
A COMPARATIVE STUDY OF TWO

METHODOLOGIES FOR BINARY DATASETS

ANALYSIS
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Abstract: Studied are differences of two approaches targeted to reveal latent
variables in binary data. These approaches assume that the observed high dimen-
sional data are driven by a small number of hidden binary sources combined due
to Boolean superposition. The first approach is the Boolean matrix factorization
(BMF) and the second one is the Boolean factor analysis (BFA). The two BMF
methods are used for comparison. First is the M8 method from the BMDP statis-
tical software package and the second one is the method suggested by Belohlavek
& Vychodil. These two are compared to BFA, especially with the Expectation-
maximization Boolean Factor Analysis we had developed earlier has, however, been
extended with a binarization step developed here. The well-known bars problem
and the mushroom dataset are used for revealing the methods’ peculiarities. In
particular, the reconstruction ability of the computed factors and the information
gain as the measure of dimension reduction was under scrutiny. It was shown that
BFA slightly loses to BMF in performance when noise-free signals are analyzed.
Conversely, BMF loses considerably to BFA when input signals are noisy.
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1. Introduction

A fundamental problem in many data-analysis tasks is to find a suitable represen-
tation of the data. A useful representation typically makes the latent structure in
the data explicit, and often reduces the dimensionality of the data so that further
computational methods can be applied. Dimensionality reduction methods are able
to transform a high-dimensional space of attributes to a lower-dimensional space.
There exists high demand for such transformation in many areas of human activity
(such as engineering, computer science, biology or economics) where one is facing a
problem of efficient processing of large datasets. So dimension reduction methods
are a crucial part of our life.

The most prevalent model of the latent data structure is the latent factor model
which explains the dependencies in high-dimensional data by positing the existence
of hidden variables representing common causes (factors) for observed variables.
Two approaches are developed to reveal such a latent structure of the data: factor-
ization and factor analysis. Methods of factorization are applied to a given dataset
represented in the form of M × N matrix X containing M N -dimensional obser-
vations. Data factorization aims at decomposition of X into M × L matrix S and
L × N matrix F with L < N such that X could be approximately represented
as SF. Then one can say that X is decomposed into L factors whose relation to
the observable variables is given by rows of matrix F as factor loadings and rows
of matrix S as factor scores indicate how strongly each factor is related to each
observation. Singular Value Decomposition (SVD) [12] or Nonlinear Matrix Factor-
ization (NMF) [14, 18] are typical examples of such a decomposition. The methods
of factorization aim to find S and F that minimize the deviation ϵ = ||X−SF|| for
a given number of factors L < min(M,N) or to find S and F that provide a given
deviation ϵ with the smallest number L < min(M,N).

Methods of factor analysis deal with the same matrix of observations X but
do not imply the best approximation by SF, on the contrary they imply that X
is generated according to some generative model so that each observation consists
of regular and noisy parts. Then the aim of factor analysis is to find the regular
parts of factors F, to find the matrix S, entries which indicate how strongly each
factor is related to each observation, and to find statistical parameters of noise.
Assuming that some entries of X are distorted by noise, neither the closest X
approximation nor the best its compression is desirable. The goal is to reveal
the structure underlying the data. Since the structure is regular and noise is
irregular, factor analysis provides not only structure recovery in observations of
a given data set but also its recovery in new observations if they correspond to
the same generative model. Thus, factorization methods target to solve the “lossy
compression problem” and methods of factor analysis to solve “structure inference
problem” [7]. The classical examples of factor analysis are methods based on the
normal linear generative model [13, 3].

If the input matrix X is binary, it is natural to require that S and F are also
binary. In this paper, we consider the methods satisfying this requirement. In this
case, the combination operation of matrices S and F is the Boolean matrix product
(i.e., the matrix product in the semiring of Boolean

∧
and

∨
). The typical exam-

ples of Boolean factorization are the methods developed in [16, 17, 4]. The Boolean
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factor analysis is exemplified by Noisy-OR Component Analysis (NOCA) [19],
Multi-Assignment Clustering (MAC) [7] and Expectation-Maximization Boolean
Factor Analysis (EMBFA) [10]. To compare these two approaches we used two
methods of Boolean factorization developed in [16, 4] and the EMBFA method [10]
of Boolean factor analysis.

