters of the node. The defuzzy relationship between the input
and output of this layer can be defined as follows [41,47]:

Q4,i = wifi = wi (pix + qiy + ri) , (15)

where Q4,i denotes the output of Layer 4.
The fifth layer is the total output layer whose node is labeled Σ. The output of

this layer is the total of the input signals, which represents the vehicle shift decision
result. The results can be written as [41,47]:

Q5,i = overall output =
∑

i

wifi =
∑

i wifi∑
i wi

, (16)

where Q5,i denotes the output of Layer 5.
Although ANN and fuzzy logic models are the basic areas of artificial intelli-

gence concept, the ANFIS combines these two methods and uses the advantages of
both methods. Since the ANFIS is an adaptive network which permits the usage
of ANN topology together with fuzzy logic, it includes the characteristics of both
methods and also eliminates some disadvantages of their lonely-used case. There-
fore, this technique is capable of handling complex and nonlinear problems. Even
if the targets are not given, the ANFIS may reach the optimum result rapidly. In
addition, there is no vagueness in ANFIS as opposed to ANNs [45,48]. Moreover,
the learning duration of ANFIS is very short compared to ANN-based models. It
implies that ANFIS may reach to the target faster than ANN. Therefore, when
a more sophisticated system with a high-dimensional data is implemented, the
use of ANFIS instead of ANN would be more appropriate to overcome faster the
complexity of the problem [45].

In the ANFIS structure, the implication of the errors is different from that of
the ANN case. In order to find the optimal result, the epoch size is not limited. In
training high-dimensional data, the ANFIS can give results with the minimum total
error compared to ANN and fuzzy logic methods. Moreover, fuzzy logic method
seems to be the worst in contrast to others at a first look, since the rule size is limited
and the number of membership functions of fuzzy sets were chosen according to the
intuitions of the expert. However, if different types of membership functions and
their combinations had been tested and more membership variables and more rules
had been used to enhance the prediction performance of the proposed diagnosis
system, better results would have been available [1,45].

3. Modeling Applications in Environmental
Engineering

In this section, recent applications of AI-based prediction models in the field of
environmental engineering are examined in terms of solid waste management, wa-
ter/wastewater treatment and air pollution related problems, and the important
findings obtained in these studies are summarized.
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3.1 Waste management

Municipal solid waste management systems require accurate prediction of waste
generation for proper planning and design. However, predicting the amount of
generated waste is difficult because of various fluctuating parameters. In a study,
the hybrid of wavelet transform-adaptive neuro-fuzzy inference system and wavelet
transform-artificial neural network was used to predict the weekly generation of
waste [49]. In another study, Zade and Noori [50] proposed an appropriate model for
predicting the weight of waste generation in Mashhad with a feed-forward artificial
neural network. In a recent study, Jahandideh et al. [51] used two predictor models,
the ANN and multiple linear regression, to predict the total rate of medical waste
generation and classify them as sharp, infectious, or general. Srivastava and Nema
[52] used the fuzzy system to forecast the solid waste composition of Delhi, India
between 2007 and 2024. Similar studies on waste management have been carried
out in recent years [53–55].

