PERCEPTRON NETWORK FOR RBF LOVERS

Josef Bostik, Jaromir Kukal, Miroslav Virius*

Abstract: There are two basic types of artificial neural networks: Multi-Layer
Perceptron (MLP) and Radial Basis Function network (RBF). The first type (MLP)
consists of one type of neuron, which can be decomposed into a linear and sigmoid
part. The second type (RBF) consists of two types of neurons: radial and linear
ones. The radial basis function is analyzed and then used for decomposition of RBF
network. The resulting Perceptron Radial Basis Function Network (PRBF) consists
of two types of neurons: linear and extended sigmoid ones. Any RBF network can
be directly converted to a four-layer PRBF network while any MLP network with
three layers can be approximated by a five-layer PRBF network. The new PRBF
network is then a generalization of MLP and RBF network abilities. Learning
strategies are also discussed. The new type of PRBF network and its learning via
repeated local optimization is demonstrated on a numerical example together with
RBF and MLP for comparison. This paper is organized as follows: Basic properties
of MLP and RBF neurons are summarized in the first two chapters. The third
chapter includes novel relationship between sigmoidal and radial functions, which
is useful for RBF decomposition and generalization. Description of new PRBF
network, together with its properties, is subject of the fourth chapter. Numerical
experiments with a PRBF and their requests are given in the last chapters.
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1. MLP Preliminaries

General Multi-Layer Perceptron (MLP) [1] network consists of a single input layer,
at least one hidden layer and a single output layer. The signal processing in every
hidden and output neuron is described by formula y = f (3" _, wra),

where n € N is the number of neuron inputs,

z, w, € R are k' input value and its weight,

y € [a; b] is the neuron output, xg = 1

and f: R — [a;b] is a non-decreasing continuous function satisfying:
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This non-linear function f is called sigmoid function. The other properties of
sigmoid function can be easily derived:

« £(0)=(a+b)/2
e fis convex on Ry

e lim f(s)=a
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Traditional example of sigmoid function is logistic function f1, (s)=(1 + exp (—s)) ",
which maps R into (0;1) and f7 (0) = 1/2, f; (0) = 1/4. The sigmoid function
will be useful for RBF decomposition when a = 0, b = 1, f'(0) = 1. There are
examples of such sigmoid functions:

1+ tanh2s
fils) = T
1 1
fa(s) = 3 + - arctan 7s
1 s
f309) =5+ 153

fa(s) = min (1,max (0, % + s))

1 1
f5(s) = 5t ierf\/%s,

x

where erfr = % fe*tht.

0

2. RDBF Preliminaries

General Radial Basis Function (RBF) [1, 2] network consists of three layers: input,
hidden and output ones. The signal processing in every output neuron is described
by linear formula y = ZZ:O wixk, where n € N is the number of neuron inputs,
zr, wi € R are k" input value and its weight, ¥ € R is the neuron output and
xg = 1. The signal processing in every hidden neuron is described by formula
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Yy = exp (—ﬁ Soney (ze — wk)z), where o > 0 is the space factor, y € (0;1] is
the neuron output and the other quantities have the same meaning. The sub-

stitution s, = % enables to study the properties of hidden neuron. Thus,

y =G (s1,...,8,) = exp (=D p_, 57), where G : R" — (0;1] is radial function.
The second advantage of function G is its separability. Let gg (s) = exp (—82),
then G (s1,...,8,) = I}_; ¢gr(sk) is separable in Cartesian coordinates. It is
necessary to collect generalized properties of function g, which will be useful for
multiplicative construction of function G.

Let g : R — [0;1/4] be continuous function satisfying:

e g(0)=1/4
e g is non-increasing on R

e lim g(s)=0

s——+oo
* g"(0)=-2

Such function g can be called base function.

The other properties of base function can be easily derived:
e g is non-decreasing on Ry

e lim g(s)=0

S§—r— 00

Here are examples of base functions:

g2(s)=—(1+ 432)71

B~

g3 (s) = imax (0,1 —14s7).

They can form separable functions Gy, Ga, G3, but G is the only radial symmetric
function.

