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Abstract: The paper introduces a formal framework for the study of compu-
tational power of spiking neural (SN) P systems. We define complexity classes of
uniform families of recognizer SN P systems with and without input, in a way which
is standard in P systems theory. Then we study properties of the resulting com-
plexity classes, extending previous results on SN P systems. We demonstrate that
the computational power of several variants of confluent SN P systems, under poly-
nomial time restriction, is characterized by classes ranging from P to PSPACE.
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1. Introduction

Spiking neural P system (abbreviated as SN P system) introduced in [7] is an
abstract computing model inspired by the theory of membrane computing, on one
hand, and spiking neural networks, on the other hand. The structure of an SN P
system is formed by membrane cells (called neurons) arranged in nodes of a directed
graph whose arcs represent synapses. Neurons contain spikes which are represented
as copies of a specified symbol, most often a. Each neuron has its own rules for
either sending spikes to all neurons linked by synapses to the emitting neuron
(firing rules optionally with delays) or for internally consuming spikes (forgetting
rules). One neuron is designed as input neuron and another one as output neuron.
Computation of SN P system starts from an initial configuration, in which an
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initial number of spikes is placed in each neuron. At each moment (the system
is synchronized by means of a global clock), a computational step is executed by
applying a rule in each neuron in which this is possible. The applicability of a rule
is determined by a regular expression associated with it, against which the number
of spikes occurring in the neuron is checked. If the computation halts (no neuron
has an applicable rule), then the result of the computation is obtained from the
output neuron.

The computational power of SN P system has been extensively studied and
several intractable problems such as Subset Sum, SAT, QSAT and others have
been shown effectively solvable by SN P systems under certain conditions ([8, 9,
10, 12]).

Standard SN P systems were shown to be computationally universal already in
the introductory paper [7]. However, as demonstrated in [13], no standard spiking
neural P system with a constant number of neurons can simulate Turing machines
with less than exponential time and space overheads. This is due to the unary
character of its unlimited memory - spikes accumulated in neurons. Therefore, to
achieve computational effectiveness in solving problems, many authors have used
families of SN P systems such that each member of a family solves only a finite
set of instances of a given size. Another way how to effectively solve NP-complete
problems is to use SN P systems with neuron division ([16]).

In this paper we establish a formal framework based on computational com-
plexity theory, allowing to characterize the computational power of SN P systems
more precisely. This framework allows to standardize, compare and extend the
results already mentioned in the literature. A sequence of formal prerequisites is
established in Section 3 which then allow to define polynomially uniform families
of confluent SN P systems in Section 4 and to study their properties. Confluent
SN P systems are generally non-deterministic but each system with a given input
has either only rejecting computations or only accepting computations.

Then we focus on uniform families of SN P systems. We show the closure of
their polynomial time-restricted complexity classes under complement and polyno-
mial time reduction. Finally we provide a characterization or limitation of several
variants of uniform families of recognizer SN P system in Section 5. We also men-
tion the differences between unary and binary encoding and study their influence
on the presented results. We show that some restricted variants of regular ex-
pressions (including the single star normal form) allow to characterize the class P,
while in general their computational power lies between the classes NP, co-NP
and PSPACE.

2. Prerequisites

In this section we recall some useful notations and constructions used throughout
the paper. We assume the reader to be familiar with basic language and automata
theory, as well as with elements of the computational complexity theory (see for
example [5]). We also refer to [14] for up-to-date information about membrane
computing.

We denote by N the set of nonnegative integers. For a finite alphabet V , V ∗

denotes the set of all finite strings of symbols from V , the empty string is denoted
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by λ, and the set of all nonempty finite strings over V is denoted by V +. When
V = {a} is a singleton, then we write simply a∗ and a+ instead of {a}∗, {a}+. The
length of a string x ∈ V ∗ is denoted by |x|. Next we recall the definition of regular
expression.

Definition 1 For a finite alphabet V : (i) λ and each a ∈ V are regular expressions,
(ii) if E1, E2 are regular expressions over V , then also (E1)∪ (E2), (E1) · (E2), and
(E1)

∗ are regular expressions over V , and (iii) nothing else is a regular expression
over V .

The catenation operator · and non-necessary parentheses may be omitted when
writing a regular expression. With each expression E we associate its language
L(E) defined in a usual way: (i) L(λ) = {λ}, L(a) = {a} for each a ∈ V, (ii)
if E1, E2 are regular expressions over V , then L((E1) ∪ (E2)) = L(E1) ∪ L(E2),
L((E1) · (E2)) = L(E1) · L(E2), and L((E1)

∗) = L(E1)
∗.

We call two expressions E1 and E2 equivalent if L(E1) = L(E2).

Definition 2 ([1]) We say that a regular expression E = E1 ∪ . . . ∪ En (where
each Ei contains only · and ∗ operators) is in single-star normal form (SSNF) if
∀i ∈ {1, . . . , n}, Ei has at most one occurrence of ∗.