3.2 Water and wastewater treatment

Yabunaka et al. [56] conducted studies on a novel application of a BP-ANN model
for the prediction of algal bloom in Lake Kasumigaura, Japan. They concluded
that the ANN model achieved a reasonable effectiveness with respect to learning the
relationship between the set of selected water quality parameters and algal bloom.
Karul et al. [57] used a three-layer Levenberg-Marquardt feed-forward learning
algorithm to model the eutrophication process in three water bodies in Keban
Dam Reservoir, Mogan, and Eymir Lakes of Turkey. Despite the very complex and
extraordinary nature of Keban Dam Reservoir, they observed a relatively good
correlation coefficient between the measured and predicted values. For Mogan and
Eymir Lakes, predictions between the measured and ANN outputs proved to be
satisfactory, with a maximum correlation coefficient of approximately 0.95. They
emphasized that the ANN-based models were able to model nonlinear behavior in
eutrophication process reasonably well. In addition, the models could successfully
estimate some extreme values from validation and test data sets that were not used
in training the ANN. Hamed et al. [11] developed two ANN-based models to predict
the performance of a wastewater treatment plant (WWTP) in the Greater Cairo
district, Egypt, with an average flow rate of 1 million m3/day. They obtained
daily records of biochemical oxygen demand (BOD) and suspended solids (SS)
concentrations from the plant laboratory through various stages of the treatment
process over 10 months. The authors concluded that the ANN-based models proved
to be an efficient and robust tool in predicting WWTP performance. In another
study, Onkal-Engin et al. [58] used an ANN trained with a BP algorithm to
determine the relationship between sewage sample odors and related BOD values.
They reported that the proposed ANN model could successfully classify the sewage
samples collected from different locations of a WWTP.

Another ANN-based modeling study was undertaken by Yetilmezsoy and Sapci-
Zengin [15] to predict chemical oxygen demand removal efficiency (CODRE) of up-
flow anaerobic sludge blanket (UASB) reactors treating diluted real cotton textile
wastewater. In the study, a three-layer ANN model (9:12:1) with tangent sigmoid
transfer function (tansig) at a hidden layer with 12 neurons and a linear transfer
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function (purelin) at output layer was proposed to forecast CODRE values. Re-
sults showed that the ANN model predicted precise and effective CODRE values
with a saticfactory correlation coefficient of approximately 0.83 for nine different
process parameters. Moreover, Yetilmezsoy and Demirel [13] developed a three-
layer ANN model (5:11:1) for modeling Pb(II) adsorption from aqueous solution
by Antep pistachio (Pistacia Vera L.) shells. After BP training combined with
principal component analysis (PCA), the proposed ANN model was able to predict
adsorption efficiency, and the linear regression between the network outputs and
the corresponding targets were proven satisfactory with a correlation coefficient
of approximately 0.94 for the five model variables used in the study. In another
study, Karaca and Ozkaya [59] developed an ANN-based model, namely Neural
Networks-Leachate Production (NN-LEAP), for controlling daily leachate flowrate
in a municipal solid waste (MSW) landfill site. They predicted daily leachate flow
rates in the MSW landfill area, with a correlation coefficient of approximately 0.95
and a mean squared error (MSE) of 0.00168. The authors concluded that the pro-
posed ANN model could provide an effective prediction of daily leachate discharges
and showed reliable and fast outputs in controlling and management of the flow
rate levels in the MSW landfill area. Al-Mutari et al. [60] utilized ANN-based
models to investigate the relationships between the effluent biological activity of a
contact stabilization process (Hawalli WWTP, Kuwait) and microfauna community
distribution by using BP and general regression algorithms. In the study, the mi-
crofauna distribution data of a contact stabilization process were used in an ANN
system to model and predict the biological activity of the effluent. The authors op-
timized the architecture of the back-propagation neural network (BPNN) model in
four steps. In the optimization study, six different ANN architectures were trained
to find the optimum architecture for the BPNN model. The study concluded that
the genetic adaptive general regression neural network (GRNN) model could be
used as a powerful and simple tool for the modeling process.

In a recent study, Ozkaya et al. [61] presented an ANN model for predicting the
methane fraction in landfill gas originating from field-scale landfill bioreactors con-
structed at the Odayeri Sanitary Landfill, Istanbul, Turkey. The authors reported
that the proposed ANN model performed remarkably (R = 0.96) by predicting the
methane fraction from the MSW and an understanding of the simultaneous effects
on multiple factors. In another study, Ozkaya et al. [62] used a popular ANN-BP
algorithm for modeling the performance of a biological Fe2+ oxidizing fluidized
bed reactor (FBR) and control of Fe3+ recycle during heap bioleaching. The study
concluded that the proposed ANN approach provided an excellent match between
the measured and the predicted concentrations. More recently, Sahinkaya [63]
conducted studies on ANN modeling of zinc recovering in sulfidogenic completely
stirred tank reactor (CSTR) for five input variables (feed pH, feed SO2−

