
ON-LINE PATH PLANNING

FOR MOBILE ROBOTS IN DYNAMIC

ENVIRONMENTS

P. Raja, S. Pugazhenthi∗

Abstract: Motion planning of mobile robots is a complex problem. The com-
plexity further increases when it comes to path planning in dynamic environments.
This paper presents an algorithm for on-line path planning of mobile robots in un-
known environments with moving obstacles. A mathematical model is established
which considers all the current on-line information of robot as well as nearing ob-
stacles. Particle Swarm Optimization technique is used to optimize the velocity
parameters of the robot, to arrive at the shortest collision-free trajectory, satisfy-
ing dynamic constraints. Simulation results show that the proposed algorithm is
computationally efficient and effective.

Key words: Mobile robot, on-line path planning, dynamic constraints and particle
swarm optimization.

Received: March 15, 2011
Revised and accepted: February 20, 2012

1. Introduction

Obstacle avoidance is a basic requirement in path planning of mobile robots [1].
Path planning is to determine a collision-free path from a starting point to a goal
point, optimizing a performance criterion such as distance, time or energy. Based
on the availability of information about environment, there are two types of path
planners, namely off-line and on-line. In off-line path planning, complete informa-
tion about trajectory of obstacles is known in advance. Grid [2-4], meadow map
[5], Voronoi diagram [6], visibility graph [7] etc., are some of the techniques used
for off-line path planning. For environments where obstacle motions cannot be
predicted in advance, a different approach is needed.

In recent times, on-line path planning has received more attention from re-
searchers [8]. For on-line path planning, complete information about environment
is not available to robot in advance. The robot gets information through sensors, as

∗P. Raja, S. Pugazhenthi
School of Mechanical Engineering, SASTRA University, Thanjavur – 613 401, Tamilnadu, India,
E-mail: raja@mech.sastra.edu, pugazhenthi@mech.sastra.edu

c⃝ICS AS CR 2012 67

Neural Network World 1/12, 67-83

it moves through the environment. Artificial potential field concept [9] proposed by
Khatib is a popular on-line path planning approach. However, this classic approach
suffers from the drawback of robot getting trapped. Also, this approach deals with
limited information of the local scene, referring only to the distance between robot
and obstacles, ignoring their relative velocities.

Another widely used on-line path planning approach is based on collision cone
concept [10, 11]. Collision of robot can be avoided if the relative velocity of the
robot with respect to an obstacle falls outside the collision cone. Fiorini and Shiller
[12] presented a velocity obstacle approach, which is similar to the collision cone
approach. It consists of selecting avoidance maneuvers to avoid static and mov-
ing obstacles in the velocity space by using the basic heuristic strategy designed
for prioritized objectives such as avoiding collisions, reaching the goal, maximiz-
ing speed or achieving trajectories with desired topologies. However, finding the
collision-free velocity is fully dependent on the basic heuristic strategy without any
mathematical modeling of environment.

Today, there are many advanced evolutionary techniques such as Genetic Algo-
rithm, Ant Colony Optimization and Particle Swarm Optimization (PSO). PSO is
an evolutionary computation technique inspired by social behavior of bird flocking
or fish schooling. Compared to other evolutionary techniques, PSO is easier to
implement, and there are fewer parameters to be adjusted [13].

Lu and Gong [14] proposed an on-line path planning algorithm using PSO
technique for unknown environments. Their algorithm is entirely based on distance
information of the environment without any mathematical model featuring velocity
of nearing obstacle. Min et al. [15] used a mathematical model through collision
cone approach and PSO technique for on-line path planning. In order to reduce
computational burden, they neglected instantaneous changes in obstacle velocities
in the motion model. Therefore, their algorithm is applicable to sparse environment
containing obstacles with slower velocities. Further, PSO, in combination with
binary coded genetic operators such as crossover and mutation, is used as a tool
to find optimum collision-free direction without satisfying dynamic constraints.
However, recent studies show that real coded evolutionary algorithms such as PSO
perform better than the partially binary coded [4].

