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Abstract: Inspired by Rakonczai et al. [8], we use autocopulas for the testing of
linearity against Markov-switching type of nonlinearity and remaining nonlinearity.
They applied this autocopula approach to testing heteroscedasticity in AR-ARCH
model. Given a strictly stationary time series Yt, a k-lag autocopula is a bivariate
joint distribution function of the random vector (Yt, Yt−k). Our contribution is in
extending the idea to test the linearity against Markov-switching type of nonlin-
earity and remaining nonlinearity [5, 6] in order to avoid classical, time-consuming
tests.
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1. Introduction

It is convenient to test linearity against nonlinearity of a given time series before
using nonlinear models. The aim is to apply simpler linear models prior to com-
plex nonlinear models whenever possible. This step is a part of the procedure for
nonlinear modeling proposed by Granger [3]:

1. Select an appropriate linear model AR(q) for the given time series (q is a
model order).

2. Test the linearity against the nonlinearity. If the null hypothesis about lin-
earity is rejected, the step 3 will follow.

3. Estimate the parameters of the selected nonlinear model.

4. Check the appropriateness of the selected model by diagnostic tests (autocor-
relation tests, a heteroskedasticity test and a test for remaining nonlinearity).

5. Modify the model if required.

∗Jana Lenčuchová
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6. Use the model for the description of examined time series and for prediction
purposes.

As shown in many applications, the linear model is not often sufficient because
the examined time series shows a nonlinear character. Such event is typical for
economic and financial time series. In this paper, we focus on one particular type
of nonlinear model, so-called Markov-switching model (hereafter MSWmodel) from
the class of regime-switching models with the regimes determined by unobservable
variables. It means that occurrence of each regime in time is followed by some
probability.

The MSW models were first introduced by Goldfeld and Quandt [2] in 1973 but
their popularity has been rising since the publication by Hamilton [4] in 1990. He
specified the stochastic process of switches between regimes as a first-order Markov
process.

This paper analyzes the issues of testing in step 2 and partially in step 4 in
the already mentioned procedure. There are standard LR tests at disposal. But
there are some obstacles for their use, such as enormous computation requirements,
problems with likelihood function and nuisance parameters unidentified under the
null hypotheses. All these are described in details in the paper by Hansen [6].

These difficulties brought us to the idea of employing the autocopula approach
invented by Rakonczai et al. [8]. They use the autocopula tool to distinguish be-
tween AR and AR-ARCH model in the sense of detecting conditional heteroscedas-
ticity.

Autocopulas are copulas which are related to a time series. Defining arbitrary
lag, the autocopula is the copula of the original and lagged time series in the binary
case. The advantage of their use is the ability of describing the interdependence
structure by taking the nonlinear relationship into account, unlike the autocorre-
lation function.

This concept seems to be suitable for our necessity to tell apart some linear and
nonlinear MSW model or two MSW models with different number of regimes.

This paper is organized as follows. After introduction, brief theory about cop-
ulas, autocopulas and copula goodness-of-fit test is summarized in the Sections 2
and 3. Section 4 describes the MSW models, classical approach to testing linearity
against the MSW-type of nonlinearity and remaining nonlinearity with the pro-
posed alternatives by using of autocopulas. Further, there is a simulation study
and conclusion is made.

2. Copulas and Autocopulas

Firstly, a bivariate copula function is defined [7].

Definition 1 A copula is a function C from [0, 1]× [0, 1] to [0, 1] with the following
properties:

(i) boundedness - for every u, v in [0, 1]

C(u, 0) = C(0, v) = 0 (1)
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and

C(u, 1) = u and C(1, v) = v; (2)

(ii) 2-increasing property - for every u1, u2, v1, v2 in [0, 1] such that u1 ≤ u2 and
v1 ≤ v2,

C(u2, v2)− C(u1, v2)− C(u2, v1) + C(u1, v1) ≥ 0. (3)

Sklar [9] proved in 1959 that H(x, y) = C(F (x), G(y)), where H is the joint
distribution function of a random vector (X,Y ) with marginals F and G. If the
marginals are continuous, the copula is unique. Thus, the copula function has other
important interpretation as the joint distribution function.