4 , feed Zn,
feed chemical oxygen demand (COD), and operating time) and four output vari-
ables (effluent SO2−

4 , effluent COD, effluent acetate, and effluent Zn). Results
indicated that the developed ANN model showed a satisfactory match between the
measured and the predicted concentrations of sulfate (R = 0.998), COD (R =
0.993), acetate (R = 0.976), and zinc (R = 0.827) in the CSTR effluent. Apart
from the above-mentioned studies, several other successful ANN modeling studies
[64–69] have recently been conducted, specifically in various parts of the field of
wastewater engineering.
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In addition to ANN modeling studies, several ANFIS-based models have re-
cently been proposed to evaluate and optimize various wastewater treatment pro-
cesses. For a real-scale anaerobic WWTP operating under unsteady state condi-
tions, Perendeci et al. [70] proposed a conceptual ANFIS-based using available
on-line and off-line operational input variables to estimate the effluent COD. The
study concluded that the developed ANFIS model with phase vector and history
extension successfully represented the behavior of the considered treatment system.
In another study, Civelekoglu et al. [71] employed ANFIS-based models for the pre-
diction of carbon and nitrogen removal in the aerobic biological treatment stage of
a full-scale WWTP treating process wastewaters from the sugar production indus-
try. In the study, a total of six independent ANFIS models were developed with or
without PCA using the correlations among the influent and effluent data from the
plant. With the use of PCA, results showed that the ANFIS modeling approach
could be an effective advanced technique for performance prediction and control
of treatment processes. Moreover, Cakmakci [6] used an ANFIS-based technique
for modeling anaerobic digestion system of primary sludge of the Kayseri WWTP,
Turkey. In the study, effluent volatile solid (VS) and methane yield were predicted
by the ANFIS model using the routinely measured parameters in the anaerobic
digester. The study concluded that due to highly nonlinear structure of the AN-
FIS model, a highly complex system, such as anaerobic digestion process, could be
easily modeled. Furthermore, there have been other computational studies in the
literature reporting the implementation of neuro-fuzzy-based models on water and
wastewater treatment processes [39,72–74].

ANFIS-based models have recently been used for water treatment process.
Chun et al. [75] used an ANFIS-based model to optimize coagulant dosage used for
turbidity removal in a water treatment plant. They obtained a better performance
than in their previous works using ANN. Similar to Chun et al. [75], ANN and AN-
FIS models were used by Wu and Lo [76] to model polyaluminum chloride (PAC)
dosing of the surface water of Northern Taiwan. They obtained results similar to
those of Chun et al. [75], indicating that the self-predicting model of ANFIS is
better than the ANN model for PAC dosage predictions.

Filter head loss was estimated by Cakmakci et al. [77] using this ANFIS model.
In their study, rule base sets were generated with subtractive clustering and grid
partition. They determined that using a grid partition for modeling was superior to
that of subtractive clustering. The RMSE values of training, testing, and checking
at the optimum rule base set were of the same order of magnitude. The correlation
coefficients were greater than 0.99 in both tap and deionized water. Therefore, filter
iron removal rate was also modeled by Cakmakci et al. [78]. They obtained best
results for tap and deionized water with grid partition and subtractive clustering.
Model results were evaluated by index of agreement (IA). The IA values for tap
water was 0.996 and 0.971. The IA of the output values expressed as follows [78]:

IA = 1−
∑N

i=1 (Oi − Pi)
2

∑N
i=1 (|Oi −Om|+ |Pi −Om|)2

, (17)

where Oi is observed and Pi is predicted value, Om and Pm represents the aver-
age value of observed and predicted values, and RMSE represents the differences
between observed and predicted data. IA varies between 0 and 1.0, representing
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perfect agreement between observed and predicted values.
Autoregressive integrated moving average (ARIMA) and Takagi-Sugeno (TS)

fuzzy methods were used by Altunkaynak et al. [25] for predicting future monthly
water consumption values from three antecedent water consumption amounts, con-
sidered as independent variables. The TS fuzzy predicted results better than the
ARIMA. Firat et al. [79] compared two types of FIS for predicting municipal wa-
ter consumption time series. Their results demonstrated that the ANFIS model
is superior to Mamdani fuzzy inference systems (MFIS). An ANFIS-based model
was used by Firat and Gungor [80] to estimate the flow of River Great Menderes,
located in western Turkey. As a result, they discovered that ANFIS could be
successfully applied for river flow estimation, providing high accuracy and reliabil-
ity. Finally, a principal component analysis-adaptive neuro-fuzzy inference systems
(PC-ANFISs) method was used by Goodarzi et al. [81] for the analysis of ternary
mixtures of Al(III), Co(II) and Ni(II) over the range of 0.05–0.90, 0.05–4.05, and
0.05–0.95 g/mL, respectively. As a result, the method accurately and simultane-
ously determined the content of metal ions in several synthetic mixtures.

It has become apparent from the literature that artificial intelligence-based
prediction models, such as ANN and neuro-fuzzy techniques, can be successfully
implemented as complementary technologies in actual applications of water and
wastewater treatment processes. The applicability of these models is very simple,
posing no need to identify nonlinear relationships between multiple variables and
define the complex biochemical reactions in the water and wastewater media.

3.3 Air pollution

Air pollution has become one of the most critical environmental issues in the last
decade in many parts of the world. As a result of population growth, rapid indus-
trialization, high density of vehicle traffic, domestic heating, electricity production,
antropogenic activities, and natural sources, the quality of life has deteriorated in
many urban regions due to high level of various toxic air pollutants [18,82]. In
particular, increasing concentrations of these pollutants in limited areas constitute
severe acute and chronic health problems such as respiratory illnesses, cardiovas-
cular diseases, bronchospasm, pulmonary edema, pneumonitis, acute bronchitis
diseases, and lung cancer [83–86]. In recent years, it has become more important
to struggle with this specific environmental problem due to its detrimental effects
on public health.

In order to curb the increasing deterioration of ambient air quality, urgent risk
assessment and proper risk management tools are needed to ensure a robust and
resilient control of high pollution levels. However, in practice, monitoring all pro-
cess parameters for various operating conditions is difficult due to the complex
and nonlinear nature of air pollution-based problems. For this purpose, math-
ematical models have become essential tools in both design and operation when
working with high dimensional data. To undertake these tasks, proper air pollution
models are needed to develop warning and control strategies, as well as to inves-
tigate future emission scenarios [87]. Akkoyunlu et al. [18] reported that better
control of air pollution may be achieved by the use of robust and reliable compu-
tational approaches, such as artificial intelligence-based models, to predict certain
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key parameters, as well as to capture the existing nonlinear relationships between
multi-input and -output variables in a complex system.

In the past decade, it has become apparent that ANN-based prediction models
have been effectively conducted on a substantial number of research activities in
the field of air pollution engineering. In these investigations, several authors have
developed different types of ANN models, and the results have been compared with
the forecasts obtained using multiple regression models. For instance, Yetilmezsoy
[88] proposed an ANN model and a new empirical model to determine optimum
body diameter (OBD) of air cyclones for 505 different artificial scenarios given in
a wide range of five operating variables, namely, gas flow rate, particle density,
temperature, and two design parameters, namely, Ka and Kb, selected in the cy-
clone design. The study concluded that maximum diameter deviations from the
well-known Kalen and Zenz’s model were recorded as 1.3 cm and 0.0022 cm for
the empirical model and ANN outputs, respectively. Although both approaches
produced promising results, the ANN model exhibited speed and practicality, as
well as a more robust and superior performance in the prediction of OBD values.
In another study [19], an ANN-based approach and nonlinear regression analysis
were performed for the determination of single droplet collection efficiency (SDCE)
of countercurrent spray towers. The authors reported that predicted results ob-
tained from the nonlinear regression analysis and the ANN model were in agreement
with the theoretical data, and that all predictions proved to be satisfactory with
a correlation coefficient of approximately 0.921 and 0.99, respectively. The study
concluded that the development of a new mathematical model and the creation
of an ANN-based model for the prediction of SDCE of countercurrent spray tow-
ers eliminated complex interactions of variables and difficult iterative calculations
typically performed in the theoretical approach.