This paper presents an on-line path planning algorithm for mobile robots to
plan a sequence of smooth collision-free motions. The algorithm employs a mathe-
matical model based on information such as position and velocity of robot as well
as obstacles. At every instant, velocity of robot is optimized using PSO by consid-
ering the shortest Euclidean distance to target and maximum achievable velocity
of robot satisfying both kinematic and dynamic constraints.

The remaining part of the paper is organized as follows: Section 2 describes
the proposed algorithm. Section 3 illustrates the functioning of the algorithm
through simulation results. Section 4 presents the comparative performance of the
algorithm, and conclusions are given in Section 5.

2. Proposed Algorithm

This section explains the internal description of the algorithm such as modeling of
environment, establishment of mathematical model, dynamic constraints of robot,

68

Raja P., Pugazhenthi S.: On-line path planning for mobile robots in dynamic. . .

collision-avoidance for multiple obstacles and implementation of PSO to determine
the optimal velocity of robot at every instant.

2.1 Modeling of dynamic environment

Robot is assumed to be a point which can move at a prescribed velocity. The
obstacles may be of any shape, static or dynamic, which can move with arbitrary
velocities with or without rotation about their own axes. Obstacles are modeled by
enclosing circles [10-12, 15-19], amplified by a value so as to take care of physical
dimensions of the robot and a safe maneuverable distance from the obstacles with-
out collision. Approximating irregularly shaped obstacles to circles is not a severe
limitation since general polygons can be represented by a collection of circles [10,
20, 21]. It is assumed that robot travels towards its target and gets information of
nearing obstacles’ instantaneous position and velocity on-line, by refreshing sensory
data.

2.2 Mathematical model for collision-avoidance

Fig. 1 shows the motion model for collision-avoidance, in which the point R repre-
sents robot and the point O represents the centre of the circle enclosing a moving
obstacle. A coordinate frame XY is attached at R with its X axis along the line
joining the current position of the robot R and the current position of the target
T. Let α be the angle made by the velocity of robot VR with respect to the X
axis and β be the angle made by the velocity of obstacle VO with respect to the X
axis of the same frame. Relative velocity between the robot and the obstacle VOR

makes an angle γ with the line joining R and O. Two extreme tangents (RP and
RQ respectively) are drawn from the robot to the obstacle forming a collision cone
with µ as semi collision cone angle. For the mobile robot to avoid collision with
obstacle, the relative velocity VOR should lie outside the collision cone, i.e.,

µ ≤ γ ≤ 2π − µ, (1)

where

γ = tan−1

(
VORn

VORa

)
= tan−1

(
VR sin(α− θ)− VO sin(β − θ)

VR cos(α− θ)− VO cos(β − θ)

)
. (2)

VORa and VORn are the relative velocities along and normal to the line joining
R and O respectively while θ being the angle between X axis and the line joining
R and O.

For tan function as in (2), the first derivative can be written as:

dγ

df
=

1

1 + f2
where f =

(
VR sin(α− θ)− VO sin(β − θ)

VR cos(α− θ)− VO cos(β − θ)

)
. (3)

Simplifying 1
1+f2 yields:

1

1 + f2
=

k2

V 2
R + V 2

O − 2VRVO cos [(α− θ)− (β − θ)]
where

k2 = [VR cos (α− θ)− VO cos (β − θ)]
2
. (4)

69

Neural Network World 1/12, 67-83

Fig. 1 Model for collision-avoidance.

Equation (3) can also be written as:

dγ =

[
1

1 + f2

]
df. (5)

We know that γ is a function of VR and VO, i.e., γ = tan−1f (VR, α, V O, β) . By
total differentiation, df can be written as:

df =
∂f

∂VR
dVR +

∂f

∂α
dα+

∂f

∂VO
dVO +

∂f

∂β
dβ, (6)

where
∂f

∂VR
dVR =

VO sin (β − α)

k2
dVR (7)

∂f

∂α
dα =

VR [VR − VO cos (α− β)]

k2
dα (8)

∂f

∂VO
dVO =

VR sin (α− β)

k2
dVO (9)

∂f

∂β
dβ =

V 2
O − VRVO cos (α− β)

k2
dβ. (10)

Substituting (7-10) in (6), we get:

df =
VO sin (β − α) dVR + VR [VR − VO cos (α− β)] dα

k2
+

+
VR sin(α− β)dVO + VO [VO − VR cos (α− β)] dβ

k2
(11)

70

Raja P., Pugazhenthi S.: On-line path planning for mobile robots in dynamic. . .