Definition 2 Given a strictly stationary time series Yt and l ∈ Z+, the l-lag
autocopula CY,l is the copula of the bivariate random vector (Yt, Yt−l). The l-lag
autocopulas as the function of the lag l give the autocopula function.

A large amount of copula families has been defined so far. One very well-
known is called Archimedean class of copulas (see examples in Tab. I), which is
characterized by the so-called generator function. This generator function ϕ(t)
is defined on [0, 1] mapping to [0,∞] and it is convex, decreasing with condition
ϕ(1) = 0. Such copula is defined by

C(u, v) = ϕ[−1](ϕ(u) + ϕ(v)) (4)

for all u, v ∈ [0, 1], where ϕ[−1] : [0,∞]→ [0, 1] is a pseudo-inverse of the generator.
The formal definition of the pseudo-inverse of the generator is

ϕ[−1](t) =

{
ϕ−1(t) 0 ≤ t ≤ ϕ(0)
0 ϕ(0) ≤ t ≤ ∞.

(5)

The pseudo-inverse with generator gives an identity

ϕ[−1](ϕ(t)) = t. (6)

Name Cθ(u, v) ϕθ(t) Parameter

Gumbel e−((− lnu)θ+(− ln v)θ)
1
θ

(− log t)θ θ ∈ [1,∞)

Frank − 1
θ ln

(
1 +

(e−θu−1)(e−θv−1)
(e−θ−1)

)
− log e−θt−1

e−θ−1
θ ∈ (−∞, 0)

∪
(0,∞)

Clayton
(
u−θ + v−θ − 1

)−1
θ t−θ − 1 θ ∈ (0,∞)

Joe 1−
(
(1− u)θ + (1− v)θ − (1− x)θ(1− v)θ

)1/θ − log
(
1− (1− t)θ

)
θ ∈ [1,∞)

Ali-Mikhail-Haq uv
1−θ(1−u)(1−v)

1−θ
et−θ θ ∈ [−1, 1)

Tab. I Some families of Archimedean copulas.
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3. Copula Goodness-of-Fit (GoF) Test

The fit of copulas should be measured to be able to compare different models. This
GoF test is based on Kendall’s transform of the joint distribution function, which
reduces multivariate problem to one dimension as follows

K(t) = Pr(H(X,Y ) ≤ t) = Pr(C(F (X), G(Y )) ≤ t) = Pr(C(u, v) ≤ t). (7)

The empirical version of K is calculated by the formula

Kn(t) =
1

n

n∑
i=1

1(Ein ≤ t), (8)

where

Ein =
1

n

n∑
j=1

1(uj ≤ ui, vj ≤ vi)

is so-called empirical copula and {(ui, vi), i ∈ {l + 1, ..., n}} is a sample. We use
Cramér-von Mises type test statistics

Sn =

∫ 1

0

(κn(t))
2dt (9)

based on Kendall’s process κn(t) =
√
n(K(θn, t) − Kn(t)) for checking the match

of the “theoretical” K(t) and its empirical version. These test statistics are inves-
tigated in Genest et al. [1] in detail. Numerical approximation of (9) with mod-
ifications to capture tail behavior as suggested also in [9] can be seen in Tab. II,
where (ti)

m
i=1 is an appropriately fine division of the interval (0, 1).

