
ON THE RUPTURE DEGREE OF A GRAPH

Alpay Kırlangıc. , Goksen Bacak-Turan∗

Abstract: In a communication network, vulnerability measures the resistance
of the network to disruption of operation after the failure of certain stations or
communication links. If we think of a connected graph as model-ing a network, the
rupture degree of a graph is one measure of graph vulnerability and it is defined by

r(G) = max{w(G− S)− |S| −m(G− S) : S ⊂ V (G), w(G− S) > 1},

where w(G− S) is the number of components of G− S and m(G− S) is the order
of a largest component of G − S. In this paper, general results on the rupture
degree of a graph are considered. Firstly, some bounds on the rupture degree are
given. Further, rupture degree of a complete k-ary tree is calculated. Also several
results are given about complete k-ary tree and graph operations. Finally, we give
formulas for the rupture degree of the cartesian product of some special graphs.
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1. Introduction

In this paper, we consider simple connected graphs and assume G to be a simple
connected graph with vertex set V (G) and edge set E(G). A network can be mod-
eled by a graph G in which vertices represent the processing elements and edges
represent the communication between them. Networks appear in many different
applications and settings. The most common networks are telecommunication net-
works, computer networks, the internet, road and rail networks and other logistic
networks [9]. A tree is a type of a graph that is used to model a network such as
k-ary tree network, binary tree network, and n-tree network. The complete k-ary
trees are widely used in supercomputers and they are also used to describe deci-
sion processes in tree networks and tree structures support various basic dynamic
network operations including search, minimum, maximum, insert, and delete.

Network designers often build a network configuration around specific process-
ing, performance and cost requirements. They also identify the critical points of
failure and modify the design to eliminate them [9]. In a communication network,
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the vulnerability measures are essential to guide the designers in choosing an ap-
propriate topology. They have an impact on solving difficult optimization problems
for networks.

Furthermore, some networks can be modeled by graphs obtained by graph op-
erations such as Cartesian product, composition, power, etc. The resultant graphs
can be characterized in terms of the input graphs and extract information from the
original graph and encode it into a new structure. For example the ladder graph
Pn ×K2 and cyclic ladder graph Cn ×K2 are known as ladder networks.

All of the above motivated us to investigate the vulnerability of k-ary trees and
some of the graphs obtained by graph operations.

In a communication network, vulnerability measures the resistance of the net-
work to disruption of operation after the failure of certain stations or communi-
cation links. When a network begins losing stations or communication links there
is, eventually, a loss in its effectiveness. Thus, a communication network must be
constructed to be as stable as possible, not only with respect to the initial disrup-
tion, but also with respect to the possible reconstruction of the network. When
any disruption happens in a network three questions are considered:

(1) What is the number of elements that are not functioning?
(2) What is the number of remaining connected subnetworks?
(3) What is the size of a largest remaining group within which mutual commu-

nication can still occur?
If we think of a connected graph G as modeling a network, then many graph

theoretical parameters, such as connectivity (see [7]), integrity (see [2]), scattering
number (see [6]), toughness (see [4]), tenacity (see [5]) and their edge-analogues,
have been defined to obtain the answers to these questions. The definition of these
parameters are given below.

Definition 1 ([7]). A separating set or a vertex cut S ⊂ V (G) of a connected
graph G is a set of vertices whose removal renders G disconnected such that is
G− S has more than one component.

Definition 2 ([3]). The connectivity of G, denoted κ(G), is the minimal size of a
vertex set S such that G− S is disconnected or has only one vertex.

Let S be a vertex cut of a non-complete connected graph G. Throughout this
paper for any graph G−S, m(G−S) and w(G−S), respectively, denote the order
of the largest component and the number of components in G− S. Moreover, |S|
denotes the number of the elements in the set S.

Definition 3 ([2]). The integrity of a non-complete connected graph G is defined
by

I(G) = min{|S|+m(G− S) : S ⊂ V (G), w(G− S) > 1}.