Agirre-Basurko et al. [14] developed two multilayer perceptron (MLP)-based
models and one multiple linear regression-based model to forecast ozone (O3) and
nitrogen dioxide (NO2) levels in Bilbao, Spain. In their study, traffic variables
were used as predictor variables in the developed models. Results indicated the
MLP-based models showed remarkably better performance than the multiple linear
regression model in predicting pollutant concentrations. There have also been other
studies [12,89–93] on the prediction of tropospheric and surface O3 concentrations
reporting the advantages and adaptability properties of artificial intelligence-based
models. Moreover, the use of ANN allows the prediction of daily and/or hourly
particulate matter (PM2.5 and PM10) emissions [94–97] in many urban and resi-
dential areas. ANN-based models have also been used in the prediction of urban
and ground-level SO2 concentrations, demonstrating successful results when con-
sidering the complex and nonlinear structure of the atmosphere [18,98,99]. In a
recent study, Nunnari et al. [100] modeled SO2 concentration at a point by inter-
comparing several stochastic techniques, such as ANN, fuzzy logic, and generalized
additive techniques. Because the ANN models worked better in the prediction of
critical episodes, they recommended the ANN approach for the implementation of
a warning system for air quality control.

More recently, several adaptive neuro-fuzzy techniques emerging from the fusion
of ANN and FIS have successfully found application in various areas of air pollu-
tion control. For instance, Yildirim and Bayramoglu [82] used an adaptive neuro-
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fuzzy logic method to estimate the impact of meteorological factors on SO2 and
total suspended particular matter (TSP) pollution levels over the city of Zongul-
dak, Turkey. The study concluded that the proposed ANFIS model satisfactorily
forecast the trends in SO2 and TSP concentration levels, with performance levels
between 75–90% and 69–80%, respectively. An artificial intelligence-based model-
ing approach was also conducted in a recent study by Noori et al. [101] to predict
daily carbon monoxide (CO) concentration in the atmosphere of Tehran, Iran, by
means of developed ANN and ANFIS models. In the study, forward selection (FS)
and gamma test (GT) methods were implemented for selecting input variables and
developing hybrid models with ANN and ANFIS. The authors concluded that FS-
ANN and FS-ANFIS models were the best models, considering R2, mean absolute
error, and developed discrepancy ratio statistics, for predicting pollution episodes.
In another study, Carnevale et al. [102] applied neuro-fuzzy and ANN systems to
control ozone and PM10 concentrations in northern Italy. The study concluded
that the selected source-receptor models were proven effective for the evaluation of
both the impact of emission reduction strategies on pollution indices and the costs
of such emission reductions.

Although the dispersion and transport of mechanisms of atmospheric pollu-
tants under several meteorological conditions are very complicated, a number of
attempts in developing prediction models can help to develop a continuous strat-
egy for air pollution control [18]. If properly designed and evaluated, the artificial
intelligence-based air pollution models could play a considerable role in planning
strategies for a proper management of air quality and provide a rational basis for
the control of air pollution [82]. Consequently, based on the literature review, it can
be concluded that artificial intelligence-based models have provided better results
compared to conventional linear/nonlinear regression methods due to their ability
to precisely discriminate the arbitrary nonlinear functional relationship between
input and output data sets. Apart from the above-mentioned studies described
separately herein, several other successful attempts to model various complex real-
life processes using AI-based techniques can also be found in the recent literature
[103–110].