Focused Regions Test statistics

Global S1 = 1
m

∑
ti∈[0+ϵ,1−ϵ](K(θn, ti)−Kn(ti))

2

Upper Tail S2 = 1
m

∑
ti∈[0+ϵ,1−ϵ]

(K(θn,ti)−Kn(ti))
2

1−K(θn,ti)

Lower Tail S3 = 1
m

∑
ti∈[0+ϵ,1−ϵ]

(K(θn,ti)−Kn(ti))
2

K(θn,ti)

Lower and Upper Tail S4 = 1
m

∑
ti∈[0+ϵ,1−ϵ]

(K(θn,ti)−Kn(ti))
2

K(θn,ti)(1−K(θn,ti))

Tab. II Numerical approximation of Cramér-von Mises type test statistics (9).

4. Testing Linearity Against MSW Type
of Nonlinearity

Let us use the basic autoregressive MSW model, which assumes AR(q) model in
each regime

yt = φ0,st + φ1,styt−1 + ...+ φq,styt−q + ϵt, st = 1, 2, ..., N, (10)
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for t = q+1, ..., T , where T is the length of time series, {ϵt} is iid process and ϵt ∼
N(0, σ2

ϵ ). Notice that the value of an observation yt in autoregressive coefficients
is dependent on variable st, which is random and unobservable. It determines the
so-called “regime” or “state”. In case of N possible regimes, such random variable
can attain values from the set {1, 2, ..., N}. The way of changing regimes is defined
by the process {st}, which is specified as a first-order Markov process (Hamilton
1990 [4]). It holds that

Pr(st = j|st−1 = i, st−2 = k, ...) = Pr(st = j|st−1 = i) = pij , (11)

where i, j, k = 1, . . . , N . Transition probability pij means that the probability
of the regime j in time t is conditional only on the previous regime i in time
t− 1. So-called transition matrix P = (pij)

N
i,j=1 is created with these probabilities.

Obviously, it is satisfied that
∑N

j=1 pij = 1 for all i = 1, ..., N . The process is also
homogenous because it is time-invariant on time.

This type of model is widely used in economics and finance for time series with
nonlinear dynamic behavior such as Gross Domestic Product (considering regime
of growth, recession and stagnation). The regimes are determined by unobservable
variable, thus we know the probability with which the process is in a certain state.

The next subsections deal with the classical approach to the test of linearity
against the MSW type of nonlinearity and with the new proposed test using auto-
copulas.

4.1 Classical approach

Classical testing linearity against the MSW-type of nonlinearity is computed via
likelihood ratio test, where the null hypothesis is represented by a linear model,
which in terms of the 2-regime MSW model can be written by the equality of
autoregressive coefficients in both regimes as H0 : φ1 = φ2 against the alternative
H1 : φi,1 ̸= φi,2 for at least one i ∈ {0, 1, 2, ..., q}.

Likelihood ratio test statistic is difference between loglikelihood functions of a
MSW model and a corresponding linear equivalent

L = LMSW − LAR. (12)

Unfortunately, this test statistic has no standard probability distribution
(Hansen 1992 [6]), which means that it cannot be expressed by analytical for-
mula. Actually, here we encounter the problem of non-defining of the nuisance
parameters such as transition probabilities under the null hypothesis. Simulation
can resolve it, but it requires “days” spent by computations for a bigger amount
of tested time series. Such simulation experiment consists of generating a large
number of artificial time series y∗ under the null hypothesis, then of estimating pa-
rameters of both models for each generated time series and calculating simulated
critical values from the test statistic (12). All has to be done for each time series
and for each model order q, respectively.
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4.2 Goodness-of-fit test for autocopulas

Unlike the classical approach, the test using autocopulas is completely different.
We try to find out whether this test is capable to catch the MSW type of non-
linearity comparing with linearity represented by an autocopula fitted to linear
autoregressive model series.

The fit of autocopula models at different lags l has to be checked after estimating
a given time series model. Formally, the null hypothesis of the GoF testH0 : Cyt,l ∈
C0,l = {Cθ,l : θ ∈ Θ} for any lag l ≥ 1.