Lemma 1 ([1]) Every regular expression over one-letter alphabet can be trans-
formed into an equivalent single-star normal form.

This transformation, however, might require an exponential time and the size of
the resulting expression can be exponential with respect to the size of the original
expression.

3. Spiking Neural P Systems

A spiking neural P system of degree m ≥ 1 is a construct of the form Π =
(O, σ1, . . . , σm, syn, in, out), where:

1. O = {a} is the singleton alphabet (a is called spike);

2. σ1, . . . , σm are neurons, of the form

σi = (ni, Ri), 1 ≤ i ≤ m,

where:

a) ni ∈ N is the initial number of spikes contained in σi;

b) Ri is a finite set of rules of the following two forms:

(1) E/ac → a; d, where E is a regular expression over a specific for each
rule, c ≥ 1 and d ≥ 0 are integers;

(2) as → λ, for some s ≥ 1, with the restriction that for each rule
E/ac → a; d of type (1) from Ri, we have as /∈ L(E);
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3. syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m} with (i, i) /∈ syn for 1 ≤ i ≤ m (synapses
between neurons);

4. in, out ∈ {1, 2, . . . ,m} indicate the input neuron (resp., output neuron).

The rules of type (1) are firing (we also say spiking) rules, and they are applied
as follows. If the neuron σi contains k spikes, and ak ∈ L(E), k ≥ c, then the rule
E/ac → a; d can be applied. The application of this rule consumes (removes) c
spikes (thus only k − c remain in σi), the neuron is fired and it produces a spike
after d time units (as usual in membrane computing, a global clock is assumed,
hence the functioning of the system is synchronized). If d = 0, then the spike is
emitted immediately, if d = 1, then the spike is emitted in the next step, etc. If
the rule is used in step t and d ≥ 1, then in steps t, t + 1, t + 2, . . . , t + d − 1 the
neuron is closed (this corresponds to the refractory period from neurobiology), so
that it cannot receive new spikes (if a neuron has a synapse to a closed neuron and
tries to send a spike along it, then that particular spike is lost). In the step t+ d,
the neuron spikes and becomes again open, so that it can receive spikes (which can
be used starting with the step t+ d+ 1).

The rules of type (2) are forgetting rules; they are applied as follows: if the
neuron σi contains exactly s spikes, then the rule as → λ from Ri can be used,
meaning that all s spikes are removed from σi.

Remark. If a rule E/ac → a; d of type (1) has E = ac, then we will write it in the
following simplified form: ac → a; d.

In each time unit, if a neuron σi can use one of its rules, then a rule from Ri

must be used. Since two firing rules, E1/a
c1 → a; d1 and E2/a

c2 → a; d2, can
have L(E1) ∩ L(E2) ̸= ∅, it is possible that two or more rules can be applied in a
neuron, and in that case, only one of them is chosen non-deterministically. Note
however that, by definition, if a firing rule is applicable, then no forgetting rule is
applicable, and vice versa. Thus, the rules are used in the sequential manner in
each neuron, but neurons function in parallel with each other.

Remark. A generalization of SN P systems, introduced in [3], is to use extended
rules, of the form E/ai → ap; d, with p ≥ 0. Such a rule operates in the same
manner as before except that firing sends p spikes along each outgoing synapse.

During a computation, a configuration of the system is described by both the
number of spikes present in each neuron and the number of steps remaining until
the neuron becomes open (if the neuron is already open, the number is 0). The
configuration ⟨n1/t1, . . . , nm/tm⟩ is the configuration where neuron σi contains
ni ≥ 0 spikes and it will be open after ti ≥ 0 steps, for i = 1, 2, . . . ,m. An initial
configuration adopts always the form ⟨n1/0, . . . , nm/0⟩ , with all neurons being
open.

Using the rules described above, one can define a transition between two config-
urations C1, C2 and denote it by C1 =⇒ C2. Any sequence of transitions starting in
the initial configuration is called a computation. A computation halts if it reaches
a configuration where all neurons are open and no rule can be used. With any
computation (halting or not) we associate a spike train, the sequence of zeros and
ones describing the behavior of the output neuron: if the output neuron spikes in
a particular time step, then we write 1, otherwise we write 0.
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Fig. 1 An SN P system generating all natural numbers greater than 1.

An output of a given computation of an SN P system is defined as the spike
train (i.e., a binary string) leaving the output neuron during the computation.
Alternatively, many authors consider as output the time interval (i.e., an integer)
between two consecutive spikes. See Section 3.1 or [6] for more details.

Similarly, an input of a given computation of an SN P system is defined as an
external spike train entering the input neuron, starting from the beginning of the
computation.