4. Conclusions

In this study, recent applications of the widely used AI-based prediction models,
such as ANN, fuzzy logic and ANFIS, are specifically investigated for the real-life
problems of the environmental engineering field. This study includes a series of
straightforward, yet complex, problems, such as waste management, water and
wastewater treatment, and air pollution, that illustrate how AI-based prediction
models can be used in solving environmental engineering problems, and provides
the necessary tools to get started using these elegant and efficient new techniques.
These techniques serve as a modern paradigm for computing complex natural pro-
cesses with the power and basic principles of the prediction modeling, together with
simulated biological and environmental data sets and real applications in the field.

Although the AI-based prediction models can provide enormous capability and
flexibility on forecasting of various environmental variables, the present survey
concluded that verification and validation of the proposed models using various
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descriptive statistics have been addressed only in a very small number of studies
in the literature. Measuring the goodness of the estimate is an important part
of model development, and it can be achieved by visual and numerical methods.
It is noted that visual methods make it possible to get an intuitive hold of the
model performance, however, numerical methods provide a more robust ground
for comparing and enhancing the models in a scientific way. Therefore, besides
coefficient of determination (R2), we suggest that various statistical performance
indicators, such as mean-absolute error (MAE), root mean-square error (RMSE),
systematic and unsystematic RMSE (RMSES and RMSEU , respectively), mean-
squared error (MSE), index of agreement (IA), mean bias error (MBE), the factor of
two (FA2), fractional variance (FV), proportion of systematic error (PSE), Fisher’s
F -test, p-values, t-statistics, standard error of estimate, coefficient of variation
(CV), Durbin–Watson statistic, adjusted determination coefficient (R2

a), intercept
and slope of the adjusted line between observed and predicted values, Mallow’s Cp
statistic, chi-square (χ2) test, and suitable parametric or non-parametric tests, etc.
must also be used as helpful tools to describe model’s prediction performance and
the error, and to express the significance of the proposed model.

From the viewpoint of environmental engineering, most AI-based prediction
models are conducted for the solution of water/wastewater and air pollution related
environmental problems compared to waste management applications. Considering
the predictive capability and non-linear characteristic of the AI-based approach,
additional modeling studies are needed for various complex problems in the field
of waste management, particularly in developing countries. Moreover, results indi-
cated that most of the studies had used only one type of modeling technique. Since
the applicability of AI-based models is simple and there is no need to define the
complex reactions and their mathematical or biochemical equations, it is suggested
that different AI-based models must be conducted simultaneously to find the most
appropriate model structure for the solution of a specific environmental problem.
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18-21, 2007.

[48] Jang J. S. R., Sun C. T., Mizutani E.: Neuro-Fuzzy Soft Comput., New Jersey: Prentice
Hall, 1997, pp. 510–514.

[49] Noori R., Abdoli M. A., Farokhnia A., Abbasi M.: Results uncertainty of solid waste
generation forecasting by hybrid of wavelet transform-ANFIS and wavelet transform-neural
network, Expert Syst. Appl.: An Inter. J., 36, 2009, pp. 9991–9999.

214



Kaan Yetilmezsoy, Bestamin Ozkaya, Mehmet Cakmakci: Artificial intelligence. . .

[50] Zade J. G., Noori R.: Prediction of municipal solid waste generation by use of artificial
neural network: A case study of Mashhad. Inter. J. Environ. Res., 2, 2008, pp. 13–22.

[51] Jahandideh S., Jahandideh S., Asadabadi E. B., Askarian M., Movahedi M., Mehdi M., Hos-
seini S., Jahandideh M.: The use of artificial neural networks and multiple linear regression
to predict rate of medical waste generation. Waste Manag., 29, 2009, pp. 2874–2879.