Let us have the time series y1, y2, ...., yT . Then, a l-lag sample pairs of observa-
tions is {(yt, yt−l), t ∈ {l+1, ..., T}}. But the sample for an autocopula needs to be
adapted to the copula assumption for iid observations. Thus, only every sth pair
is taken from the set of pairs below to destroy serial dependence between them.
Dependence between dimensions should only remain. The new thinned set of time
points is denoted as T = {l + 1, s + l + 1, 2s + l + 1, ..., rs + l + 1 ≤ T}, where
|T | = r + 1 is the new thinned sample size, {(yt, yt−l), t ∈ T }. Value s should be
large enough but we still need to have a sufficient number of pairs for testing. Then,
one has to map margins to the unit interval by means of the empirical univariate
distribution function with probability integral transformation (PIT) defined by

{(
∑

j∈T 1(yj ≤ yi)

|T |+ 1︸ ︷︷ ︸
ui

,

∑
j∈T 1(yj−l ≤ yi−l)

|T |+ 1
)︸ ︷︷ ︸

vi

: i ∈ T }.

Now we got the sample {(ui, vi), i ∈ T } with uniformly distributed margins.
The testing procedure consists of:

1. Simulate AR time series with the size n = 10000 for 500 times.

2. Obtain their l-lag autocopula sample from the series thinned by s = 10.

3. Calculate the test statistics Si,j , i = 1, ..., 4 and j = 1, ..., 500 and choose the
0,95 quantiles as critical values Qi;0,95, i = 1, ..., 4.

4. Simulate the MSW model time series with the size n = 10000 for 500 times.

5. Obtain their l-lag autocopula sample from the series thinned by s = 10.

6. Calculate the test statistics Si,j , i = 1, ..., 4, j = 1, ..., 500 and reject H0

whenever Si,j > Qi;0,95.

Then, we can calculate a rejection rate of the null hypothesis referring to a
linear model against the alternative of a 2-regime MSW model.

5. Testing Remaining Nonlinearity

The idea above is also applied to the test of remaining nonlinearity. The null hy-
pothesis is represented by a 2-regime MSW (MSW2) model against the alternative
of a 3-regime MSW (MSW3) model. The test is carried out via a likelihood ratio
with the following test statistic:
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L = LMSW3 − LMSW2. (13)

The same story about the enormous time-consumption test holds for the stan-
dard test for the remaining nonlinearity.

The testing procedure using autocopulas is the same but instead of the sample
simulated from an AR model we need a sample from a 2-regime MSW model and
instead of the model with 2-regimes it is required to simulate time series sample
from a 3-regime MSW model.

6. Simulation Experiments

Two main experiments were done. The first one for testing linearity against MSW
type of nonlinearity and the second one for the testing remaining nonlinearity.

6.1 Setting values

We need three time series models: a linear autoregressive model, a 2-regime MSW
model and a 3-regime MSW model. The starting input values are set as follows:

• linear autoregressive model of order q = 1 with φ0 = 0;φ1 = 0, 5 (hereafter
AR(0,5))

• 2-regime MSW model of the same order in both regimes with φ10 = 0; φ11 =
0, 7; φ20 = 0; φ21 = 0, 3 and the transition matrixP = {{0, 6; 0, 7}, {0, 4; 0, 3}}
(hereafter MSW2(0,7;0,3) for the transition matrix given below if not speci-
fied otherwise)

• 3-regime MSW model of the same order in all three regimes with φ10 = 0;
φ11 = 0, 7; φ20 = 0; φ21 = 0, 3; φ30 = 0; φ31 = 0, 1 and the transi-
tion matrix P = {{0, 2; 0, 8; 0, 4}, {0, 3; 0, 1; 0, 2}, {0, 5; 0, 1; 0, 4}} (hereafter
MSW3(0,7;0,3;0,1) for the transition matrix given below if not specified oth-
erwise)).

The random innovations ϵt are drawn from N(0, 1) and the same are injected
to both models. Significance level is set to α = 0, 05; the sample size n = 10000
and the thinning parameter s = 10. Copula parameters were estimated by the
minimization of L2 norm distance between an exact and empirical copula.