Definition 4 ([6]). The scattering number of a non-complete connected graph G
is defined by

s(G) = max{w(G− S)− |S| : S ⊂ V (G), w(G− S) > 1}.

Definition 5 ([4]). The toughness of a non-complete connected graph G is defined
by
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t(G) = min{ |S|
w(G− S)

: S ⊂ V (G), w(G− S) > 1}.

Definition 6 ([5]). The tenacity of a non-complete connected graph G is defined
by

T (G) = min{(|S|+m(G− S))/w(G− S) : S ⊂ V (G), w(G− S) > 1}.

These parameters have been used to measure the vulnerability of networks. In
addition, the rupture degree was introduced as a measure of graph vulnerability by
Yinkui Li, Shenggui Zhang and Xueliang Li (see [10, 11]). Formally, the rupture
degree of a non-complete connected graph G is defined by

r(G) = max{w(G− S)− |S| −m(G− S) : S ⊂ V (G), w(G− S) > 1}

and the rupture degree of Kn is defined as 1 − n. By the Definition 1, the set S
must be vertex cut of a graph G.

The connectivity deals with the question (1). The toughness and the scattering
number take account of questions (1) and (2). The integrity deals with the questions
(1) and (3). The rupture degree is a measure which deals with the questions (1), (2),
and (3). Therefore, the rupture degree gives us more knowledge about the network
disruption. On the other hand, the tenacity is also a measure which deals with the
questions (1), (2), and (3). But Zhang et al. show that there exist graphs G1 and
G2 such that T (G1) = T (G2) and r(G1) ̸= r(G2). That is, the rupture degree and
tenacity differ in showing the vulnerability of networks (see [10]). Consequently the
rupture degree is a better parameter to measure the vulnerability of some networks.
Zhang et al. obtained several results on the rupture degree of a graph (see [10, 11]).

In Section 2, known results on the rupture degree are given. Section 3 gives
some bounds on the rupture degree of a graph. In Section 4, rupture degree of a
complete k-ary tree is calculated. Also some results are given about the complete
binary tree and about the graphs obtained by some graph operations. In the final
section, we give formulas for the rupture degree of the cartesian product of some
special graphs.

2. Basic Results

Throughout this paper, we use Bondy and Murty ([3]) for terminology and notation.
We denote the minimum vertex degree of a graph G by δ(G), the independence
number of a graph G by α(G), the covering number of a graph G by β(G), and the
chromatic number of a graph G by χ(G). Moreover, we use ⌈x⌉ for the smallest
integer greater than x and ⌊x⌋ for the greatest integer smaller than x.

Theorem 1 ([10]). The rupture degree of
(a) the path graph Pn (n ≥ 3) is

r(Pn) =

 −1, if n is even,

0, if n is odd.
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(b) the cycle graph Cn is

r(Cn) =

 −1, if n is even,

−2, if n is odd.

The next theorems give some bounds for the rupture degree.

Theorem 2 ([10]). Let G be a non-complete connected graph of order n. Then
(a) r(G) ≤ n− 2δ − 1,

(b) 3− n ≤ r(G) ≤ n− 3,

(c) 2α(G)− n− 1 ≤ r(G) ≤ (α(G))2 − κ(G)(α(G)− 1)− n

α(G)
.

Theorem 3 ([11]). Let G be a non-complete connected graph with the tenacity
T (G). Then r(G) ≤ α(G)(1− T (G)).

Definition 7 ([3]). Let G1 and G2 be two graphs with disjoint vertex sets V1 and
V2. The join operation is denoted by G1+G2 and consists of V (G1)∪V (G2) vertices
and the original edges E(G1), E(G2) and all edges joining V (G1) and V (G2).

The following theorem gives a result between the rupture degree and the join
operation.

Theorem 4 ([10]). Let G1 and G2 be two connected graphs of order n1 and n2,
respectively. Then r(G1 +G2) = max{r(G1)− n2, r(G2)− n1}.

Theorem 5 ([3]). If G is a connected graph of order n, then α(G) + β(G) = n.