Having our favorite sigmoid function, we can construct base function g (s) as a
product of f (s) and f (—s) but unfortunately, the radial property is not guaranteed.

Theorem 1: Let f be sigmoid function with a = 0, b =1, f'(0) = 1. Then the
function g (s) = f (s) f (—s) is base function.

Base function can be used for the approximation of RBF neuron using formula

G (81,---,8n) = I_1 [ (sk) f (=5k)-
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3. New Perceptron Formula for RBF Design
Let g (s) = 1 exp (—4s®) be known and f (s) be unknown sigmoid function with
a=0,b=1,f(0)=1.

Then

£ ) f (~8) = 7 oxp (~457)

F(9) (1= () = 3 exp (~45?)

f2(s) = f(s)+ iexp (—4s%) = 0.

The only acceptable solution of given quadratic equation is
, which is a new kind of sigmoid function.

_ 1+4sign(s)y/1—exp(—4s2)
f(s)= 2
1+sign(s)y/1—exp(—4s2)

The existence of new sigmoid function fgs (s) = 5 is in con-
tradiction to traditional logistic function f; (s) = H'tafnh% The absolute difference
between them can be denoted as D (s) = | fs (s) — f1(s)| and reaches absolute
maximum D = 0.0207995 for s = 0.684824, meanwhile D (0) = D’ (0) = D" (0) =

hgl D(s) = lim D(s) = 0. Therefore the difference between new and tradi-
S—+00 S5—r— 00

tional perceptron characteristics is rather symbolic then dramatic and the way is
open for the design of new artificial neural network.

4. Perceptron Radial Basis Function ANN

The previous two theorems motivate us to build up a new kind of artificial neural
network with two types of processing neurons. The diversity of neuron types is not
bad news for RBF network lovers.

Definition 1: Let n € N, zy,wi € R for Kk =0,...,n, zg = 1. Then the function

n
y=p(x,w)= > wgzxy is called linear neuron.

k=0
Definition 2: Let n € N, s € R for £k =1,...,n. Then the function

G(s) = & klz[l (1 + sign (sx) (1 — exp (—45%))1/2) is called multiplicative per-

ceptron.
Now we can define the Perceptron Radial Basis Function ANN as a hierarchical
artificial neural network with processing layers of two kinds.

Definition 3: Let L € N be the number of layers. Let Vi, € N be the number of
neurons in k*" layer of hierarchical ANN for k = 1,..., L. Let the 1% layer consist
of input neurons. Let L layer be the output layer. Let 2j layer consists of linear
neurons for j = 1,...,|L/2]. Let 2j+1 layer consists of multiplicative perceptrons
for j = 1,...,[L/2] — 1. Then the network is called a Perceptron Radial Basis
Function ANN and denoted as PRBF — Ny — Ny —---— Np or PRBFL.

As will be proven below, any linear ANN can be realized as PRBF2, any
RBF network can be realized as PRBF'4, any two-layer perceptron network can be
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approximated as PRBF'3, any three-layer perceptron network with linear output
(MLL) can be approximated as PRBF4, and any three-layer perceptron network
(MLP) can be approximated as PRBF5. The PRBF is a hierarchical ANN with
incomplete connectivity of neighbor layers. Any multiplicative perceptron needs
not operate on a complete set of neurons of the previous linear layer. The exact
description of PRBF structure and parameters will be established via its matrix
representation.

Definition 4: Let L € N. Let Ny, ..., Ny, be layer sizes of PRBF. Let W21 ¢
RNz x(Noj—1H1) for j = 1,...,|L/2]. Let W2 e {0, 1}V2+XN2i for j — 1
[L/2] — 1. Then L — 1 tuple of matrices (W, ... W=D} is called matriz
representation of PRBF.

The interpretation of matrix rows is clear. The i*" row of matrix WZ7—1) con-
sists of weight vector for i*" linear neuron of 2j layer, which can be denoted as

(wg?ojfl),. wH—Y ) The i*" row of matrix W (%) consists of selecting vec-

©t i Naj
tor for " multiplicative perceptron of 2j + 1 layer, which can be denoted as
(wﬁj ), ey wgzlff)zj). The matrix representation will help to describe PRBF struc-

ture, processing and learning.