Substituting (4) and (11), in (5) and further simplifying:

∆γ =
VO sin (β − α)∆VR + VR [VR − VO cos (α− β)]∆α

V 2
R + V 2

O − 2VRVO cos (α− β)
+

+
VR sin (α− β)∆VO + VO [VO − VR cos (α− β)]∆β

V 2
R + V 2

O − 2VRVO cos (α− β)
(12)

In order to reduce the complexity of the above expression, the relationship between
VR and VO is modeled in Fig. 2.

Fig. 2 Relationship between VR and VO.

From Fig. 2, using sine theorem,

VO sin (β − α) = VOR sinφ, (13)

VR sin(α− β) = −VOR sin [180− (β − α+ φ)] (14)

where φ is the angle between VR and VOR.

Similarly, through geometrical relations:

VR − VO cos (α− β) = −VOR cosφ (15)

VO − VR cos (α− β) = VOR sin
[
φ− π

2
− (β − α)

]
(16)

V 2
R + V 2

O − 2VRVO cos (α− β) = V 2
OR. (17)

71

Neural Network World 1/12, 67-83

Substituting (13-17) in (12):

∆γ =
1

VOR
[sinφ∆VR − VR cosφ∆α− sin [180− (β − α+ φ)]∆VO+

+VO

(
sin

[
φ− π

2
− (β − α)

])
∆β

]
. (18)

The above expression establishes ∆γ as a function of velocity parameters of robot as
well as obstacle, namely (V R, α) and (V O, β). Among these, only the parameters
of robot (∆V R,∆α) can be adjusted. Obstacle velocity parameters (∆V O,∆β)
cannot be adjusted but can be measured using sensors. Therefore, for the robot
to move from its current location to next location, γnew= γcurrent+∆γ subject to
satisfying (1). However, there can be numerous combinations of (V R, α) which
result in VOR lying outside the collision zone.

2.3 Dynamic constraints of robot

In order to arrive at the governing equations of velocity and acceleration bounds, a
differential drive nonholonomic mobile robot is considered, as shown in Fig. 3(a).
The two rear wheels are driven by two independent actuators and the front one is
a self-aligning wheel. Let VR and ωR be the linear and angular velocities of the
center point R of the rear axle. Let ψR be the heading angle of the robot with
respect to the global frame XY. The posture of the robot is defined by the triplet
(XR, YR, ψR)

T . The velocity components of robot [22-24] are given by

X ′
R = VR cosψR, Y ′

R = VR sinψR, ψ
′
R = ωR, (19)

where prime (superscript) refers to derivative with respect to time t.

(a) Nonholonomic differential drive robot; (b) Motion along a curved path.

Fig. 3 Model for kinematic and dynamic constraints.

72

Raja P., Pugazhenthi S.: On-line path planning for mobile robots in dynamic. . .

Fig. 3(b) shows motion of the robot along a curved path. For a plane curve
expressed parametrically in terms of X(t)and Y (t), the signed curvature (κ) is
given by

κ =
X ′

RY
′′
R −X ′′

RY
′
R

(X ′2 + Y ′2)
3
2

. (20)

The translation and rotation velocities (VR&ωR) are related to κ as κ = ωR

VR
. A

local coordinate frame is attached to the robot body with XB axis coinciding with
the vector tangent to the curved path at R, as shown in Fig. 3(b). Let FXB , FY B

and FZB be the forces acting along XB , YB and ZB directions at R. The motion
of the robot along the path must obey Newtonian dynamics, i.e.