3. Bounds on the Rupture Degree

In this section, we give two upper bounds in the next theorems.

Theorem 6. Let G be a non-complete connected graph of order n. Then

r(G) ≤ α(G)− δ(G)− 1.

Proof. Let S be a vertex cut of G. Then, from the definition of integrity, we know
that I(G) ≤ |S|+m(G−S). Moreover, I(G) ≥ δ(G)+ 1 for any graph G (see [2]).
Then we have

|S|+m(G− S) ≥ δ(G) + 1.

If we subtract both sides from w(G− S), then we get

w(G− S)− |S| −m(G− S) ≤ w(G− S)− δ(G)− 1.

Since w(G− S) ≤ α(G) for any graph G, we have

r(G) ≤ α(G)− δ(G)− 1.
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Remark 1. It is obvious that

α(G)− δ(G)− 1 ≤ n− 2δ(G)− 1

since δ(G) ≤ β(G) for any graph G. Hence, the result in Theorem 6 is better than
Theorem 2(a).

Theorem 7. Let G be a non-complete connected graph of order n. Then

r(G) ≤ n+ 1− 2n

α(G)
.

Proof. Let S be a vertex cut of G. From the definition of integrity we know
that I(G) ≤ |S| +m(G − S). Moreover, I(G) ≥ χ(G) for any graph G (see [1]).
Therefore, χ(G) ≤ |S|+m(G− S).

On the other hand, since w(G− S) ≤ n− |S| −m(G− S) + 1 (see [12]) for any
graph G of order n, we have

w(G− S)− |S| −m(G− S) ≤ n+ 1− 2(|S|+m(G− S))

≤ n+ 1− 2χ(G).

Since χ(G) ≥ n

α(G)
for any graph G of order n (see [3]), we have

w(G− S)− |S| −m(G− S) ≤ n+ 1− 2n

α(G)

r(G) ≤ n+ 1− 2n

α(G)
.

Remark 2. If α(G) ≤ β(G) for any graph G, then since α(G) + β(G) = n

2α(G) ≤ n

4 ≤ 2n

α(G)

n+ 1− 2n

α(G)
≤ n− 3.

So we claim that the result in Theorem 7 is better than Theorem 2(b). The graph
G = K1+(Kp ∪ qK1) such that q+1 ≤ p can be given as an example where p and
q are positive integers.

4. Rupture Degree of Complete k-ary Trees

In this section, we consider the complete k-ary trees. The following theorem is
about the rupture degree of a complete k-ary tree.

Definition 8. The complete k-ary tree Tk,d of depth d is the rooted tree in which
all vertices at level d− 1 or less have exactly k children, and all vertices at level d
are leaves.
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Fig. 1 T2,4.

Fig. 1 shows a complete 2-ary tree T2,4 of depth 4.

Theorem 8. Let Tk,d be a complete k-ary tree of depth d. Then

r(Tk,d) =
kd+1 + (−1)d

k + 1
− 1.

Proof. A complete k-ary tree of depth d has kd+1−1
k−1 vertices and the covering

number of Tk,d is

β(Tk,d) =


kd+1 − 1

k2 − 1
, d is odd;

k(kd − 1)

k2 − 1
, d is even.

Let S be an arbitrary vertex cut of Tk,d and |S| = x be the number of vertices in
S, in other words the number of vertices whose removal renders Tk,d disconnected.
Then we have two cases depending on S:

Case 1. Let S be a minimal vertex covering set of Tk,d. Then the cardinality of
S gives the covering number and we have |S| = β(Tk,d) and hence G − Tk,d has
only isolated vertices and the order of the largest component is m(Tk,d − S) = 1.
Therefore, the number of the components equals to the independence number and

we get w(Tk,d − S) = k(kd+1−1)
k2−1 when d is odd and w(Tk,d − S) = kd+2−1

k2−1 when d
is even. Thus,

r(Tk,d) =


kd+1 − k − 2

k + 1
, d is odd;

kd+1 − k

k + 1
, d is even.