[52] Srivastava A. K., Nema A. K.: Forecasting of solid waste composition using fuzzy regression
approach: a case of Delhi. Inter. J. Environ. Waste Manag., 2, 2008, pp. 65–74.

[53] Dong C., Jin B., Li D.: Predicting the heating value of MSW with a feed-forward neural
network. Waste Manag., 23, 2003, pp. 103–106.

[54] Chen L. J., Cui L. Y., Xing L., Han L.J.: Prediction of the nutrient content in dairy manure
using artificial neural network modeling. J. Dairy Sci., 91, 2008, pp. 4822–4829.

[55] Bayar S., Demir I., Onkal Engin G.: Modeling leaching behavior of solidified wastes using
back-propagation neural networks. Ecotoxic. Environ. Safety, 72, 2009, pp. 843–850.

[56] Yabunaka K., Hosomi M., Murakami A.: Novel application of a back-propagation artificial
neural network model formulated to predict algal bloom. Water Sci. Technol., 36, 1997, pp.
89–97.

[57] Karul C., Soyupak S., Cilesiz A. F., Akbay N., Germen E.: Case studies on the use of
neural networks in eutrophication modeling, Ecolog. Model., 134, 2000, pp. 145–152.

[58] Onkal-Engin G., Demir I., Engin S. N.: Determination of the relationship between sewage
odour and BOD by neural networks. Environ. Model. Soft., 20, 2005, pp. 843–850.

[59] Karaca F., Ozkaya B.: NN-LEAP: A neural network-based model for controlling leachate
flow-rate in a municipal solid waste landfill site. Environ. Model. Soft., 21, 2006, pp. 1190–
1197.

[60] Al-Mutairi N., Kartam N., Koushki P., Al-Mutairi M.: Modeling and predicting biological
performance of contact stabilization process using artificial neural networks. J. Comput.
Civ. Eng., 18, 2004, pp. 341–349.

[61] Ozkaya B., Demir A., Bilgili M. S.: Neural network prediction model for the methane
fraction in biogas from field-scale landfill bioreactors. Environ. Model. Soft., 22, 2007, pp.
815–822.

[62] Ozkaya B., Sahinkaya E., Nurmi P., Kaksonen A. H., Puhakka J. A.: Biologically Fe2+

oxidizing fluidized bed reactor performance and controlling of Fe3+ recycle during heap
bioleaching: an artificial neural network-based model. Bioproc. Biosyst. Eng., 31, 2008, pp.
111–117.

[63] Sahinkaya E.: Biotreatment of zinc-containing wastewater in a sulfidogenic CSTR: Perfor-
mance and artificial neural network (ANN) modeling studies. J. Hazard. Mater., 164, 2009,
pp. 105–113.

[64] Oliveira-Esquerre K. P., Mori M., Bruns R. E.: Simulation of an industrial wastewater
treatment plant using artificial neural networks and principal components analysis. Brazil.
J. Chem. Eng., 19, 2002, pp. 365–370.

[65] Molga E., Cherbanski R., Szpyrkowicz L.: Modeling of an industrial full-scale plant for
biological treatment of textile wastewaters: Application of neural networks. Indus. Eng.
Chem. Res., 45, 2006, pp. 1039–1046.

[66] Sahinkaya E., Ozkaya B., Kaksonen A. H., Puhakka J. A.: Neural network prediction of
thermophilic (65˚C) sulfidogenic fluidized-bed reactor performance for the treatment of
metal-containing wastewater. Biotechnol. Bioeng., 97, 2006, pp. 780–787.

[67] Daneshvar N., Khataee A. R., Djafarzadeh N.: The use of artificial neural networks (ANN)
for modeling of decolorization of textile dye solution containing C. I. Basic Yellow 28 by
electrocoagulation process. J. Hazard. Mater., 137, 2006, pp. 1788–1795.