The paper is organized as follows. In Section 2, we briefly describe the three
methods chosen for comparison. Section 3 contains a description of the two mea-
sures used for estimating the methods’ performance. Then Section 4 contains a
description of the databases used. Next, an experimental comparison of the meth-
ods is presented in Section 5. Finally, Section 6 contains discussion on further
issues and concludes the paper.

2. BMF and BFA Methods

Boolean matrix factorization [4] implies presentation of binary matrix of observed
dataset X in the form

X = S⊗ F, (1)

where each row of binary M × N matrix X is the observed pattern, each row
of binary L × N matrix F is the representation of a factor in the signal space
and each row of binary M × L matrix S is the set of factor scores defining which
factors are mixed in the patterns. Boolean matrix product ⊗ means that each
component of matrix X is obtained as xmj =

∨L
i=1 smifij . The method implies

identification of a minimal set of factors that provide representation of the observed
data in the form (1). The number of such factors is called the Boolean rank of
X. Since the combinatorial problem of X rank identification is NP complete [17]
the existing methods give reasonable, but not obligatory optimal solutions. The
optimal solution is given by a brute force search which is not suitable for high
dimensional data. On the other side, the classical linear methods could not take
into account non-linearity of Boolean summation and are, therefore, inadequate for
this task.

2.1 Formal concepts Boolean matrix factorization

Recently, authors Belohlavek and Vychodil revealed in [4] a tight relationship be-
tween BMF and formal concept analysis [11], and developed two simple greedy
algorithms solving this task.

2.1.1 The BVA1 algorithm

The BVA1 algorithm, named as “Algorithm 1” in [4], utilizes formal concepts of
X as factors. Recall that a formal concept of X [11] is any pair ⟨C;D⟩ of sets
C ⊆ 1, . . . ,M (rows, objects) and D ⊆ 1, . . . , N (columns, attributes) satisfying
the following property: D is the set of all attributes j for which xmj = 1 for every
object m ∈ C and, vice versa, C is the set of all objects m for which xmj = 1
for every attribute j ∈ D. Formal concepts are very well understood by domain
experts. Geometrically, they are, up to permuting rows and columns, just maximal
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rectangles full of Ones in the matrix X. If a set ℑ of formal concepts is to be
used as a set of factors of X, the corresponding matrices Sℑ and Fℑ are defined in
the following way: the ith column of Sℑ is just the characteristic vector of Ci and
the ith row of Fℑ is just the characteristic vector of Di, where ⟨Ci;Di⟩ is the lth
formal concept in ℑ. It is proved in [11] that using such factors is optimal in that
the Boolean rank of X may be achieved by using formal concepts as factors. In
BVA1, one first computes all the formal concepts of X. The algorithm proceeds in
a greedy way: In every step, it selects the concept that covers the largest number
of entries with One in X that were not covered by the previously selected concepts
(⟨C;D⟩ covers xmj = 1⟩ if m ∈ C and j ∈ D, i.e. the rectangle corresponding to
⟨C;D⟩ spans over the entry ⟨m; j⟩).

2.1.2 The BVA2 algorithm

The BVA2 algorithm, named as “Algorithm 2” in [4], utilizes formal concepts of X
as factors in the same way as algorithm BVA1. However, algorithm BVA2 avoids
the necessity to compute all the concepts of X and browse through them during
greedy selection. Instead, BVA2 computes the candidate factors, i.e. concepts ofX,
on demand by the following greedy procedure. Each time a new factor is needed,
one looks at the columns of X and selects the concept generated by a column
which covers most of the yet uncovered Ones in X. Such a concept corresponds to
a narrow but high rectangle in the data. Then, one seeks whether such a rectangle
may be extended to a wider rectangle by adding some attribute and deleting the
objects so that one still has a rectangle. If so, one selects as the best such a
rectangle, i.e. the rectangle covering most of the yet uncovered Ones in X. One
repeats the process of extension until no such extension yields a better rectangle.
In this way one obtains the new factor and eventually a set F of formal concepts –
the factors of X.

For our computer comparison we used the second faster BVA2 algorithm only.
In the limit of large M , N and L the number of its operations is proportional to

Ω1 = MLN2⟨nf ⟩⟨pj⟩, (2)

where ⟨nf ⟩ is a mean number of Ones in factors and ⟨pj⟩ is a mean probability for
each component to be One in a data set. When using the programme implemented
in C++ and PC Core2 6400, 2.13 GHz the execution time of one operation amounts
to about 10−11 sec.