(1)

Case 2. If S is not a minimal vertex covering set of Tk,d, then we have two cases
according to the cardinality of S.
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(a) If 1 ≤ x ≤ β(Tk,d)− 1, then w(Tk,d −S) ≤ kx+1 and m(Tk,d −S) ≥ 1. Hence,
r(Tk,d) ≤ max

x
{kx+ 1− x− 1} = max

x
{(k − 1)x}. The function f(x) = (k − 1)x is

an increasing function and takes its maximum value at x = β(Tk,d)− 1. Then

r(Tk,d) ≤


kd+1 − k2

k + 1
, d is odd;

kd+1 − k2 − k + 1

k + 1
, d is even.

(2)

(b) If β(Tk,d) ≤ x ≤ kd+1−1
k+1 , then w(Tk,d−S) ≤ kd+1−1

k−1 −x and m(Tk,d−S) ≥ 1.

Hence, we have r(Tk,d) ≤ max
x

{
kd+1 − 1

k − 1
− x− x− 1

}
= max

x

{
kd+1 − 1

k − 1
− 2x− 1

}
.

The function f(x) =
kd+1 − 1

k − 1
− 2x− 1 is a decreasing function and takes its max-

imum value at x = β(Tk,d). Hence,

r(Tk,d) ≤


kd+1 − k − 2

k + 1
, d is odd;

kd+1 − k

k + 1
, d is even.

(3)

By the definition of rupture degree if we take the maximum of (1), (2) and (3)
and formulize it for the odd and even values of d, we get

r(Tk,d) =
kd+1 + (−1)d

k + 1
− 1.

Definition 9. The ath power of a graph G is a graph with the same set of vertices
as G and an edge between two vertices if and only if there is a path in G of length
at most a between them.

Now we consider a complete binary tree Hd such that it is a 2-ary complete
tree T2,d.

Theorem 9. Let H2
d be the second power of a complete binary tree with depth d.

Then

r(H2
d) =

{
3− 3× 2

d−1
2 , if d is odd

2− 2
d
2+1, if d is even

Proof. A second power of a complete binary tree with depth d contains 20, 21, . . . , 2d

vertices on 0th, 1st, . . . , dth levels, respectively. Let S be a vertex cut of H2
d such

that w(H2
d − S)− |S| −m(H2

d − S) = r(H2
d).

We have two cases for d:
Case 1. Let d be an odd integer. Then S must contain all the vertices on the xth

and (x + 1)th levels where 1 ≤ x ≤ ⌊d
2
⌋. So |S| = 2x + 2x+1 where 1 ≤ x ≤ ⌊d

2
⌋.
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Hence, w(H2
d − S) = 2x+1 + 1 and m(H2

d − S) =

d−(x+1)∑
t=1

2t = 2d−x − 2, where

1 ≤ x ≤ ⌊d
2
⌋. Then we have

r(H2
d) = max

1≤x≤ d
2

{(2x+1 + 1)− (2x + 2x+1)− (2d−x − 2)} = max
1≤x≤ d

2

{3− 2x − 2d−x}.

The function 3− 2x − 2d−x takes its maximum value at x =
d− 1

2
when d is odd.

Hence, if we substitute the maximum value in the function 3− 2x − 2d−x, then we
have

r(H2
d) = 3− 3× 2

d−1
2 . (4)

Case 2. If d is an even integer, in addition to Case 1, S must also contain the

vertex on the 0th level. So |S| = 2x+1 + 2x + 20 where 1 ≤ x ≤ ⌊d
2
⌋. Hence,

w(H2
d − S) = 2x+1 + 1 and m(H2

d − S) = 2x − 2, where 1 ≤ x ≤ ⌊d
2
⌋ .

r(H2
d) = max

1≤x≤ d
2

{(2x+1 + 1)− (2x+1 + 2x + 1)− (2x − 2)} = max
1≤x≤ d

2

{2− 2x+1}.