Let n,m € N be the number of input and output neurons of linear layer.
Let x = (z0,...,%,) € R™1! be the input vector of linear layer with zq = 1,
y = (y1,...,Ym) € R™ be its output vector, and W € R"™*("+1) be its weight
matrix. Then y = Wx for every linear layer.

Let n,m € N be the number of input and output neurons of multiplicative
perceptron layer. Let x € R", y € R™, W € {0; 1}mX" be its input vector, output
vector and connectivity matrix. Let F : {0;1}"*" x R® — R™ be a function,
where F; (C,s) = 1I ) fe(sg) fori=1,...,;m. Theny = F (W, x) for every layer

Ci,k=
of multiplicative perceptrons.
The PRBF processing can be described due to its algorithm.

Algorithm 1:
Set input values into x
Set flag =1
For j=1,...,L —1do:

4. Produce vector of output values y = x

Formally, the PRBF network is function y = PRBF (x, wm ,W(L’l)).
Supposing the training set of patterns (xj,yj) for k = 1,..., M, we can use
least square method for learning the PRBF. Then the sum of squares

SSQ (W<1>, .. ,W<H>) - i H yi — PRBF (xk,W(l), .. ,W<L*1>) H2

k=1
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is subject of minimization, where |...| is Euclidean norm.

Definition 5: The minimization of SSQ (W@, ..., WD) for a given pattern
set and topology of PRBF network is called PRBF learning.

The minimization of SSQ is a mixed integer non-linear programming task which
is difficult to solve. In case of fixed interconnectivity matrices W, W®) _  the
function SSQ* (W(l),W(3), .. ) is continuous, smooth but multimodal function in
general and the learning is also difficult. There are several possibilities how to earn
PRBEF:

e local optimization

e random shooting (Monte Carlo)

e stochastic gradient learning — backpropagation [3]
e differential evolution

e annealing

e combination of previous principles

The role of “good” initial structure and parameters of PRBF is cardinal. The
relationships between PRBF, MLL, MLP, RBF and OLAM will help to find initial
structure and weights of PRBF and then continue to the nearest local optimum of
SSQ*.

The PRBF network is able to realize any OLAM and RBF network and to
approximate any MLL or MLP network. Useful properties of PRBF network are
summarized in theorems 2—6.

Theorem 2: Any OLAM network can be realized as PRBF for L = 2.

Theorem 3: Let n;,ng,ng € N be the number of input, hidden and output
neurons of RBF network. Then the RBF network can be realized as PRBF for
L = 4, N1 =ny, N2 = 2?7,]7”LH7 N3 =NH, N4 = nNy.

Theorem 4: Let n;,ng € N be the number of input neurons of two-layer per-
ceptron network with logistic perceptrons (MLP 2). Then the network can be
approximated as PRBF for L = 3, Ny = ny, Ny = N3 = ny.

Theorem 5: Let ny,ng,ng € N be the number of input, hidden and output
neurons of three-layer perceptron (MLP 3). Then the network can be approximated
as PRBF for L =5, Ny =nj, Ny = N3 =ng, Ny = N5 = ng.

Theorem 6: Let ny,ng,ng € N be the number of input, hidden and output neu-
rons of threelayer perceptron with linear output neurons (MLL). Then the network
can be approximated as PRBF for L =4, Ny = ny, No = N3 = ng, Ny = ng.