FXB = maR, FY B = m
V 2
R

r
= mκV 2

R, FZB = mg, (21)

where m is the mass of the robot, aR is the acceleration of the robot, r is the radius
of path followed by the robot and g is the acceleration due to gravity. For the robot
to avoid sliding, √

F 2
XB + F 2

Y B ≤ µfFZB , (22)

where µf is the coefficient of friction between the wheels and the floor.

The bound on the admissible acceleration aR, is obtained from (21) and (22).
Also considering the maximum torque or force Fmax applied on the wheels, the
admissible acceleration [25] is written as

aR ≤ min

(√
µ2
fg

2 − κ2V 4
R,
Fmax

m

)
. (23)

The bound on the admissible velocity VR, is obtained from the requirement that√
µ2
fg

2 − κ2V 4
R in (23) should be non-negative. Hence,

VR ≤ min

(√
µfg

κ
, VRmax

)
. (24)

The bound on the angular acceleration and angular velocity are constrained by
actuator specifications as given below:

αR ≤ αRmax and ωR ≤ ωRmax. (25)

2.4 Collision-avoidance for multiple obstacles

Mathematical model for collision-avoidance of a single obstacle was discussed in
Section 2.2. In case of environment with multiple obstacles, they can be negotiated
according to priority such that the most imminent collision is avoided first. At the
same time, it is also necessary to consider other obstacles which may necessitate
the robot to deviate further away.

73

Neural Network World 1/12, 67-83

2.4.1 Identification of the most imminent obstacle

The most imminent obstacle is the one which has the smallest collision distance
index [17], as given below:

δ =
dR,OJ

VJTS
, J = 1, 2, . . . , NO, (26)

where dR,OJ
is the Euclidean distance between the robot R and the J th obstacle,

VJ is the velocity of J th obstacle and TS is sampling rate or refreshment time.

2.4.2 Effect of constraining obstacles

In an environment with multiple obstacles it is not enough to negotiate the most
imminent obstacle alone, as it may not be the most constraining obstacle. If a small
or slow moving obstacle is close to the robot and a much larger one is further away,
it may be that the robot has to deviate more for the farther obstacle. Therefore,
it is necessary to identify constraining obstacles and negotiate the most imminent
one taking into account further deviation required, if any. An obstacle may be
considered to be constraining obstacle if its collision cone overlaps with that of
the most imminent obstacle. One such case is presented in Fig. 4. The center of
the most imminent obstacle is represented by O1 and the constraining obstacle by
O2. There may also be more than one constraining obstacle in a given situation.
For the mobile robot to avoid collision with the most imminent obstacle as well as
to take required deviation considering constraining obstacles, the relative velocity
VO1R should lie outside the extreme tangents of all collision cones which overlap

Fig. 4 Negotiation of the most imminent obstacle considering the effect of
constraining obstacle.

74

Raja P., Pugazhenthi S.: On-line path planning for mobile robots in dynamic. . .

with that of the most imminent one. Hence, (1) can be modified as:

max(µ,Ω1) ≤ γ ≤ min(2π − µ, 2π − Ω2), (27)

where Ω1 and Ω2 are the angles made by the extreme tangents of the overlapping
collision cones with respect to the line joining robot R and the center of the most
imminent obstacle O1.

2.5 Working of the proposed on-line algorithm

For the mobile robot to move towards its target, at every instant the algorithm
receives information about its environment by refreshing sensory data. Then the
algorithm checks for the existence of any nearing obstacle. If there is no obstacle,
the robot travels along the straight line towards the target satisfying kinematic
and dynamic constraints. In the event of any obstacle being present, the algorithm
checks whether the relative velocity between the robot and the obstacle VOR lies
within the collision cone. In case of multiple obstacles, collision distance index δ is
computed to identify the most imminent threat. Also, the algorithm checks for the
influence of constraining obstacles, as discussed in Section 2.4.2. The overlapping
collision cones of obstacles result in a collision zone. In order to steer the robot out
of the collision zone, the algorithm generates numerous collision-free combinations
of VR and α randomly, however satisfying the dynamic constraints. PSO technique
is used to quickly select the best combination to have the shortest collision-free
trajectory of the robot. This is demonstrated by means of a flowchart, as shown
in Fig. 5.