Since the function 2− 2x+1 is a decreasing function where 1 ≤ x ≤ d

2
, it takes its

maximum value at x =
d

2
when d is even. Hence, if we substitute the maximum

value in the function 2− 2x+1, then we have

r(H2
d) = 2− 2

d
2+1. (5)

The proof is completed by the equalities (4) and (5).

Definition 10. The composition G = G1[G2] of graphs G1 and G2 with disjoint
vertex sets V (G1) and V (G2) and edge sets E(G1) and E(G2) is the graph with
vertex set V (G1)× V (G2) and u = (u1, u2) adjacent to v = (v1, v2), whenever [u1
adj v1] or [u1 = v1 and u2 adj v2]. It is also called the graph lexicographic product.

Theorem 10. Let Hd1 and Hd2 be complete binary trees with depth d1 and d2,
respectively. Then

r(Hd1 [Hd2 ]) =



−1
9 (2d1+1 − 1)(2d2+1 − 1)− 1, if d1 and d2 are odd;

−2
9 (8− 5.2d1 − 5.2d2 + 2d1+d2+1), if d1 and d2 are even;

−2
9 (7− 5.2d1 − 2d2 + 2d1+d2+1), if d1 is odd and d2 is even;

−2
9 (7− 2d1 − 5.2d2 + 2d1+d2+1), if d1 is even and d2 is odd.

Proof. The proof is similar to that of Theorem 8.
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5. Rupture Degree of Cartesian Product of Some
Special Graphs

In the previous section, we give a general formula for the rupture degree of a
complete k-ary tree of depth d and in the next theorem we determine the rupture
degree of the Cartesian product of a complete graph with n vertices and a complete
k-ary tree with depth d.

Definition 11. The Cartesian product G = G1 × G2 of graphs G1 and G2 with
disjoint vertex sets V (G1) and V (G2) and edge sets E(G1) and E(G2) is the graph
with vertex set V (G1)× V (G2) and u = (u1, u2) adjacent with v = (v1, v2), when-
ever [u1 = v1 and u2 adj v2] or [u2 = v2 and u1 adj v1].

Theorem 11. Let Tk,d be a complete k-ary tree with depth d and Kn be a complete
graph with n vertices where k > n. Then

r(Kn × Tk,d) =


kd+2 − kd+1n− k2n+ 2n− k

k2 − 1
, if d is odd

kd+2 − kd+1n− k2n+ kn+ n− 1

k2 − 1
, if d is even.

Proof. Kn × Tk,d, the Cartesian product of Kn and Tk,d, contains n copies of Tk,d.

{1i, 2i, . . . , (k
d+1−1
k−1 )i} is used for labeling each Tk,d, where 1 ≤ i ≤ n, and the same

numbered vertices of each copies form a copy of complete graph Kn. Kn×Tk,d con-

tains nkd+1−1
k−1 vertices since there are k0n, k1n, . . . , kdn vertices on 0th, 1st, . . . , dth

levels, respectively. Let S be an arbitrary vertex cut of Kn × Tk,d and let |S| = x
be the number of vertices whose removal renders the graph disconnected.
Then we have two cases according to the cardinality of S:

Case 1. If 1 ≤ x ≤ nβ(Tk,d) − 1, then removing n vertices reveals at most k + 1

components and so removing x vertices reveals at most
kx

n
+ 1 components and

each component has at least n vertices, i.e. w((Kn × Tk,d) − S) ≤ kx

n
+ 1 and

m((Kn × Tk,d) − S) > n. Hence, r(Kn × Tk,d) < max
x

{
kx

n
+ 1− x− n

}
=

max
x

{
x

(
k

n
− 1

)
+ 1− n

}
. The function f(x) = x( kn − 1)+ 1−n is an increasing

function and takes its maximum value at x = nβ(Tk,d)− 1. Then

r(Kn × Tk,d) <


kd+2−kd+1n−k2n+2n−k−k3/n+2k2+k/n−2

k2−1 , if d is odd
kd+2−kd+1n−k2n+n+nk−k3/n+k2+k/n−2

k2−1 , if d is even.
(6)

Case 2. If nβ(Tk,d) ≤ x ≤ n
kd+1 − 1

k − 1
, then removing vertices renders the graph

having components at most as the independence number of Tk,d and so m((Kn ×

Tk,d) − S) ≥ n −
⌊
x− nβ(Tk,d)

α(Tk,d)

⌋
, w((Kn × Tk,d) − S) ≤ kd+2 − k

k2 − 1
when d is odd
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and w((Kn × Tk,d)− S) ≤ kd+2 − 1

k2 − 1
when d is even.