2.2 The M8 procedure of BMDP

The second approach to Boolean matrix factorization is implemented in the statis-
tical package BMDP [1], which was originally developed at UCLA for biomedical
applications. The M8 procedure of BMDP is sufficiently effective despite being
based on the brute force search approach combined with the Boolean regression
procedures.

To compute L factors of X (and thus the corresponding M × L and L × N
matrices S and F), the algorithm starts with k < L candidate rows of F (candidate
factor loadings). These are either supplied by the user or computed from X using a
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heuristic based on inclusion of the columns ofX. From this set of k vectors of factor
loadings, the algorithm computes k vectors of factor scores (candidate columns of
S); from the k vectors of scores, the algorithm tries to find better k vectors of
factor loadings, etc. until no change occurs or three such cycles are completed.
Such tuning of factor loadings and scores is called refinement (the details are too
technical to be included here). The algorithm then iteratively adds further factors
as follows. Suppose l factors have been obtained. Then, one adds new factor l+1,
refines the loadings and scores of all the factors as above, adds new factor l + 2
and refines again. Then, the lth factor is removed and the remaining factors are
refined. Consequently, the process is repeated, i.e. two new factors are added, one
is removed, etc. For example, starting with k = 2 factors, we obtain 2, 3, 4, 3, 4,
5, 4, 5, 6, 7, 6, 7, 8, etc. factors. The process stops when the required number L
of factors is obtained the second time. For example, with k = 2 and L = 6, one
computes 2, 3, 4, 3, 4, 5, 4, 5, 6, 7, 6 factors and the last six ones are the final factors
output by the algorithm. By default, the initial k = L−2 but the initial k may also
be set by the user. A new factor is added based on the matrix describing the error
committed by the factors obtained so far. In particular, one uses the column of X
which contains the largest number of Ones uncovered by the previously computed
factors. The execution time for this algorithm is approximately the same as for
BVA2.

2.3 Expectation-maximization Boolean factor analysis

The Expectation-maximization method for Boolean factor analysis was developed
for analysis of data of statistical origin [10]. Similar to BMF, in terms of BFA, each
observation is a binary row vector x = [x1, . . . , xN ], each factor fi = [fi1, . . . , fiN ]
is a binary row vector of dimension N . The factor is supposed to have two or
more nonzero components, therefore it is called a common factor [3]. Unlike BMF,
BFA is a statistical method that assumes the existence of a probabilistic generative
model. We suppose that the most appropriate for BFA and the most close to the
classical linear factor analysis is the Noisy-OR generative model. Its parameters
are Θ = (pij , qj , πi, i = 1, . . . , L, j = 1, . . . , N). Parameter pij is the probability
of the jth attribute presence in an observation due to the ith common factor. For
attributes constituting the common factor, i.e., for attributes with fij = 1, the
probability pij is high, and for the other attributes (with fij = 0), it is zero. Thus,
the contribution of the ith common factor is defined by the binary row vector
f ′i = [f ′

i1, . . . , f
′
iN ] which is a distorted version of the factor loadings vector fi.

Factor distortion implies that the entries of fi having the value equal to One can
change their values to Zero with probability 1 − pij but none of the entries of fi
equal to Zero can change their value to One.

In addition to L common factors, the observations are supposed to be influenced
by N specific factors, each having only one nonzero component ηj [3]. Parameter
qj is the probability of the presence of the jth attribute in an observation due
to the jth specific factor. The total contribution of the specific factors into an
observation is defined by a binary row vector η = [η1, . . . , ηN ]. Formally the
introduction of specific factors is equivalent to the introduction of a special common
factor f0 with all entries equal to One, appearing in all observations and having
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p0j = qj . However, this special factor does not carry any information concerning the
hidden regular structure of a given dataset and, thus, its introduction contradicts
the designation of common factors in BFA. Moreover, to stress the distinction of
common and specific factors it is required to put that number of Ones in each
common factor is less than N .

As a result, any observation x can be presented in the form

xj =

[
L∨

i=1

si ∧ f ′
ij

]
∨ ηj , (3)

where s = [s1, . . . , sL] is a binary row vector of factor scores of dimension L, L
being the total number of common factors.

It is worth noting that the notions of common and specific factors are inherent
for factor analysis but not for matrix factorization. Particularly, it is not specially
required that each row of matrix F in presentation X according to (1) has more
than one and less than N nonzero component. However, in spite of the differences
both approaches provide very similar decompositions of a given dataset X in the
form (1) or (3).