Also, other model settings were investigated, thus some of parameters such
as autoregressive parameters and transition matrices were altered (see Tabs. IV
and V).

To detect time series lagged interdependence, these well-known copulas were
employed to look for the copula closest to the one generated by MSW model:
Gumbel, Frank, Clayton, Joe, Ali-Mikhail-Haq, Farlie-Gumbel-Morgenstern, and
Gaussian copula.
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6.2 Results – testing linearity against MSW-type
of nonlinearity using autocopulas

By this test we try to identify a deviation from linearity especially to nonlinearity
of the MSW-type. Tab. III offers results of the ability to distinguish between the
linear model representing the null hypothesis and the 2-regime MSW model in the
alternative. The Frank copula achieved the highest ability to reveal such deviaton in
47,2% of all cases for 1-lag autocopula for the test statistics S3 (lower tail weighted)
and S4 (lower and upper tail weigthed). Such medium probability results are not
too encouraging. Thus, we continue to analyze an impact of changing parameters
in the 2-regime MSW model. First, the value of the autoregressive coefficient in
the second regime is varied and then the transition matrix.

AR vs. MSW2 model
Copula TS l=1 l=2 l=3

GUMBEL
S1 6,4% 7,6% 6,4%
S2 5,8% 5,6% 6,0%
S3 6,0% 9,2% 5,2%
S4 6,4% 7,0% 5,8%

FRANK
S1 32,0% 36,0% 25,8%
S2 44,4% 32,8% 27,2%
S3 47,2% 37,2% 24,0%
S4 47,2% 36,2% 25,8%

CLAYTON
S1 8,5% 5,5% 9,0%
S2 11,5% 5,5% 12,0%
S3 7,5% 10,5% 8,5%
S4 12,5% 8,5% 11,0%

GAUSSIAN
S1 27,5% 38,5% 11,0%
S2 28,5% 28,5% 12,5%
S3 33,0% 36,5% 14,5%
S4 33,5% 38,5% 12,0%

JOE
S1 11,8% 16,0% 12,4%
S2 7,2% 13,2% 13,4%
S3 16,4% 25,6% 15,8%
S4 12,0% 18,6% 16,0%

FGM
S1 33,2% 6,8% 7,5%
S2 33,4% 9,0% 13,0%
S3 29,6% 9,6% 10,5%
S4 39,4% 10,2% 10,0%

AMH
S1 15,0% 3,6% 1,8%
S2 19,5% 3,8% 1,4%
S3 9,5% 2,8% 1,6%
S4 19,0% 4,2% 1,6%

Tab. III Rejection rates of the null hypothesis of the AR(0, 5) model if the true
model is MSW (0, 7; 0, 3); P = {{0, 6; 0, 7}, {0, 4; 0, 3}}.
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Notice that provided the results in Tab. IV, taking the Frank copula, the re-
jection rates of the null hypothesis are growing with higher value of autoregressive
coefficient φ21, that is the ability to reveal nonlinear interdependences looks up. It
is caused by the increased measure of dependence between variables. Tab. IV also
includes Kendall’s correlation coefficient for each case. The correlation coefficients
of the tested time series should be similar sufficiently because the autocopula with
stronger dependence structure could outperform the weaker one. For the sample
generated from AR(0,5) model, Kendall’s τ = 0, 333.

φ21 0,1 0,3 0,5 0,7 0,9
S1 0% 32% 97% 100% 100%
S2 3% 44% 98% 100% 100%
S3 2% 47% 99% 100% 100%
S4 2% 47% 99% 100% 100%
Kendall’s τ 0,310 0,368 0,430 0,494 0,560

Tab. IV Rejection rates of the null hypothesis of the AR(0, 5) model if the true
model is MSW (0, 7;φ21); P = {{0, 6; 0, 7}, {0, 4; 0, 3}}), lag l = 1, number of simu-

lations = 200 and using Frank copula.