If d is odd, then we have r(Kn×Tk,d) ≤ max
x

{
kd+2 − k

k2 − 1
− x−

(
n− x− nβ(Tk,d)

α(Tk,d)

)}
.

The function f(x) =
kd+2 − k

k2 − 1
− x−

(
n− x− nβ(Tk,d)

α(Tk,d)

)
is a decreasing function

and takes its maximum value at x = nβ(Tk,d).

If d is even, then r(Kn×Tk,d) ≤ max
x

{
kd+2 − 1

k2 − 1
− x−

(
n− x− nβ(Tk,d)

α(Tk,d)

)}
. The

function f(x) =
kd+2 − 1

k2 − 1
− x−

(
n− x− nβ(Tk,d)

α(Tk,d)

)
is a decreasing function and

takes its maximum value at x = nβ(Tk,d). Thus, we get

r(Kn × Tk,d) ≤


kd+2 − kd+1n− k2n+ 2n− k

k2 − 1
, if d is odd

kd+2 − kd+1n− k2n+ kn+ n− 1

k2 − 1
, if d is even.

(7)

It is easy to see that there is a vertex cut S∗ of Kn × Tk,d such that

|S∗| = nβ(Tk,d), m((Kn × Tk,d) − S∗) = n and w((Kn × Tk,d) − S∗) =
kd+2 − k

k2 − 1

when d is odd and w((Kn × Tk,d)− S∗) =
kd+2 − 1

k2 − 1
when d is even. Therefore,

r(Kn × Tk,d) =


kd+2 − kd+1n− k2n+ 2n− k

k2 − 1
, if d is odd

kd+2 − kd+1n− k2n+ kn+ n− 1

k2 − 1
, if d is even.

(8)

By the definition of rupture degree if we take the maximum of (6), (7), and (8)
we get

r(Kn × Tk,d) =


kd+2 − kd+1n− k2n+ 2n− k

k2 − 1
, if d is odd

kd+2 − kd+1n− k2n+ kn+ n− 1

k2 − 1
, if d is even.

Next, we give the rupture degree of the Cartesian product of two special graphs.
Let Cn be a cycle graph of order n. A cycle graph with an even number of vertices
is called an even cycle. Similarly, a cycle graph with an odd number of vertices is
called an odd cycle. We know that if Cn is an even cycle graph of order n, then
r(Cn × K2) = −1 (see [11]). In the following theorem, we calculate the rupture
degree of the Cartesian product of an odd cycle graph Cn and a complete graph
K2.

Theorem 12. Let Cn be an odd cycle graph of order n. Then r(Cn ×K2) = −3.
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Proof. Let S be an arbitrary vertex cut of Cn ×K2 and set |S| = x. If 3 ≤ x ≤ n,

then w((Cn×K2)−S) ≤ x−1. Therefore, we have m((Cn×K2)−S) ≥
⌈
2n− x

x− 1

⌉
.

Hence,

w((Cn ×K2)− S)− |S| −m((Cn ×K2)− S) ≤ x− 1− x−
⌈
2n− x

x− 1

⌉
≤ −1−

⌈
2n− n

n− 1

⌉
≤ −3.

If x ≥ n+ 1, then w((Cn ×K2)− S) ≤ 2n− x and m((Cn ×K2)− S) ≥ 1. Then

w((Cn ×K2)− S)− |S| −m((Cn ×K2)− S) ≤ 2n− x− x− 1

≤ 2n− 2(n+ 1)− 1 ≤ −3.