Parameter πi (i = 1, . . . , L) is the probability that the ith factor appears in an
observation.

We assume that common factors are distorted independently of other common
factors and specific factors, common factor’s components are distorted indepen-
dently of other components, and specific factors are independent of each other and
of the common factors.

The same generative model is used in NOCA [19] while MAC is based on Mix-
ture Noise Model [7].

In contrast to BMF, which is aimed to find exact or approximate decomposition
of a given dataset, the aim of BFA is to find the parameters of a generative model
Θ and factor scores for all patterns of the dataset. Moreover, it is supposed that
the factors found could also be detected in any arbitrary pattern x, if generated by
the same BFA model. Note that in the case pij = fij and qj = 0 BFA provides the
exact decomposition of a given dataset equivalent to BMF solution given by (1),
however, as for BMF there is no guarantee that this decomposition is optimal.

As NOCA and MAC EMBFA maximizes the likelihood of the observed data
by maximizing the free energy which in the case of described generative model has
the form

F =
M∑

m=1

{∑
s

gm(s) log(P (xm|s,Θ)P (s|Θ)) +H(gm(s))

}
,

where gm(s) is the expected distribution of factor scores for the mth pattern,
H(gm(s)) is the Shannon entropy of gm(s),

P (x|s,Θ) =

N∏
j=1

P (xj |s,Θ),
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where

P (xj |s,Θ) = xj − (2xj − 1)(1− qj)

L∏
i=1

(1− pij)
si , (4)

P (s|Θ) =
∏

i=1,L

πsi
i (1− πi)

1−si .

The iterations of the Expectation-Maximization (EM) algorithm alternatively in-
crease F with respect to the distributions gm, while holding Θ fixed (the E-step),
or with respect to parameters of the model Θ, while holding gm fixed (the M-step)
[5].

At the E-step, the distributions gm maximizing F are calculated according to
the following equation

gm(s|Θ) =
P (xm|s,Θ)P (s|Θ)∑
s P (xm|s,Θ)P (s|Θ)

.

The obtained distributions gm provide the expected likelihood of the observed data
over the factor scores for the given set of parameters of the generative model.

At the M-step, πi can be obtained as

πi = (1/M)
M∑

m=1

smi,

where

smi =
∑
s

gm(s|Θ)si.

Respectively, pij and qj can be obtained by steepest ascent maximization of F :

∆pij = γij
∂F
∂pij

, ∆qj = γj
∂F
∂qj

, (5)

where γij and γj are learning rates,

∂F
∂pij

=

M∑
m=1

∑
s

gm(s|Θ)P (xmj |s,Θ)−1 ∂P (xmj |s,Θ)

∂pij

∂F
∂qj

=
M∑

m=1

∑
s

gm(s|Θ)P (xmj |s,Θ)−1 ∂P (xmj |s,Θ)

∂qj

and according to (4)

∂P (xmj |sm,Θ)

∂pij
= (xmj − P (xmj |sm,Θ))

smi

1− pij

∂P (xmj |sm,Θ)

∂qj
= (xmj − P (xmj |sm,Θ))

1

1− qj
.
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At each iteration cycle of the M-step, we put pij = 0 if

pij < 1−
∏
l ̸=i

(1− πlplj),

where the right side of the inequality is the probability that the jth attribute
appears in the pattern due to other factors besides fi.

In our computer experiments, we set the learning rates in (5) to be

γij = pij(1− pij)/(Mπi), γj = qj(1− qj)/M.

We found empirically that they provide convergence of the steepest ascent proce-
dure for few steps.

The steepest ascent procedure (5) at each M-step continues until
∑

ij |∆pij |/LN
becomes smaller than ϵ2 = 10−3.

The obtained values of pij , qj and πi are used as the input for the next
E-step. The EM iterative procedure terminates once values

∑
ij |∆pij |/LN re-

mained smaller than ϵ1 = 10−3, where ∆pij is the change of the model parameters
pij comparing to the outcome of the previous M–step.

The described procedure provides a reasonable but not obligatory optimal so-
lution. The global maximization of likelihood function is not so desired. Our
experiments with artificial data have shown that likelihood function is slightly sen-
sitive to some accidental peculiarities of a given dataset. Thus, its highest value
does not obligatorily correspond to the most precise solution.