Interesting results appeared in case of changing values in transition matrix
(Tab. V). It seems that the length of regime persistence in the process has serious
effect on the rejection rate. We defined new ones, where there is expressed different
“willingness” of a process to stay in particular regime. First two transition matrices
represent “lazy” process. It is highly probable that the process stays in the same
regime. Here we can observe improved ability to distinguish between the MSW
model time series with long periods in both regimes and the AR model. As we
increased probability p21 and left p11 relatively high (columns 5 and 6 in Tab. V),
we got really significant rejection rates of the null hypothesis under alternative
model being valid. The test failed totally when regimes swapped very often.

P
( 0,9 0,2
0,1 0,8

) ( 0,95 0,1
0,05 0,9

) ( 0,7 0,5
0,3 0,5

) ( 0,6 0,7
0,4 0,3

) ( 0,8 0,7
0,2 0,3

) ( 0,95 0,7
0,05 0,3

) ( 0,1 0,8
0,9 0,2

)
S1 70,5% 80,5% 38,5% 32,0% 94,5% 100% 1,0%
S2 79,0% 83,0% 45,5% 44,4% 96,0% 100% 2,5%
S3 85,0% 89,0% 51,5% 47,2% 96,0% 100% 2,0%
S4 82,5% 87,0% 51,0% 47,2% 98,0% 100% 1,5%

Tab. V Rejection rates of the null hypothesis of theAR(0, 5) model if the true model
is the MSW (0, 7; 0, 3); number of simulations = 200 and using Frank copula.

6.3 Results – testing remaining nonlinearity

The theory of nonlinear modeling says that after the parameter fitting of each
nonlinear model (in our case the 2-regime MSW model), one should use diagnostic
testing for checking model adequacy. Actually we need to know if 2 regimes are fully
sufficient or if there is a space for adding the next regime. Therefore, the 2-regime
with 3-regime MSW model is tested by using autocopulas taking Frank copula, as
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proposed in the subsection above in case of testing linearity against the MSW type
of nonlinearity. Tab. VI shows the poor nearly zero ability to differentiate between
models with 2 and 3 regimes for employed copulas and given input values.

MSW2 vs. MSW3 model

GUMBEL
S1 4,4% 5,5% 6,5%
S2 6,0% 19,5% 9,5%
S3 0,4% 1,0% 7,0%
S4 5,4% 8,0% 8,0%

FRANK
S1 0% 0% 0%
S2 0% 0% 0%
S3 0% 0% 0%
S4 0% 0% 0%

CLAYTON
S1 1,0% 1,5% 0,5%
S2 0% 0% 0%
S3 1,0% 0% 0,1%
S4 0% 0,7% 0,5%

GAUSSIAN
S1 0% 0% 0%
S2 0% 0% 0%
S3 0% 0% 0%
S4 0% 0% 0%

JOE
S1 0,5% 0% 0%
S2 0% 0% 0%
S3 0,5% 0% 0%
S4 0% 0% 0%

FGM
S1 0% 3,0% 12,0%
S2 0% 1,0% 4,0%
S3 0% 1,0% 9,0%
S4 0% 2,0% 9,0%

AMH
S1 0% 0,6% 3,4%
S2 0% 0,2% 3,2%
S3 0% 0,8% 5,6%
S4 0% 0,4% 3,6%

Tab. VI Rejection rates of the null hypothesis of the MSW (0, 7; 0, 3); P =
{{0, 6; 0, 7}, {0, 4; 0, 3}} if the true model is MSW (0, 7; 0, 3; 0, 1); P = {{0, 2; 0, 8;

0, 4}, {0, 3; 0, 1; 0, 2}, {0, 5; 0, 1; 0, 4}}.