SN P systems can be used in the generating mode when no input neuron and
no input is considered. The system non-deterministically generates during various
computations a (possibly infinite) set of output values. In the accepting mode, an
input is provided and the system indicates during its computation (possibly by the
behavior of the output neuron) whether the input was accepted or not, similarly
as a formal automaton. More details are explained in Section 3.2.

Example 1 ([6]) Consider the following generating SN P system shown at Fig.1:

Π = (O, σ1, σ2, σ3, syn, out) ,
O = {a} ,
σ1 =

(
2,
{
a2/a→ a; 0, a→ λ

})
,

σ2 = (1, {a→ a; 0, a→ a; 1}) ,
σ3 =

(
3,
{
a3 → a; 0, a→ a; 1, a2 → λ

})
,

syn = {(1, 2) , (2, 1) , (1, 3) , (2, 3)} ,
out = 3

In the initial configuration ⟨2/0, 1/0, 3/0⟩ all the neurons can fire. The neuron
σ1 can fire only if it has two spikes inside and after firing one spike remains available
for the next step. There is one spike and two applicable firing rules in the neuron
σ2. The rules differ only in delay. The neuron σ3 contains three spikes and in the
first step they are consumed by an application of rule.

In the next steps both neurons σ1 and σ2 send a spike to each other and to
the output neuron σ3. Two spikes are forgotten in the next step as long as the
neuron σ2 uses the rule with delay 0. The configuration after each of these steps
is ⟨2/0, 1/0, 2/0⟩.
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If the neuron σ2 uses the rule with delay 1, then σ2 is closed in this step and
cannot obtain a spike from the neuron σ1. The neuron σ2 does not send the spike
either to σ1 or σ3. The reached configuration is ⟨1/0, 0/1, 1/0⟩.

In the next step the neuron σ1 uses a forgetting rule and the neuron σ3 fires.
Simultaneously, the neuron σ2 sends a spike to σ1 and σ3 but σ3 is closed in this
step because of the firing rule a → a; 1. The system enters the configuration
⟨1/0, 0/0, 0/1⟩. In the next step the neuron σ3 spikes, the spike in σ1 is forgotten
and the system halts. The system reaches the final configuration ⟨0/0, 0/0, 0/0⟩.

Because of delay in the firing rule a→ a; 1 of neuron σ3, the two spikes emitted
from this neuron cannot come immediately consecutive. When the neuron σ2 uses
the rule a → a; 1 in the first step, we get the shortest possible output spike train
101, representing the output value 2. Thus, the SN P system Π generates all natural
numbers greater than 1.

3.1 Input/output convention: unary versus binary

Original works on SN P systems as, e.g., [7, 17] focused on SN P systems working
in the generating mode where the output value was represented as a time interval
between two spikes of the output neuron. This means that the output values were
represented in unary, and similarly were later treated also input values [10].

Unary input/output encoding
A natural number n is represented as a spike train 10n−11.

In the case of SN P systems computing functions or solving decision problems,
the binary encoding may be a better choice:

Binary input/output encoding
A natural number n is represented as a spike train bkbk−1 . . . b0, where bkbk−1 . . . b0
is the binary representation of n.

We use the binary encoding in the rest of the paper. One should be aware
that, to switch from binary to unary encoding, a time exponential to the size of
the original binary string is needed, unless an extended SN P system with maximal
parallelism is used ([12]).

Remark. The following facts justify our choice of binary encoding:

• Standard SN P systems can simulate logic gates AND, OR, XOR with an
unbounded fan-in in a unit time and, hence, they can simulate also arbitrary
logic circuits in linear time [4]. An acyclic circuit of a depth n with a single
input can process an m-bit information in time O(m+ n) [21]. Therefore, so
can an equivalent SN P system with binary input.

On the contrary, a P system with unary input/output convention would need
the time Ω(2m) just to read the input spike train of the length 2m encoding
m bits of information.

• When dealing with SN P systems without input, one can encode an n-bit
value into a neuronal structure of size O(n) and the information can be
then processed in time O(n) (see, e.g., [9]). In an SN P system with the
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input neuron, the unary input convention implies the processing time Ω(2n).
Hence, the time complexity of a uniform solution to a given problem could
be exponentially higher than that of the non-uniform solution.

Therefore, some recent papers dealing with SN P systems solving NP-complete
problems as, e.g., [10, 16, 22] adopt the binary input convention. Actually, the
input convention in [16, 22] is even ternary as the input neuron can, in each step,
receive 0, 1 or 2 spikes.