After the convergence of the procedure, the resulting values smi are the esti-
mates of the factor scores which are not binary but gradual. To satisfy the gener-
ative model, we binarized those values. The binarization threshold was chosen to
maximize the BFA information gain [8, 9] (see below).

As suggested in [15] for EM applied to maximal causes model, we restricted
the EMBFA algorithm to the case of sparse scores, when only a small number of
factors (no more than three) are supposed to be mixed in the observed patterns.
In this case, summation over s in the above formulas is reduced to∑

s

(. . . ) = (. . . )s=0 +
∑
i

(. . . )s=si +
∑
i<j

(. . . )s=sij + (6)

+
∑

i<j<k

(. . . )s=sijk ,

where si is the vector of factor scores with all zeros except si, sij is the vector of
factor scores with all zeros except si and sj , and sijk is the vector of factor scores
with all zeros except si, sj and sk. An increase of the number of terms in (6) leads
to a considerable rise in computational complexity. In the limit of large M , N and
L the number of operations required for one iterative step is proportional to

Ω2 = MNL3⟨pj⟩, (7)

where ⟨pj⟩ is a mean probability for each component to be One in a data set.
When using the programme implemented in C++ and PC Core2 6400, 2.13 GHz
the execution time of one operation amounts to about 5 · 10−9 sec.
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To start the EM procedure we set πi = 1/L, where L is expected number of
factors that have to be set in advance; we also initialized qj = 0 and pij with
random values uniformly distributed in the range from 0.2 to 0.7. Sometimes
(in five percent of cases) the EM procedure converged for a few steps to a zero
solution. This problem could presumably be overcome by a better choice of initial
parameters. But we did not optimize their choice and simply restarted EM when
it failed.

In terms of BMF, the matrix of factor scores S, whose rows are vectors of factor
scores si (i = 1, . . . ,M), is the object-factor matrix S. To estimate factor-attribute
matrix F, we binarized probabilities pij assuming that fij = 1 if pij ≥ pth and
fij = 0 if pij < pth, where pth is the binarization threshold. The binarization
threshold was chosen to maximize coverage quality (see below).

3. Estimation of the Methods Performance

To compare the efficiency of the three methods we used two measures for estimating
their performance: information gain and coverage quality. The first measure is
based on statistics of the input data and relates to BFA while the second one
relates to BMF.

3.1 Information gain

Information gain is a general information theoretic measure of BFA efficiency, which
is a difference of two entropies. The first is the entropy of a dataset when its hidden
factor structure is unknown, and the second is the entropy when it is revealed and
taken into account [8].

If factor structure of the signal space is unknown, then representing the jth
component of vector x requires h(pj) bits of information, where h(x) = −x log2 x−
(1 − x) log2(1 − x) is the Shannon function and pj is the probability of the jth
component to take One. Representing the whole dataset requires

H0 = M

N∑
j=1

h(pj)

bits of information. If the hidden factor structure of the signal space is detected
(that is, all generative model parameters and all factor scores in the dataset are
found), then representing the whole dataset requires

H = H1 +H2

bits of information. Here

H1 = M
L∑

i=1

h(πi)

defines information required to represent factor scores and

H2 =

M∑
m=1

N∑
j=1

h(P (xmj |Θ,Sm)) (8)
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defines information required to represent all patterns of the dataset when factor
scores are given. In (8), P (xmj |Θ,Sm) is the probability of the jth component of
the mth signal xm to take the value xmj . This probability is given by (4).

We defined the relative information gain as

G = (H0 −H)/H0.

As shown in [8], information gain decreases when noise in the dataset increases
and/or the errors in the BFA solution increases. Thus, it is a reliable measure of
the BFA quality and suitability of BFA to a given dataset in principle.

3.2 Coverage quality

According to (1), the product S⊗F should approximately cover the input matrix
X. The error between X and its coverage by S ⊗ F is a natural measure of BMF
quality. The error E(X,S⊗ F) may be seen as being the sum of two components,
Eu corresponding to 1s in X that are 0s in S⊗F (uncovered) and Eo corresponding
to 0s in X that are 1s in S⊗ F (overcovered):

E(X,S⊗ F) = Eu(X,S⊗ F) + Eo(X,S⊗ F)

with

Eu(X,S⊗ F) = |{⟨i, j⟩|xij = 1, (S⊗ F)ij = 0}|,

Eo(X,S⊗ F) = |{⟨i, j⟩|xij = 0, (S⊗ F)ij = 1}|.