[68] Parthiban R., Iyer P., Sekaran G.: Anaerobic tapered fluidized bed reactor for starch
wastewater treatment and modeling using multilayer perceptron neural network. J. En-
viron. Sci., 19, 2007, pp. 1416–1423.

215



Neural Network World 3/11, 193-218

[69] Raduly B., Gernaey K. V., Capodaglio A. G., Mikkelsen P. S., Henze M.: Artificial neural
networks for rapid WWTP performance evaluation: Methodology and case study. Environ.
Model. Soft., 22, 2007, pp. 1208–1216.

[70] Perendeci A., Arslan S., Celebi S. C., Tanyolac A.: Effects of phase vector and history
extension on prediction power of adaptive-network based fuzzy inference system (ANFIS)
model for a real scale anaerobic wastewater treatment plant operating under unsteady state.
Bioresour. Technol., 100, 2009, pp. 4579–4587.

[71] Civelekoglu G., Perendeci A., Yigit N. O., Kitis M.: Modeling carbon and nitrogen removal
in an industrial wastewater treatment plant using an adaptive network-based fuzzy inference
system. Clean-Soil, Air and Water, 35, 2007, pp. 617–625.

[72] Tay J.-H., Zhang X.: A fast predicting neural fuzzy model for high-rate anaerobic wastew-
ater treatment systems. Water Res., 34, 2000, pp. 2849–2860.

[73] Perendeci A., Arslan S., Celebi S. C., Tanyolac A.: Prediction of effluent quality of an
anaerobic treatment plant under unsteady state through ANFIS modeling with on-line
input variables. Chem. Eng. J., 145, 2008, pp. 78–85.

[74] Pai T. Y., Wan T. J., Hsu S. T., Chang T. C., Tsai Y. P., Lin C. Y., Su H. C., Yu L. F.:
Using fuzzy inference system to improve neural network for predicting hospital wastewater
treatment plant effluent. Comput. Chem. Eng., 33, 2009, pp. 1272–1278.

[75] Chun M.-G., Kwak K.-C., Ryu J.-W.: Application of ANFIS for coagulant dosing process in
a water purification plant. IEEE Inter. Fuzzy Syst. Conference Proceedings, August 22-25,
Seoul, Korea, 1999, pp. 1743–1748.

[76] Wu G.-D., Lo S.-L.: Predicting real-time coagulant dosage in water treatment by artificial
neural networks and adaptive network-based fuzzy inference system. J. Eng. Appl. Artific.
Intel., 21, 2008, pp. 1189–1195.

[77] Cakmakci M., Kinaci C., Bayramoglu M.: Adaptive neuro-fuzzy modeling of head loss in
iron removal with rapid sand filtration. Water Environ. Res., 80, 2008, pp. 2260–2275.

[78] Cakmakci M., Kinaci C., Bayramoglu M., Yildirim Y.: A modeling approach for iron
concentration in sand filtration effluent using adaptive neuro-fuzzy mode. Expert Syst.
Appl., 37, 2010, pp. 1369–1373.

[79] Firat M., Turan M. E., Yurdusev M. A.: Comparative analysis of fuzzy inference systems
for water consumption time series prediction. J. Hydro., 374, 2009, pp. 235–241.

[80] Firat M., Gungor M.: River flow estimation using adaptive neuro fuzzy inference system.
Math. Comput. Simul., 75, 2007, pp. 87–96.

[81] Goodarzi M., Olivieri A. C., Freitas M. P.: Principal component analysis-adaptive neuro-
fuzzy inference systems (ANFISs) for the simultaneous spectrophotometric determination
of three metals in water samples. Spectrochim. Acta Part A, 73, 2009, pp. 608–614.

[82] Yildirim Y., Bayramoglu M.: Adaptive neuro-fuzzy based modeling for prediction of air
pollution daily levels in city of Zonguldak. Chemosphere, 63, 2006, pp. 1575–1582.

[83] Lee W. J., Teschke K., Kauppinen T., Andersen A., Jäppinen P., Szadkowska-Stanczyk
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