3.2 Recognizer SN P systems

In this subsection we define SN P systems solving decision problems. Let us call
decision problem a pair X = (IX , θX) where IX is a language over a finite alphabet
(elements of IX are called instances) and θX is a total Boolean function over IX .
The following convention was suggested by some authors: an SN P systems solving
an instance w ∈ IX would halt if and only if θX(w) = 1. Such an SN P system is
called accepting in [10]. However, this convention was rarely implemented. Instead,
many authors demonstrated SN P systems which always halt and the output neuron
spikes if and only if θX(w) = 1, see [4, 9, 10, 11, 12] and others. This convention is
also more compatible with definitions of standard complexity classes of recognizer
P systems [18]. We suggest the following definition:

Definition 3 A recognizer SN P system satisfies the following conditions: all com-
putations are halting, and the output neuron spikes no more than once during each
computation. The computation is called accepting if the output neuron spikes ex-
actly once, otherwise it is rejecting.

Observe that the definition is compatible with the variant when the system is
asked to spike at least once in the case of accepting computation. To any such SN
P system we can add another neuron connected to the original output, with two
initial spikes and the rules a→ λ and a3 → a; 0 which emits only the first spike of
those received.

Actually, the difference between the halting and spiking convention is not so
great. The following result is demonstrated in [10].

Lemma 2 Given an SN P system Π with standard or extended rules, with or
without delays, we can construct an SN P system Π′ with rules of the same kinds
as those of Π, such that the output neuron of Π′ spikes if and only if Π halts.

Note that Π′ does not have to halt if Π does not halt. In the other direction,
we can extend Lemma 2 as follows:

Lemma 3 Given a system Π with standard or extended rules, with or without
delays, we can construct a system Π′ with rules of the same kinds as those of Π
which halts if and only if the output neuron of Π spikes.

Proof. The proof technique is inspired by [10]: consider an SN P system Π
(possibly with extended rules), and let σout be its output neuron. Assume, without
loss of generality, that σout has no outgoing synapses. We construct an SN P system
Π′ as follows:
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1. We “triple” the system Π by:

• tripling the number of spikes present in the initial configuration in each
neuron,

• replacing each rule E/ac → ap; d with 3E/a3c → ap; d, where 3E is a
regular expression for the set {www |w ∈ L(E)},
• tripling each neuron σc except for σout : adding two identical neurons
σc′ , σc′′ and adding new synapses: if σc had originally a synapse to a
neuron γ, now each of σc, σc′ and σc′′ will have synapses to each of γ,
γ′ and γ′′.

Let us denote the “tripled” system by 3Π.

2. We add to each neuron of 3Π the rule (aaa)∗aa/a→ a.

3. Let dmax denote the maximum delay used in any spiking rule appearing in
Π. We add to 3Π a module described in Fig. 2, where the neuron σ0 has
an incoming synapse from σout and σhalt has an outgoing synapse to each
neuron of 3Π.

The resulting system is denoted by Π′. Observe that each neuron in 3Π spikes
if and only if its original version spikes in Π. If a neuron σc in Π contains n spikes
in a certain moment, then each of σc, σc′ and σc′′ in 3Π contains 3n spikes.

⇐ Suppose that the output neuron σout of Π spikes. Then the circuit in Fig. 2
produces dmax+1 consecutive spikes. Each neuron of 3Π receives a spike, its
accumulated number spikes increases to 3n+1, n ≥ 0, and none of its original
rules can be applied. When receiving more spikes from σhalt, neurons apply
the rule(aaa)∗aa/a→ a to contain again 3n+1 spikes. The spikes produced
by the rule (aaa)∗aa/a→ a circulate in the system 3Π but, as all the neurons
are triplicated, each neuron can receive 3k of these spikes, for some integer
k ≥ 0, and hence it will contain 3(n + k) + 1 spikes. Observe also that the
neuron σ0 in Fig. 2 spikes only once when σout spikes for the first time.
Eventual subsequent spikes received from the neuron σout are consumed by
the rule a→ λ.
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Fig. 2 A module emitting dmax + 1 consecutive spikes after the output neuron
spikes.
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When the neuron σout spikes, some of the neurons of 3Π may be closed due to
their refractory periods. This period would end in dmax steps during which
the neuron σhalt keeps emitting spikes. Hence, after this period, each neuron
of 3Π will keep 3n+ 1 spikes, for some n ≥ 0, and cannot spike any more.

Finally, consider neurons σp1 and σp2 in Fig. 2 which spike at each step since
the beginning of computation, until the neuron σhalt spikes. When receiving
a spike from σhalt and σp2 simultaneously, the neuron σp1 contains more
than one spike and cannot spike any more. In the next step the neuron σp2

becomes empty and spikes no more. Hence the whole system Π′ halts.

⇒ Suppose that Π′ halts, which implies that also the neurons σp1 and σp2 stop
spiking. As explained in the previous paragraph, this happens only if the
neuron σhalt spikes. The neuron σhalt can spike only if it receives a spike
from some of neurons σ0, . . . , σdmax in Fig. 2, and this happens only if the
neuron σ0 receives a spike from σout. Therefore, the output neuron σout of Π
spikes.