2.5.1 Implementation of particle swarm optimization

The velocity of the robot at any instant can be within the range between 0 m/s
and the maximum (specified). Incremental velocity ∆VR at the next instant can
be such that the velocity and acceleration constraints VR, aR, ωR and αR as in
(23-25) are not violated. Similarly, the angle α, made by VR with the X axis, as
shown in Fig. 1, can lie between 0o and 360o. Different combinations of VR and
α are obtained by random pairing. For the first iteration, the combinations are
randomly chosen, and for every combination ∆γ is determined as per (18). Then,
γnew= γcurrent+∆γ is verified for satisfying (27). Such combinations of VR and α
that result in γnew satisfying (23-25) & (27) alone are considered as valid particles.
Fifty such valid particles constitute the first generation. Out of these fifty particles,
one that has the least Euclidean distance between the new position of the robot
and the target and having the maximum possible velocity of the robot is identified
as ‘pbest’. The same is repeated for 100 iterations.

For the subsequent iterations, particles are updated by using the following gov-
erning equations:

v [] = c1(rand ())(pbest []− present []) + c2(rand ())(gbest []− present []) (28)

present [] = present [] + v [] (29)

75

Neural Network World 1/12, 67-83

Fig. 5 Flowchart of the PSO implementation.
76

Raja P., Pugazhenthi S.: On-line path planning for mobile robots in dynamic. . .

where v [] is particle velocity, present [] is current particle (solution), rand () is ran-
dom number between 0 and 1, ‘gbest[]’ is the best particle identified by comparing
‘pbest[]’ of every iteration and c1 & c2 are learning factors. For quick convergence
c1 and c2 are tuned to be 2 based on sample trials. Thus, at the end of 100 iterations
the algorithm offers an optimal set of VR and α which has the shortest Euclidean
distance to target and the maximum possible VR. Until the robot reaches its target,
sensory data are refreshed at the prescribed sampling rate. The last maneuvered
point is taken as the new start point and using the algorithm described earlier, the
incremental motion of robot is planned. The procedure is repeated till the robot
reaches its target.

3. Simulation Results

In order to study the performance of the proposed algorithm, simulation is per-
formed in MATLAB 7.0 on an Intel(R) Core(TM) 2 to 2.4 GHz processor. Velocity
and acceleration constraints of mobile robot are vRmax=0.7 m/s, aRmax=0.5 m/s2,
ωRmax=2 rad/s and αRmax=2 rad/s2. Other parameters used in the simulation are
the mass of the robot including its payload, m=10 kg and the coefficient of friction
between the wheels of the robot and the floor, µf = 0.3. The obstacle detection
range of the sensor is assumed to be 150 m. The sampling time, TS is 50 ms.

3.1 Illustration of collision-avoidance

In order to illustrate the functioning of the algorithm, an environment consisting
of two static obstacles and a moving obstacle is considered, as shown in Fig. 6.
Static obstacles are represented by dark shading and moving obstacles by hatching.
Even though the mobile robot is modeled as a point and the obstacles are enlarged,
for showing the trajectory of the robot it is represented by small circles. R and
T are the start and target locations of the robot and O is the start location of

Fig. 6 Illustrative environment.

77

Neural Network World 1/12, 67-83

the moving obstacle. The path of the moving obstacle is assumed to be along a
circular path. The velocity of the obstacle is considered to be 0.5 m/s, which is
maintained during cruise and at the start and end, the velocity is governed by
the acceleration/deceleration of 0.3 m/s2. Fig. 7 explains different situations at
different instances along the trajectory of the robot from its start to the target.

Fig. 7(a) demonstrates the negotiation of the first static obstacle and the robot
moves tangential to the obstacle towards its target. The negotiation of moving
obstacle is demonstrated in Fig. 7(b) and 7(c). At the instant ‘A’, the algorithm
predicts possible collision as the relative velocity VOR lies within collision cone,
as shown in Fig. 7(b). The algorithm steers the robot keeping VOR outside the
collision cone, as shown in Fig. 7(c). The robot is driven with a slower velocity
till the instant ‘B’ by which time the obstacle has crossed the path of the robot.