Note that in the BMDP manual on the M8 procedure [1], Eu and Eo are called the
positive and negative discrepancy, respectively. As a measure of coverage quality,
we use

Q(X,S⊗ F) = 1− E(X,S⊗ F)

||X||
,

which may be thought of as measuring coverage quality. Clearly, Q(X,S⊗F) = 1 if
and only if X = S⊗F (exact decomposition). Furthermore, Q(X,S⊗F) decreases
with increasing error, i.e. with increasing E(X,S⊗ F).

4. The Datasets Used

We compared the efficiency of the described methods using the artificial signals
which are random mixtures of horizontal and vertical bars (the bars problem [6])
as well as the Mushroom dataset taken from the UCI Machine Learning Repository
[2].
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Fig. 1 A Sixteen vertical and horizontal bars in 8-by-8 pixel images. B Examples
of images in the standard bars problem. Each image contains two bars on average.

4.1 The bars problem

The Bars Problem (BP) was introduced in [6] and has been considered in many
papers in various modifications (see [15] for references) as a benchmark for learning
of objects from complex patterns. In this problem, each pattern of the dataset is
n-by-n binary pixel image containing several of L = 2n possible (one-pixel wide)
bars (Fig. 1). Pixels belonging and not belonging to the bar take values 1 and 0,
respectively. For each image each bar could be chosen with the probability C/L,
where C is the mean number of bars mixed in an image. In the point of intersection
of vertical and horizontal bars, pixel takes the value 1. The Boolean summation
of pixels belonging to different bars simulates the occlusion of objects. The task
is to recognize all bars as individual objects on the basis of a dataset containing
M images consisting of bar mixtures. In most papers where BP was used as a
benchmark C was set to 2 and n = 8.

In terms of BFA, bars are factors. The factor loadings fij , j = 1, . . . , N take
the value One for the pixels constituting the ith bar and the value Zero for the
pixels not constituting it, N = n2 is the total number of pixels in an image. Each
image is Boolean superposition of factors. Factor scores take values One or Zero
dependently on bar presence or absence in the image. Thus, the bars problem is a
special case of BFA. We consider the case of homogeneously distributed image noise
both in the form of common factor distortion and in the form of specific factors.
Particularly, we put pij = pfij and qj = q. This means that the pixels constituting
common factors (bars) can take Zero with equal probabilities p and the pixels can
take One with equal probabilities q due to specific factors.

4.2 The Mushroom dataset

The Mushroom dataset consists of 8125 objects and 23 nominal attributes (for ex-
ample, attribute “class” with values “edible” and “poisonous”, or attribute “cap-
shape” taking values such as “bell”, “conical” or “convex”). We transformed this
dataset to a Boolean matrix by nominal scaling, i.e. by replacing a nominal at-
tribute y with k values v1, . . . , vk by k Boolean attributes yv1 , . . . , yvk in such a
way that at the ith row, the value of the column corresponding to yvj is 1 if and
only if the value of the attribute y at the ith row in the original dataset is equal
to vj .
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5. Experiments

In this section, we compare the efficiency of the three methods for Boolean factor
analysis and Boolean matrix factorization. These methods are compared according
to two criteria: information gain G and coverage quality Q. Initially, the methods
are compared in solving BP. We used n = 8, M = 800, C = 2 and L < 40 then the
execution time according to (2) and (7) amounted to less than a second for BVA2
and M8 and less than a minute for EMBFA.
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Fig. 2 Dependencies of information gain G and coverage quality Q on the number
of found factors for the case when noise is absent (p = 1 and q = 0). ◦ – EMBFA,

� – BVA2, △ – M8.