According to the previous theorems, PRBF network is able to realize any OLAM
and RBF networks and approximate any MLP 2, MLP 3 and MLL networks with
logistic perceptrons. Then PRBF network covers OLAM, RBF, MLP 2, MLP 3
and MLL networks and it is able to enrich their potential, as will be demonstrated
in the experimental part.
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5. Numerical Experiments

We have designed new testing environment in Matlab which allows testing of ANN
learning. It is possible to add new ANN models and compare them with other
ones. Both MLP and RBF networks can be learned via backpropagation algo-
rithm [3]. PRBF network can be learned this way by using analytical gradient of
PRBF. However, we prefer nongradient approach of local minimum searching. The
weights of ANN are optimized by the application of fmincon function in Matlab,
which employs the LSQ method in global minimum searching via repeated local
optimization from random initial points. Following values are recorded:

e ni — nuber of input neurons

e nh — number of neurons in hidden layer
e 10 — number of output neurons

e nw — number of weights

e df — degrees of freedom

e ssq — sum of squares of ANN variances

e sy — model error as sy = \/%

e ne — average number of SSQ evaluation from 100 runs

The improvement of model error was tested in the case of PRBF network related
to the RBF one. The PRBF learning was based on optimum RBF weights. Based
on Theorem 3, the weights of RBF were converted to equivalent weights of PRBF.

Every input zj of original RBF neuron is then split into two inputs y; = %,
Yktn;—1 = 2=t of PRBF neuron. The optimum parameters of PRBF were

2V 20
searched in théfneighborhood of this initial estimate in constrained space with 10%
tolerance as local LSQ optimum, of course.

The tests were performed on ANN time series prediction task. Data set of
annual number of sunspots (sunspots.dat) is freely available in the Matlab envi-
ronment. Only the MLP with characteristics fi (s) = 1+22h2s RBF with char-
acteristics ¢; (s) = iexp (—452) and PRBF with three input neurons and single
output neuron were tested and compared. Various numbers of hidden neurons up
to 5 were used for the study of MLP, RBF and PRBF properties.

6. Results

Results of MLP, RBF and PRBF learning were collected in the Tab. I. The optimum
structures with the smallest model error (within the type of ANN) were MLP 3-
4-1, RBF 3-3-1 and PRBF 3-4-1. Nevertheless, the PRBF network had the better
performance than the MLP or RBF one. The learning rate was measured as a mean
number of SSQ evaluations during repeated local optimization. As seen in Tab. I,
the time complexity (ne) increases with the number of MLP, RBF and PRBF. The
time complexity of PRBF learning is higher than the time complexity of MLP and
RBF learning.
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ANN model ni | nh | no | nw | df | sy s8q ne
MLP 3 |1 1 6 278 | 0.144562 | 5.809707 | 75
MLP 3 |2 1 11 | 273 | 0.128509 | 4.508461 | 621
MLP 3 13 1 16 | 268 | 0.126624 | 4.297032 | 874
MLP 3 |4 1 21 | 263 | 0.125553 | 4.145817 | 990
MLP 3 |5 1 26 | 258 | 0.126550 | 4.131851 | 1021
RBF 3 |1 1 6 278 | 0.132752 | 4.899236 | 36
RBF 3 |2 1 11 | 273 | 0.124625 | 4.240088 | 571
RBF 3 13 1 16 | 268 | 0.122964 | 4.051967 | 809
RBF 3 |4 1 21 | 263 | 0.123880 | 4.036092 | 924
RBF 3 |5 1 26 | 258 | 0.124729 | 4.011853 | 986
PRBF 3 |1 1 8 276 | 0.117532 | 3.812577 | 754
PRBF 3 |2 1 15 | 269 | 0.117688 | 3.725774 | 834
PRBF 3 |3 1 22 | 262 | 0.116791 | 3.573745 | 896
PRBF 3 |4 1 29 | 255 | 0.115388 | 3.395183 | 970
PRBF 3 |5 1 36 | 248 | 0.115343 | 3.299403 | 1089

Tab. I Results of MLP, RBF and PRBF learning.

7. Conclusions

Three types of ANN (MLP, RBF, PRBF) were learned to be the best predictors
of sunspot number from last three-year history. The results show that PRBF was
the best model in the case of model error minimization. The PRBF network has
more weights then MLP or RBF with the same number of nonlinear neurons, which
reduces the degrees of freedom. However, this effect is included in the model error
calculations, and thus we recommend the PRBF network as a very efficient tool
for data modeling. The learning of PRBF network has to be preceded with RBF
learning, which is a good generator of initial PRBF weight estimate.
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