2

3.3 Descriptional complexity versus size of SN P systems

In the next sections we deal with uniform families of SN P systems, so we need to
specify the size of each member of a family. According to [11], the size of an SN
P system Π is based on the number of bits necessary for its full description. Let
m be the number of neurons, N be the maximum natural number that appears in
the definition of Π – the maximum of the number of the neurons, the number and
the length of the rules, the number of synapses. Further, let R be the maximum
number of rules which occur in its neurons, and S be the maximum size required
by the regular expressions in succinct form that occur in Π. (The succinct form
means that an expression an is represented just by O(log n) bits.) Then the total
size of description of Π is polynomial with respect to m, R, S and logN.

Some authors [6, 10, 12] distinguish between the size of an SN P system and the
size of its description. They point out that the initial number of spikes in neurons
or the length of (unary) strings in regular expressions can be exponential with
respect to the size of description of the system. They conclude that an exponential
time might be needed to construct such an SN P system. However, spikes in
neurons correspond to an electric potential and not physical objects. Also in recent
implementations in silico the number of spikes is represented as a binary value.
Then one does not need an exponential time to construct such an SN P system.
Hence, we assume the size of an SN P system and the size of its description the
same.

4. Families of Recognizer SN P Systems

In this section we propose a formal specification for families of SN P systems. All
definitions in this section are inspired by [18] which studies families of P systems
working with objects.
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Definition 4 A family Π = {Π(w)| w ∈ IX} (respectively, Π = {Π(n)| n ∈
N}) of recognizer SN P systems without input (resp., with input) is polynomially
uniform by Turing machines for any instance w ∈ IX (resp., n ∈ N) if there exists
a deterministic Turing machine working in polynomial time which constructs the
system Π(w) (resp., Π(n)).

In the sequel we will denote such a family simply as uniform. The selection of a
proper member of the family and its input in the case of families of SN P systems
with input is done as follows.

Definition 5 Let X = (IX , θX) be a decision problem, and Π = {Π(n)| n ∈ N}
a family of recognizer SN P systems with input membrane. A polynomial encoding
of X in Π is a pair (cod; s) of polynomial-time computable functions over IX such
that, for each instance w ∈ IX , cod(w) is a binary string – an input of the system
Π(s(w)) and s(w) is a natural number (obtained by means of a reasonable encoding
scheme).

The common case is that s(w) is the length of the instance w ∈ IX (recall that
each instance is a string over a finite alphabet). As Definitions 4 and 5 conform
those in [18, 19], we can adopt the following result whose proof in [19] is not affected
by a different type of P system.

Lemma 4 Let X1, X2 be decision problems, r a polynomial-time reduction from
X1 to X2, and (cod; s) a polynomial encoding of X2 in Π. Then, (cod ◦ r; s ◦ r) is
a polynomial encoding of X1 in Π.

Let R denote an arbitrary type of recognizer SN P systems. To describe a
specific type R of SN P systems, we denote:

−reg for systems with regular expressions restricted to the form an, n ≥ 1,

−del for systems without delays,

ssnf for systems with regular expressions in the single-star normal form.

The following definitions are inspired by [18] and [10].

Definition 6 Let f : N → N be a Turing-constructible function. We denote by
SN∗

R(f) the class of decision problems solvable by a family of recognizer SN P
systems of type R without input in time bounded by f. A problem X is in SN∗

R(f)
if a family Π = {Π(w)| w ∈ IX} exists such that:

• The family Π is polynomially uniform by Turing machines.

• The family Π is f -bounded with respect to X; that is, for each instance w ∈
IX , every computation of Π(w) performs at most f(|w|) steps.

• The family Π is sound with respect to X; that is, for each w ∈ IX , if there
exists an accepting computation of Π(w), then θX(w) = 1.

• The family Π is complete with respect to X; that is, for each w ∈ IX , if
θX(w) = 1, then every computation of Π(w) is an accepting computation.
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Note that a recognizer SN P system solving an instance w due to the above
definition can have different possible computations but with the same result. Such
an SN P system is also called confluent. Obviously, not all recognizer SN P systems
are confluent. The family Π is said to provide a semi-uniform solution to the
problem X. In this case, for each instance of X we have a special SN P system.
Specifically, we denote by

PSN∗
R =

∪
f polynomial

SN∗
R(f)

the class of problems to which uniform families of SN P systems of type R without
input provide semi-uniform solution in polynomial time. Analogously, we define
families which provide uniform solutions to decision problems.

Definition 7 Let f : N → N be a constructible function. We denote by SNR(f)
the class of decision problems solvable by a family of recognizer SN P systems of
type R with input in time bounded by f. A problem X is in SNR(f) if a family
Π = {Π(n)| n ∈ N} exists such that:

• The family Π is polynomially uniform by Turing machines.

• There exists a polynomial encoding (cod, s) of X in Π such that:

– The family Π is f -bounded with respect to X; that is, for each instance
w ∈ IX , every computation of Π(s(w)) with input cod(w) performs at
most f(|w|) steps.