(a) Negotiation of static obstacle; (b) Prediction of collision with a moving obstacle

(c) Steering out of the collision cone; (d) Reaching the target

Fig. 7 Illustration of collision-avoidance.

78

Raja P., Pugazhenthi S.: On-line path planning for mobile robots in dynamic. . .

Subsequently, the second static obstacle is negotiated to reach the target, as shown
in Fig. 7(d).

In order to illustrate the effectiveness of the algorithm in negotiating multiple
moving obstacles, an environment having three moving obstacles O1, O2 and O3

with velocities of 0.3 m/s, 1.2 m/s and 0.1 m/s respectively is considered, as shown
in Fig. 8. Obstacles O1 and O2 pose the threat of collision as their relative velocities
VO1R and VO2R lie within their collision cones respectively (Fig. 8(a)). The collision
distance indices of the obstacles O1 and O2 are computed as δ1 = 6 and δ2 = 1.66.
Therefore, the algorithm identifies O2 as the most imminent threat. Further, the
algorithm also identifies O3 as a constraining obstacle as its collision cone overlaps
with that of O2. The algorithm negotiates obstacle O2 first steering VO2R not just
outside its collision cone but outside the extreme tangents of overlapping collision
cones of O2 and O3, ahead of O1, as shown in Fig. 8(b). Fig. 8(c) shows the
negotiation of obstacle O1 by steering VO1R outside its collision cone.

(a) (b) (c)

Fig. 8 Negotiation of multiple moving obstacles.

(a) (b) (c)

Fig. 9 Trajectory of robot escaping from U-trap situation.

79

Neural Network World 1/12, 67-83

3.2 Illustration of trap avoidance

Fig. 9 presents a trap situation where multiple moving obstacles form a trap by
hindering the robot’s path to reach its target. Fig. 9(a) shows the situation where
the obstacles are moving and robot is directed towards its target. Robot is trapped
at the instant ‘A’ as the moving obstacles become stagnant and form a U-shaped
trap situation, as shown in Fig. 9(b). At this instant, the algorithm generates a
path tangential to the outermost collision cone. After following the contour till
the instant ‘B’, the algorithm drives the robot towards its target, as shown in Fig.
9(c). Thus, by the inherent nature of the proposed algorithm, it does not require
any special trap recovery procedure like the ones employed in [26-28].

4. Comparative Performance of the Algorithm

The performance of the proposed algorithm is studied using four different simu-
lated environments by comparing with that of Min et al. [15]. Fig. 10 shows
the four simulated dynamic environments. The first two environments are sparse
and the other two are cluttered environments. Lines with arrowheads show the
path of moving obstacles. The corresponding obstacle velocities are written along-
side. Simple curvilinear paths for the moving obstacles are designed for the first
two sparse environments, as shown in Fig. 10(a) and 10(b). More cluttered en-
vironments are presented in Fig. 10(c) and 10(d), with obstacles having different
velocities when they move through a series of linear and curvilinear path segments.
The optimal path generated by the proposed algorithm as well as that of Min et
al. are shown in the figures where S and T are the start and target points of the
mobile robot.

Envi- Improve- Computation time for Improve-
ron- Path length (m) ment in each instant of the ment in
ment % robot (ms) %

Proposed
on-line

Min et al.
[15]
on-line

Proposed
on-line

Min et al.
[15]
on-line

1 413 431 4.18 12 52 76.92
2 358 388 7.73 16 64 75
3 229 316 27.53 24 89 73.03
4 340 505 32.67 33 119 72.26

Tab. I Comparison of results with Min et al. algorithm.

Tab. I compares the results of the proposed algorithm for the above dynamic
environments with that of Min et al. algorithm. The data presented are of the
result of an average of 100 trials. The algorithm achieves a minimum of 4.18%
improvement in path length for sparse dynamic environments while a maximum
of 32.67% improvement in path length for the cluttered environments over Min et

80

Raja P., Pugazhenthi S.: On-line path planning for mobile robots in dynamic. . .