The dependency of G and Q on the number of found factors for the case when
noise is absent (p = 1 and q = 0) is shown in Fig. 2. For all methods both
criteria initially grow proportionally to the number of found factors. Since factors
are assumed to be uniformly distributed in the dataset with equal probabilities
πi = 1/8, each new found factor provides a fixed increment to both indices G and
Q. When all 16 bars are found, BVA2 and M8 stop because complete coverage is
achieved. In this case, G and Q reach their maxima which correspond to the exact
solution of BP. In EMBFA, as well as in M8, the total number of searched factors
L must be assigned in advance as an input parameter. As Fig. 2 shows, EMBFA
provides the maximal values of G and Q only at L = 21, that is when the assigned
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number of factors exceeds the actual number of factors (which is the number of
bars). In this case, besides the bars some false factors (not bars) are found. As a
result, EMBFA slightly loses to BVA2 and M8 in information gain. Another and
more important cause of its loss is the omission of some factors in the observations
of the dataset. Recall that this EMBFA implementation is supposing that not
more than three factors are mixed in a pattern. However, in the generative model
under consideration, the number of mixed factors K has the binomial distribution
B(K,C/L,L), where C = 2 and L = 16. According to this distribution, 13% of
patterns containing more than three factors are generated. Since only three factors
can be identified in these patterns, the remaining 9% of the onevalued scores are
expected to be identified as zerovalued scores. The portion of onevalued scores
missed by EMBFA amounts to 10%, which is close to the theoretical estimation
obtained.
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Fig. 3 Dependencies of information gain G and coverage quality Q on the number
of found factors for the case when common factors were not distorted (p = 1) and

specific factors were present (q = 0.3). ◦ – EMBFA, � – BVA2, △ – M8.

Fig. 3 illustrates the quality of the methods for the case when common factors
were undistorted (p = 1) but specific factors were added (q = 0.3). When the
number of the found factors L is less than the actual number of bars, for all
methods coverage quality again increases almost proportionally to the number of
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found factors. For EMBFA and BVA2, this is accompanied by an increase of G but
for M8 G remains to be close to zero. This is explained by the fact that EMBFA
and BVA2 found mostly true bars but M8 found mostly false factors (not bars).
For EMBFA gain reaches maximum at the point when the assigned number of
searched factors L slightly exceeds the number of true factors. As mentioned above,
this occurs because all true factors can be revealed by this method only when L
exceeds the actual number of true factors. For BVA2 gain reaches maximum when
the number of (correctly) found factors L equals to the number of bars. When L
increases gain decreases due to the influence of found false factors. Recall that in
BVA2 and M8 there is no notion of specific factors, that is why specific factors that
appeared in observations at q = 0.3 were treated as common factors. For EMBFA,
when the number of assigned factors L continues to increase, information gain does
not decrease because specific factors are treated correctly.
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Fig. 4 Dependency of gain G and coverage Q on the number of found factors for
the case when common factors were distorted (p = 0.6) and specific factors were

absent (q = 0). ◦ – EMBFA, � – BVA2, △ – M8.

Fig. 4 illustrates the quality of the methods for the opposite case, that is when
common factors were distorted (p = 0.6) but specific factors were absent (q = 0).
In this case, both BVA2 and M8 perform much worse than EMBFA in information
gain for all numbers of found factors. It means that most of the factors found
by these methods are false. As for the previous cases, all true factors were found
by EMBFA when the number of assigned factors L slightly exceeds their actual
number. When the number of found factors continues to increase, information gain
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decreases for both BVA2 and M8 but not for EMBFA. In contrast, coverage quality
continues to increase for BVA2 and M8 but not for EMBFA. However, coverage
quality increases in this case only on account of false factors and, therefore, it does
not provide useful information on the latent regular structure of the dataset. Thus,
only performance of EMBFA happened to be insensitive to this kind of noise in the
input data.

Note that for L = 19, when both indices Q and G for EMBFA reach max-
ima, coverage quality for EMBFA exceeds those for both BVA2 and M8 despite
the claim of [4, 16] that those methods maximize Q for any given L. This gives a
good example that greedy algorithms used by these methods provide not optimal
solutions when greedy algorithms used by these methods actually provide reason-
able but not optimal solutions. Note also that sometimes (in 5% of cases) EMBFA
converges for a few steps to zero solution (as shown in Fig. 4, in our computation
it happened in case of L = 4). To overcome this problem it is enough to restart it
with another seed of initial values pij .
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Fig. 5 Dependency of gain G and coverage Q on the number of found factors is
depicted for Mushroom dataset. ◦ – EMBFA, � – BVA2, △ – M8.

The performance of the methods applied to the Mushroom dataset is shown
in Fig. 5. All the methods demonstrate similar results until the number of found
factors L is less than 10. If the methods attempt to assign more factors, the
information gain obtained by BVA2 and M8 decreases, but for EMBFA it continues
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to increase monotonically. The drop of the increasing rate at L = 20 may be
interpreted as the end of finding true factors. Following the results obtained for
the bars problem one can speculate that the increase of coverage quality provided
by BVA2 and M8 for L > 10 is explained only by the false factors.