– The family Π is sound with respect to (X, cod, s); that is, for each
w ∈ IX , if there exists an accepting computation of Π(s(w)) with in-
put cod(w), then θX(w) = 1.

– The family Π is complete with respect to (X, cod, s); that is, for each
w ∈ IX , if θX(w) = 1, then every computation of Π(s(w)) with input
cod(w) is an accepting computation.

The family Π is said to provide a uniform solution to the problem X. Again,
we denote by

PSNR =
∪

f polynomial

SNR(f)

the class of problems to which uniform families of SN P systems of type R with in-
put provide uniform solution in polynomial time. When R is omitted, the standard
definition of SN P systems is assumed.

Observe that, when X ∈ SN∗
R(f), each instance w ∈ IX is solved by a specific

SN P system Π(w) and the description of w is encoded in the structure of Π(w), on
one hand. On the other hand, when X ∈ SNR(f), then all the instances w ∈ IX
of the same length n = s(w) are solved by the same SN P system Π(n) and their
encodings cod(w) are sent as spike trains to the input neuron of Π(n). Given a
particular instance w, it is very easy to add to Π(n) a set of neurons which would
produce the spike train cod(w) so that the input is not needed. Therefore, for any
constructible function f and a class of SN P systems R we have

SNR(f) ⊆ SN∗
R(f) and PSNR ⊆ PSN∗

R.
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Theorem 1 The classes SNR(f) and SN∗
R(f) are closed under the operation of

complement, for R omitted or R ∈ {−reg,−del, ssnf}.

Proof. It is necessary to show that for each confluent SN P system Π there exists
a system Π′ whose computation is accepting if and only if the computation of Π
is rejecting. Assume the construction described in Section 4, Fig. 6 in [10]. It
presents a module which, when added to any SN P system Π, emits a spike only
after the system Π halts. The provided construction works for many variants of SN
P systems (i.e., with or without delay, with simplified regular expressions restricted
to the form λ or a∗, and also for SN P systems with extended rules).

Note that this module contains a set of rules ak → a; 0 for all k ∈ K, where K
is the set constructed as follows. For each neuron σi of Π, 1 ≤ i ≤ n (where n is
the degree of Π) denote

Pi =
∪

1≤i≤n

{p |E/ac → ap; d is a rule of σi},

and

K =

{
n∑

i=1

pi | pi ∈ Pi

}
− {0}. (1)

Hence K contains sums of all possible n-tuples containing one element of each Pi,
hence the number of these n-tuples may be exponential with respect to n. However,
in such a case many of these sums will be equal. Let

pmax = max{p |E/ac → ap; d is a rule of σi},

then each sum on the right-hand side of (1) will be bounded by npmax. Therefore,

K ⊆ {1, 2, . . . , npmax}

and hence the size ofK is linear with respect to n. (However, in the case of extended
SN P systems with pmax ≫ n, the size of K could be exponentially greater than
the size of Π which is polynomial with respect to n log pmax, see Section 3.3).

Let us extend the module in Fig. 6 in [10] as follows. Denote σhalt the output
neuron of this module. Let a spike emitted from σhalt after halting of the system
Π feed two new neurons, each with a rule a→ a; 0. Finally, add a new neuron σout′

with incoming synapses from these two neurons, another synapse from σout, i.e.,
the original output neuron of Π, and with a rule a2 → a; 0. The resulting module
is displayed in Fig. 3, where D is a maximum delay in any of the rules of Π. Let
σout′ be the output neuron of Π′. Note that σout′ spikes if and only if Π halts and
its output neuron σout does not spike which concludes the proof. 2

Note that the above proof also holds for a certain subclass of extended SN
P systems with pmax bounded from above by poly(n). This condition guarantees
that the size of the complementary system is polynomial with respect to the size
of the original system, hence the family remains polynomially uniform by Turing
machines. It is an open problem whether an analogous result holds for unrestricted
extended SN P systems.
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Fig. 3 A module emitting a spike if and only if the system Π halts and its output
neuron σout does not spike.

Corollary 1 The classes PSNR and PSN∗
R are closed under the operation of

complement, for R omitted or R ∈ {−reg,−del, ssnf}.

Theorem 2 Let R be an arbitrary class of SN P systems, i.e., R ∈
{−reg,−del, ssnf} or R omitted. Let X and Y be decision problems such that
X is reducible to Y in polynomial time. If Y ∈ PSNR (respectively, Y ∈ PSN∗

R),
then X ∈ PSNR (resp., X ∈ PSN∗

R).

Proof. We prove the case of SN P systems with input, adopting the technique used
in [19], the case without input is analogous. Let Π be a family providing uniform
solution to the problem Y. By its definition, let p be a polynomial and (cod, s) a
polynomial encoding of Y in Π such that Π is p-bounded with respect to Y and
sound and complete with respect to (Y, cod, s).