By the choice of S, we have

r(Cn ×K2) ≤ −3. (9)

It is easy to see that there is a vertex cut S∗ of Cn×K2 such that |S∗| = n+1,
w((Cn ×K2)− S∗) = n− 1 and m((Cn ×K2)− S∗) = 1. Then from the definition
of rupture degree we have

r(Cn ×K2) ≥ w((Cn ×K2)− S∗)− |S∗| −m((Cn ×K2)− S∗)

= n− 1− (n+ 1)− 1 = −3.

Hence,

r(Cn ×K2) ≥ −3. (10)

The proof is completed by (9) and (10).

Now we consider the graph Pn ×K2 for n ≥ 2.

Theorem 13. Let n ≥ 2 be an integer and Pn be a path graph of order n. Then
r(Pn ×K2) = −1.

Proof. Let S be an arbitrary vertex cut of Pn ×K2 and set |S| = x.

If x ≤ n, then w((Pn ×K2)− S) ≤ x. Therefore, we have

m((Pn ×K2)− S) ≥
⌈
2n− x

x

⌉
. Hence,

w((Pn ×K2)− S)− |S| −m((Pn ×K2)− S) ≤ x− x−
⌈
2n− x

x

⌉
≤ −

⌈
2n− x

n

⌉
≤ −1.

If x ≥ n, then w((Pn ×K2)− S) ≤ 2n− x and m((Pn ×K2)− S) ≥ 1. So

w((Pn ×K2)− S)− |S| −m((Pn ×K2)− S) ≤ 2n− x− x− 1

≤ 2n− 2n− 1 ≤ −1.
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By the choice of S, we have

r(Pn ×K2) ≤ −1. (11)

It is easy to see that there is a vertex cut S∗ of Pn × K2 such that |S∗| = n,
w((Pn ×K2)− S∗) = n and m((Pn ×K2)− S∗) = 1. Then

r(Pn ×K2) ≥ w((Pn ×K2)− S∗)− |S∗| −m((Pn ×K2)− S∗)

= n− n− 1 = −1.

Hence,

r(Pn ×K2) ≥ −1. (12)

The proof is completed by (11) and (12).

Finally, we give an upper bound for the rupture degree of the Cartesian product
of an even cycle graph Cn of order n and a complete graph Kp of order p.

Theorem 14. Let n be an even integer and p be an integer. For n ≥ 4 and p ≥ 2,

r(Cn ×Kp) ≤ −2

√
n

2
p (p− 2) +

p

2
.

Proof. Let S be a vertex cut and set |S| = x. If we remove |S| = x vertices, then

the remaining graph has at most
2x

p
components. Then the remaining connected

components has at least m((Cn ×Kp)− S) ≥ p (np− x)

2x
vertices. Therefore,

w((Cn ×Kp)− S)− |S| −m((Cn ×Kp)− S) ≤ 2x

p
− x− p (np− x)

2x

=
4x2 − 2x2p− p3n+ p2x

2xp
.

Let f(x) =
4x2 − 2x2p− p3n+ p2x

2xp
. f has a maximum value at x = p

√√√√ n

2
p

p− 2
and

so

r(Cn ×Kp) ≤ −2

√
n

2
p (p− 2) +

p

2
.

6. Conclusion

In a communication network, the vulnerability measures are essential to guide
the designer in choosing an appropriate topology. They measure the stability of the
network to disruption of operation after the failure of certain stations or commu-
nication links. In the graph theory, many parameters measuring the vulnerability
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of communication networks have been defined. The rupture degree of a graph is a
measure of vulnerability that deals with the number of elements that are not func-
tioning, the number of remaining connected subnetworks and the size of a largest
remaining group within which mutual communication can still occur in a disrupted
network. In this paper, we investigate the rupture degree of complete k-ary trees,
some resultant graphs obtained by graph operations such as Cartesian product,
composition and power. We also give some bounds for rupture degree that are
better than the results given in [10].
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