(a) Environment 1 (b) Environment 2

(c) Environment 3 (d) Environment 4

Fig. 10 Comparison of path with Min et al. algorithm.

al. algorithm. This improvement can be attributed to the use of a mathematical
model, which considers the complete environment information such as velocity
parameters of both robot and nearing obstacles, whereas the model used by Min et
al. neglected the instantaneous changes in obstacle velocity and robot dynamics.
Further, due to real encoding and elimination of invalid particles from population
[29-31], an improvement of over 70% in computation time per instant is achieved.

5. Conclusions

An effective on-line path planning algorithm for mobile robots in dynamic environ-
ments has been developed. A mathematical model is established which considers all
the current on-line information of robot as well as nearing obstacles. The proposed
algorithm combines a mathematical model for collision-avoidance and evolutionary

81

Neural Network World 1/12, 67-83

PSO technique to plan an optimal collision-free path satisfying both kinematic and
dynamic constraints of robot. The effect of constraining obstacles is also taken
into consideration while negotiating the most imminent obstacle. The algorithm
does not require any separate recovery mode approach to escape from trap situ-
ations. Simulation results show that the proposed algorithm is computationally
efficient and effective in reaching the target along the shortest possible path. The
algorithm is also applicable to environments having moving targets. This work can
also further be extended to multi-robot applications.

References

[1] Latombe J. C.: Robot motion planning, Boston, Kluwer Academic Publisher, 1991.

[2] Payton D. W., Rosenblatt J. K., Keirsey D. M.: Grid-based mapping for autonomous mobile
robot, Robotics and Autonomous Systems, 11, 1, 1993, pp. 13-21.

[3] Likhachev M., Ferguson D., Gordon G., Stentz A., Thrun S.: Anytime Dynamic A*: An Any-
time, Replanning Algorithm, Proc. 2005 Int. Conf. on Automated Planning and Scheduling,
2005, pp. 262-271.

[4] Raja P., Pugazhenthi S.: Path planning for a mobile robot using real coded genetic algorithm,
International Journal of Assistive Robotics and Systems, 10, 1, 2009, pp. 27-39.

[5] Arkin R. C.: Navigational path planning for a vision-based mobile robot, Robotica, 7, 1989,
pp. 49-63.

[6] Dunlaing C. O., Yap C. K.: A retraction method for planning the motion of a disc, Journal
of Algorithms, 6, 1982, pp. 104-111.

[7] Mitchell H.: An algorithmic approach to some problems in terrain navigation, Artificial
Intelligence, 37, 1988, pp. 171-201.

[8] Masehian E., Katebi Y.: Robot motion planning in dynamic environments with moving
obstacles and target, International Journal of Mechanical Systems Science and Engineering,
2007, pp. 20-25.

[9] Khatib O.: Real-time obstacle avoidance for manipulators and mobile robots, International
Journal of Robotics Research, 5, 1, 1986, pp. 90-98.

[10] Chakravarthy A., Ghose D.: Obstacle avoidance in a dynamic environment: a collision
cone approach, IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and
Humans, 28, 5, 1998, pp. 562-574.

[11] Qu Z., Wang J., Plaisted C. E.: A new analytical solution to mobile robot trajectory gener-
ation in the presence of moving obstacles, IEEE Transactions on Robotics, 20, 6, 2004, pp.
978-993.

[12] Fiorini P., Shiller Z.: Motion planning in dynamic environments using velocity obstacles,
International Journal of Robotics Research, 17, 7, 1998, pp. 760-772.

[13] Kennedy J., Eberhart R. C.: Particle swarm optimization, Proc. IEEE Int. Conf. on Neural
Networks, Perth, Australia, 1995, pp. 1942-1948.

[14] Lu L., Gong D.: Robot path planning in unknown environments using particle swarm opti-
mization, Proc. 4th Int. Conf. on Natural Computation, Jinan, October 2008, pp. 422-426.