Let r : IX → IY be a polynomial time reduction from X to Y, hence there is a
polynomial q such that for each w ∈ IX , |r(w)| ≤ q(|w|). Observe that:

• By Lemma 4, (cod ◦ r; s ◦ r) is a polynomial encoding of X in Π.

• Π is (p ◦ q)-bounded with respect to X since for each w ∈ IX , every com-
putation of Π(s(r(w))) with input cod(r(w)) performs at most p(|r(w)|) ≤
p(q(|w|)) steps.

• Π is sound and complete with respect to (X, cod ◦ r, s ◦ r) since for each
w ∈ IX ,

– if there exists an accepting computation of Π(s(r(w))) with input
cod(r(w)), then θY (r(w)) = 1 and, by reduction, also θX(w) = 1,

– if θX(w) = 1, then also θY (r(w)) = 1 and hence every computation of
Π(s(r(w))) with input cod(r(w)) is an accepting computation.
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Fig. 4 A standard deterministic SN P system solving the problem co-Subset Sum
in two steps. The regular expression E is derived from a particular case of

co-Subset Sum.

Consequently, X ∈ SNR(p ◦ q) and hence also in PSNR. 2

5. Efficiency of Basic Classes of SN P Systems

As we have already mentioned, no standard SN P system can simulate Turing
machine with less than exponential time and space overheads ([13]). Therefore, we
focus on families of recognizer SN P systems in this section. We start with a simple
variant of SN P systems with restrictions imposed on their regular expressions.
Results in [11, 20] imply that their computational power is equivalent to P.

Theorem 3 PSN−reg,−del = PSN∗
−reg,−del = PSNssnf = PSN∗

ssnf = P.

Proof. By Theorem 9 in [20], for each confluent (resp. non-confluent) SN P system
Π with all regular expressions in single-star normal form and with description of
size s, there is a deterministic (resp. non-deterministic) Random Access Machine
(RAM) constructed in polynomial time with unit cost of operations which simulates
t steps of Π in time O(t(t+s)). Due to a polynomial number of steps of computation
for PSNssnf and PSN∗

ssnf we can write PSNssnf ⊆ PSN∗
ssnf ⊆ P.

Furthermore, let CRCW(poly(n), T (n)) be the class of problems solved by a
CRCW PRAM (Concurrent Read Concurrent Write Parallel RAM, for definitions
see, e.g., [2]) with a polynomial number of processors in time T (n). By Theorem
14 in [20], CRCW(poly(n), T (n)) ⊆ SN−reg,−del(T (n)) for an arbitrary poly-
nomial T. From the observation that CRCW(poly(n), poly(n)) = P we obtain
that P ⊆ PSN−reg,−del. Finally, by definition, PSN−reg,−del ⊆ PSN∗

−reg,−del,
PSN−reg,−del ⊆ PSNssnf and PSN∗

−reg,−del ⊆ PSN∗
ssnf , and we get the state-

ment of the theorem. 2

These results show that families of standard confluent SN P systems can reach
the computational power beyond P only with the aid of complex regular expres-
sions. Whenever we release the condition of single star normal forms in regular
expressions, the computational power of SN P systems reaches the class NP.

In the proof of the next Theorem 4 we refer to Proposition 1 in [11] which is
recalled here:
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Proposition 1 ([11]) Let Π be an SN P system having a single neuron that con-
tains a spiking rule E/ac → a; d. If E is described in a succinct form, then deciding
whether this rule can be applied is at least NP-hard.

Recall that the succinct form means that an expression an is represented by
O(log n) bits. We refer the reader to [15], Chapter 20 for more details.

Theorem 4 Let regular expressions and initial numbers of spikes in neurons in
SN P systems be described in succinct form. Then (NP ∪ co-NP) ⊆ SN∗

−del(2).

Proof. A part of the statement concerning NP follows by the proof of Proposition
1 in [11] which presents a construction of standard deterministic SN P system
without delays solving the NP-complete problem Subset Sum in one step. Each
instance of Subset Sum is solved by a specific SN P system, forming a family of
recognizer SN P systems without input. By the polynomial time reducibility, also
any other NP-complete problem can be solved by such a family.

By Theorem 1, also the complementary problem co-Subset Sum (which is
co-NP-complete) can be solved in the same way. Actually, in this case it is enough
to add two more neurons which add one more step of computation. Let V =
({v1, v2, . . . , vn}, S) be an instance of co-Subset Sum. The corresponding SN P
system is illustrated in Fig. 4, where the regular expression E adopts the form
E = (λ ∪ av1) · (λ ∪ av2) · · · (λ ∪ avn). 2

Corollary 2 Let regular expressions and initial number of spikes in neurons in SN
P systems be described in succinct form. Then (NP ∪ co-NP) ⊆ PSN∗

−del.