Also, the impact of the parameter changing was considered. When the autore-
gressive parameter in the third regime φ31 alternates, the similar story occured as
in the case of testing the linear model against the 2-regime MSW model. The re-
jection rate increased with the higher autoregressive parameter in the third regime,
see Tab. VII. The possible reason for getting such low rejection rates in Tab. VI
is smaller Kendall’s τ = 0, 241 for the 3-regime MSW model generating sample in
the alternative hypothesis. Thus, autocopula from the 3-regime model was some-
how overwhelmed by the one from the 2-regime model with stronger dependence
structure. Concerned for various transition matrices, let us look at Tab. VIII. Su-
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perior ability to reveal remaining nonlinearity is only in the transition matrix with
extremely high transition probabilities from one to the same regime (p11, p22, p33).
Other investigated cases were not so successful or not successful at all.

φ21 0,1 0,3 0,5 0,7 0,9
S1 0% 0% 1,8% 52,4% 99,6%
S2 0% 0% 2,2% 55,2% 99,6%
S3 0% 0% 1,2% 51,6% 99,6%
S4 0% 0% 1,6% 57,0% 100%
Kendall’s τ 0,241 0,298 0,356 0,416 0,478

Tab. VII Rejection rates of the null hypothesis of the MSW (0, 7; 0, 3); P =
{{0, 6; 0, 7}, {0, 4; 0, 3}} model if the true model is MSW (0, 7; 0, 3;φ31); P =
{{0, 2; 0, 8; 0, 4}, {0, 3; 0, 1; 0, 2}, {0, 5; 0, 1; 0, 4}}), lag l = 1, number of simulations

= 200 and using Frank copula.

P

(
0,7 0,1 0,1
0,2 0,8 0,2
0,1 0,1 0,7

) (
0,7 0,1 0,3
0,2 0,8 0,3
0,1 0,1 0,4

) (
0,9 0,01 0,02
0,05 0,95 0,04
0,05 0,04 0,94

) (
0,99 0,01 0,0005
0,005 0,98 0,0005
0,005 0,01 0,999

)
S1 0% 44,0 % 46,5% 95,5%
S2 0% 37,5% 44,5% 96,5%
S3 0% 48,5% 36,0% 88,5%
S4 0% 43,5% 47,5% 96,5%

Tab. VIII Rejection rates of the null hypothesis of the MSW (0, 7; 0, 3) model if
the true model is the MSW (0, 7; 0, 3; 0, 5); number of simulations = 200 and using

Frank copula.

7. Conclusion

The new approach using autocopulas to testing linearity against the MSW type
of nonlinearity and testing remaining nonlinerity was analyzed. There are clas-
sical tests at disposal but they are really time-consuming. We were inspired by
Rakonczai et al. [8], they used autocopulas for testing heteroskedasticity in the
AR-ARCH model. Since the MSW model does not generate an autocopula from
any well-known copula families, we fitted several of them and determined the clos-
est one. We found out that parameter settings of the time series model affect the
dependence structure of autocopula significantly.

Concerning test of linearity against the MSW-type of nonlinearity, in several
cases, some copulas were able to recognize the presence of regimes in time series.
The Frank copula denoted the best results, mainly in cases of regimes with long
periods in one or both regimes.

In case of testing remaining nonlinearity, none of the tested copulas was able to
detect adequately necessity of the third regime in the model for given input values.
The partial success occured when the parameters were varied.

The setting of input values should be considered in further research, best ac-
cording to real models. As shown in the section with results, reasonable parameter
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configuration for models is crucial. Moreover, our results are also limited by the
selection of copulas we were using, and maybe the “right” one was not examined.
But such simulations are very time-consuming, thus we had to choose only a couple
of them.

There remain more experiments to be performed before recommending the cop-
ula approach as an alternative to classical test for linearity. A methodology to
eliminate the effect of dependence strength needs to be developed. Also compar-
ison of computational time consumption and power of the test between the new
and the classical approach is needed.
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