6. Discussion

Performance of the BMF (BVA2 and M8) and BFA (EMBFA) methods was com-
pared for the artificial dataset (the bars problem) and for the real datasets (the
Mushroom dataset). Since for the artificial dataset its hidden factor structure
is known in advance this information can be used for an exact evaluation of the
method performance. For the bars problem we showed that both the BVA2 and
M8 methods are perfect in solving BP when noise in the signals is absent. This is
not surprising because in this case the search for factors is reduced to the dataset
Boolean factorization, and both these methods were developed specially to per-
form this task. In contrast, EMBFA was developed for the Boolean factor analysis
based on the given statistical generative model. As a result, EMBFA slightly loses
to BVA2 and M8 in performance when noise-free signals are analyzed. On the
contrary, both BVA2 and M8 lose to EMBFA when input signals are noisy. M8 is
not able to reveal the hidden factor structure of the dataset for both kinds of noise,
i.e. for common factor distortion and for appearance of specific factors, whereas
BVA2 is unable to do this only for factor distortion. For appearance of specific
factors it is able to find all true factors as EMBFA (3).

To estimate performance we used two indices: information gain G and coverage
quality Q. The first index relates to BFA and the second one to BMF. As our
experiments with the artificially generated data of the bars problem show, as the
number of found factors L increases, sometimes these indices change identically,
sometimes oppositely. Increasing of both Q and G corresponds to the case when
a method finds true factors, whereas decreasing or constant G corresponds to the
case when a method finds false factors. This gives a heuristic criterion for identifi-
cation of true and false factors in real datasets. For BVA2 and M8 applied to the
Mushroom dataset, both G and Q increase until L reaches 10. In this case, the
factors found by all three methods are very similar. When L > 10, Q increases for
all methods, but for EMBFA G increases and for BVA2 and M8 it decreases. This
can be interpreted as finding true factors by EMBFA and false factors by BVA2
and M8. Note that methods of matrix factorization have no “false factor” notion
and, therefore, have no grounded criteria for factor search termination. Contrary
to this, in BFA such a criterion exists. It relates to the maximum of information
gain: it is reasonable to continue the procedure of factors search until G increases
and stop it when G reaches maximum or ceases to increase. For the Mushroom
dataset G increases until L = 20. Thus, one can expect that EMBFA found 20
factors whereas BVA2 and M8 found only 10 factors suitable for further analysis
by experts.

In spite of the fact that both BVA2 and M8 were developed to maximize cover-
age quality for every given number of factors during the run of algorithm, EMBFA
is comparable with these methods even in this index. Thus, EMBFA could also
be used for the Boolean matrix factorization. The disadvantage of EMBFA is that
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sometimes it converges to unreasonable zero solution. But this problem can be
easily overcome by restart with another initial seed of parameters.

We have demonstrated the performance of the BMF and BFA approaches using
only three methods as examples. However, we believe that the results obtained
display the inherent differences of those two approaches. Although both approaches
are aimed to reveal the hidden factor structure of a given dataset, BMF solves this
problem directly by the best approximation of the dataset itself whereas BFA
solves it statistically by searching the best correspondence between the dataset
and some given probabilistic generative model. Thus, the advantage of the used
BMF methods over the BFA method can be expected for noiseless data. Since
the generative model underlying natural dataset and the noise level are usually
unknown, it is most reasonable to apply both approaches to its analysis and to
compare the results in terms of both information gain and coverage quality.
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[15] Lücke J., Sahani M.: Maximal causes for non-linear component extraction. Journal of
Machine Learning Research, 9, 2008, pp. 1227–1267.

[16] Mickey M. R., Mundle P., Engelman L.: Boolean factor analysis. In BMDP Statistical
Software, W. Dixon, Ed. University of California Press, Berkeley, CA, 1983, pp. 538–545.

[17] Miettinen P., Mielikainen T., Gionis A., Das G., Mannila H.: The discrete basis problem.
IEEE Transactions on Knowledge and Data Engineering, 20, 10, 2008, 1348–1362.

[18] Paatero P., Tapper U.: Positive matrix factorization: A non-negative factor model with
optimal utilization of error estimates of data values. Environmetrics, 5, 2, 1994, pp. 111–
126.

[19] Shingliar T., Hauskrecht M.: Noisy-OR component analysis and its application to link
analysis. Journal of Machine Learning Research, 7, 2006, pp. 2189–2213.

582