Note that if one assumes unary representation of regular expressions and of
number of spikes in neurons, then uniform families of standard confluent SN P sys-
tem cannot solve NP-complete problems unless P = NP. Recall that any confluent
SN P system with simple regular expressions can be simulated by a deterministic
Turing machine in polynomial time ([11]). With the unary representation, one can
extend the result also to general regular expressions: an expression E can be trans-
formed into the equivalent non-deterministic finite automaton (NFA) in polynomial
time. Then it is decidable in polynomial time with respect to the size of E and k,
whether the NFA accepts the string ak representing k spikes in a neuron.

It remains an open problem whether a result analogous to Corollary 2 holds
for standard confluent SN P systems with input. We conjecture that this can be
achieved only with the aid of maximal parallelism or extended rules which would
allow to transform rapidly a binary input to an exponential number of spikes present
in some neuron as in [12]. Other known solutions to NP-hard problems with families
of SN P systems use various extension of the standard definition, as non-confluent
and non-deterministic SN P systems ([10, 11]) or exponential number of neurons
([4, 9]).

To establish an upper bound on the power of standard confluent families of SN
P systems with unlimited regular expressions, we need the following lemma first:

Lemma 5 Matching of a regular expression E of size s in succinct form over a
singleton alphabet with a string ak can be done on a RAM in non-deterministic
time O(s log k).
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Proof. Assume that we have the syntactic tree of the expression E at our disposal
(its parsing can be done in deterministic polynomial time). We treat the sub-
expressions of the form an as constants and assign them a leaf node of the tree
with the value n. The matching algorithm works as follows:

• Produce non-deterministically a random element of L(E) in succinct form
by the depth-first search traversal of its syntactic tree: start in the root and
evaluate recursively each node depending on its type as follows:

– leaf node containing a constant: return the value of the node;

– catenation: evaluate both subtrees of this node and add the results;

– union: choose non-deterministically one of the subtrees of this node and
evaluate it;

– star: draw a random number of iterations x within the range ⟨0, k⟩,
evaluate the subtree starting in this node and multiply the result by x.

• Compare the drawn element of L(E) with ak whether they are equal or not.

Whenever, during the evaluation, the computed value exceeds k, the algorithm
halts immediately and reports that ak does not match L(E). This guarantees that
the number of bits processed in each operation is always O(log k).

Each of the elementary operations described above can be performed in constant
time on RAM with unit instruction cost, except the multiplication which requires
O(log k) time. Total number of tree-traversal steps is O(s). 2

Theorem 5 PSN∗ ⊆ PSPACE

Proof. It has been shown in [11] that any confluent SN P system with simple
regular expressions can be simulated by a deterministic Turing machine in polyno-
mial time. Assuming general regular expressions, by Lemma 5, their matching can
be done in non-deterministic polynomial time, and, since NP ⊆ PSPACE, also
in deterministic polynomial space. Indeed, if one replaces the random selection in
the proof of Lemma 5 by the depth-first search of all configurations reachable by
making non-deterministic choices, one gets a deterministic algorithm running in
polynomial space and exponential time.

Denote by s the size of description of an SN P system Π. Observe that the
total number of bits to describe spikes in all neurons after t steps of computation
is O(s+ t) even in the case of maximal parallelism or exhaustive rules. The total
size of all regular expressions in Π is O(s). Hence, by Lemma 5, the simulation of
Π performs in polynomial space with respect to s+ t. 2

Finally, let us note that deterministic solutions to PSPACE-complete problems
QSAT and Q3SAT with families of SN P systems with pre-computed resources
(i.e., with exponential amount of neurons) have been shown in [8].
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Sośık P., Patón A., Ciencialová L.: Polynomial computations in SN P systems

6. Conclusion

We have introduced uniform families of standard confluent SN P systems and
studied their closure properties and computational power under polynomial time
restriction. Several factors influencing the results were focused on the input encod-
ing, the form of output (halting versus spiking), the descriptional complexity, the
form of regular expressions. It is an open problem whether the closure properties of
these families can be extended to the case of unrestricted extended SN P systems.

It was shown that, with the restriction of regular expressions to the single star
normal form, these families of SN P systems characterize the class P. It remains
an open problem whether this condition can be further relaxed.

When complex regular expressions are allowed (but note that the operation * is
not necessary), these families of SN P systems without input are capable to solve
NP-complete problems in constant time, but this is only due to the capability
of quick parsing of regular expressions. The succinct representation of regular
expressions and of spikes in neurons is necessary to achieve this computational
potential (unless P=NP). Finally, the power of these families under polynomial
time restriction is bounded from above by PSPACE.

While presenting the results related to classes NP and PSPACE, families of
SN P systems without input were considered. It is an open problem whether these
results can be extended also to families of standard confluent SN P systems with
input, but it is likely that extended rules and/or maximal parallelism must be
allowed to achieve that.
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