[15] Min H. Q., Zhu J. H., Zheng X. J.: Obstacle Avoidance with Multi-Objective Optimization by
PSO in Dynamic Environment, Proc. IEEE Int. Conf. on Machine Learning and Cybernetics,
Guangzhou, August 2005, pp. 2950-2956.

[16] Yu Z., Meng G., Liu H., Deng X., Liu J., Wu Q., Liu Y.: Dynamic obstacle avoidance
in polar coordinates for mobile robot based on laser radar, Proc. 2008 IEEE Pacific Asia
workshop on computational intelligence and industrial applications, Wuhan, China, PACIIA
2008, pp. 334-338.

82

Raja P., Pugazhenthi S.: On-line path planning for mobile robots in dynamic. . .

[17] Luh G. C., Liu W. W.: Motion planning for mobile robots in dynamic environments using a
potential field immune network, IMechE Journal of Systems and Control Engineering, 221,
2007, pp. 1033-1046.

[18] Hui-zhong Z., Shu-xin D., Tie-jun W.: On-line real-time path planning of mobile robots in
dynamic uncertain environment, Journal of Zhejiang University SCIENCE A, 7, 4, 2006, pp.
516-524.

[19] Qingquan W., Bi Z.: Real-time globally optimized path planning in a dynamic environment,
Proc. Second Int. Conf. on Intelligent Computation Technology and Automation, Hunan,
China, 2009, pp. 261-264.

[20] O’Rourke J., Badler N.: Decomposition of three-dimensional objects into spheres, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 1, 3, 1979, pp. 295-305.

[21] Chazelle B.: Approximation and decomposition of shapes, Advances in Robotics Vol I: Al-
gorithmic and Geometric Aspects of Robotics, Schwartz J. T. and Yap C. K., Eds. Hillsdale,
NJ: Lawrence Erlbaum, 1987, pp. 145-185.

[22] Benayad M. A., Campion G., Wertz V., Achhab M. E.: Steering a mobile robot: selection
of a velocity profile satisfying dynamical constraints, Asian Journal of Control, 2, 4, 2000,
pp. 219-229.

[23] Samuel S., Keerthi S. S.: Numerical determination of optimal non-holonomic paths in the
presence of obstacles, Proc. IEEE Int. Conf. on Robotics and Automation, Georgia, 1993,
pp. 826-831.

[24] Soueres P., Boissonnat J. D.: Robot motion planning and control, New York, Springer, 1998.

[25] Ge S. S., Lai X. C., Mamun A. A.: Sensor-based path planning for nonholonomic mobile
robots subject to dynamic constraints, Robotics and Autonomous Systems, 55, 2007, pp.
513-526.

[26] Ge S. S., Cui Y. J.: Dynamic motion planning for mobile robots using potential field method,
International Journal of Autonomous Robots, 13, 2002, pp. 207-222.

[27] Borenstein J., Koren Y.: Real-time obstacle avoidance for fast mobile robots, IEEE Trans-
actions on Systems, Man and Cybernetics, 19, 5, 1989, pp. 1179-1187.

[28] Luh G. C., Liu W. W.: An immunological approach to mobile robot reactive navigation,
International Journal of Applied Soft Computing, 8, 1, 2008, pp. 30-45.

[29] Raja P., Pugazhenthi S.: Path planning for mobile robots in dynamic environments using
particle swarm optimization, Proc. IEEE Int. Conf. on Advances in Recent Technologies in
Communication and Computing (ARTCom 2009), Kottayam, India, 2009, pp. 401-405.

[30] Raja P., Pugazhenthi S.: Path planning for a mobile robot in dynamic environments, Inter-
national Journal of the Physical Sciences, 6, 20, 2011, pp. 4721-4731.

[31] Raja P., Pugazhenthi S.: Optimal path planning of mobile robots: A review. Accepted for
publication, International Journal of the Physical Sciences. 2012.

83

	TIRAZ6_12
	obal6_12
	editorial
	boost
	frolov
	kirlangic
	mautner
	raja
	inst6_12
	obsah6_12

