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Abstract: This article presents an application of evolutionary fuzzy rules to the
modeling and prediction of power output of a real-world Photovoltaic Power Plant
(PVPP). The method is compared to artificial neural networks and support vector
regression that were also used to build predictors in order to analyse a time-series
like data describing the production of the PVPP. The models of the PVPP are
created using different supervised machine learning methods in order to forecast the
short-term output of the power plant and compare the accuracy of the prediction.
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1. Introduction

Fuzzy sets and fuzzy logic can be used for soft classification of data. In contrast with
crisp classification, which leads to crisp decisions about the data, fuzzy classification
allows a more sensitive data analysis [1]. Fuzzy decision trees and if-then rules are
an example of efficient, transparent, and easily interpretable fuzzy classifiers [1, 29].

Genetic programming [16, 17] is a powerful machine learning technique from the
wide family of evolutionary algorithms. In contrast with traditional evolutionary
algorithms, it can be used to evolve complex hierarchical tree-like structures and
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Department of Electric Power Engineering, Faculty of Electrical Engineering and Computer Sci-
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IT4Innovations, European Center for Excelence, 17. listopadu 15, 708 33 Ostrava – Poruba, Czech
Republic, E-mail: {vaclav.snasel,jan.platos,pavel.kromer}@vsb.cz

c⃝CTU FTS 2013 321



Neural Network World 4/13, 321-338

symbolic expressions. It has been used to evolve Lisp S-expressions, mathematical
functions, and general symbolic expressions including crisp and fuzzy decision trees.
Recently, genetic programming has been used to infer search queries describing
fuzzy sets of relevance ranked documents in an information retrieval system.

Query evolution can be used for general data mining [20]. The extended Boolean
queries (i.e. weighted Boolean expressions) can be interpreted as symbolic fuzzy
rules that describe a fuzzy subset of a data set by means of its features and com-
binations of features. Moreover, a fuzzy rule evolved using a training data set can
be later used for an inexpensive analysis of new data to e.g. predict quality of
products, detect harmful actions in a computer network, assign labels to data, and
estimate the values of an output variable.

The artificial evolution of search expressions is interesting because genetic pro-
gramming has shown a very good ability to find symbolic expressions in various
problem domains. The general process of fuzzy rule evolution can be used to evolve
custom rules for different data classes and various data sets with different proper-
ties and with different internal structure. The evolved fuzzy rules can be used as
standalone data labeling tools or e.g. to participate on a collective decision of an
ensemble of data classification methods.

This article presents an application of evolutionary fuzzy rules to the modeling
and prediction of power output of a real-world Photovoltaic Power Plant (PVPP).

1.1 Challenges of (smart) power grid

A power grid must be operated with balanced energy levels. The electrical en-
ergy produced by energy sources within the network must be at the same time
consumed by customers. The accumulation of reasonable quantities of electrical
energy is currently still technically and financially too demanding, even though
experimental systems are installed at prototype energy storage facilities and there
are major research efforts to find advanced ways of accumulation of large quantities
of electrical energy [24, 13].

Nowadays, the energetic balance is mostly achieved by the regulation of sources
of electrical energy because the consumption is usually beyond grid operators con-
trol. The power grid consists of power plants with stable production of electrical
energy such as coal, gas, and nuclear power plants. On the other hand, it contains
power plants with unstable (stochastic) energy production whose output heav-
ily depends on the meteorological conditions at given time and in given location.
Examples of unstable energy sources include wind power plants and photovoltaic
power plants. The amount of the electrical energy produced by such power plants
changes with changing weather conditions significantly.

A power grid operator has to maintain a reliable, safe, and efficient opera-
tion of the electrical network. In order to meet this objective, the operator must
be able to estimate the volume of electrical energy produced by unstable energy
sources. In a power grid with a plenty of unstable energy sources, a reliable pre-
diction is needed in order to ensure that the regulation of the stable sources will
balance the production of intermittent energy sources and satisfy the demand for
electricity. Otherwise, the power grid could became unstable and unreliable. The
accommodation of renewable energy sources, robustness, self-healing and real-time
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optimization capability are among the key attributes of the upcoming smart grids.
The operation of next generation smart grids is directly linked to advanced opti-
mization and prediction methods featuring computational intelligence [24].

In this work, we genetically evolve a fuzzy predictor in the form of a fuzzy rule
inspired by the area of information retrieval. The same concept was successfully
used for data classification in [23, 28, 19, 22] and initially for PVPP output esti-
mation in [21]. When compared to the more complex fuzzy classifier systems, it
can be seen as a sole symbolic fuzzy expression that maps data features onto an
output value from the interval [0, 1]. The fuzzy rule is in this research enhanced by
the ability to process data as an ordered (time-like) series of records and it is used
to estimate the power output of a PVPP. The usefulness of this approach is illus-
trated on an experiment with a real world PVPP. To provide a comparison of the
proposed method with selected traditional regression and prediction approaches,
the PVPP output prediction by fuzzy rules is compared to prediction provided by
a feed-forward artificial neural network (multilayer perceptron) and support vector
regression.

2. Fuzzy rules for time series analysis evolved
by genetic programming

The design of fuzzy classifiers and fuzzy rule-based systems has been successfully
aided by the nature inspired methods in the recent years. In this section we summa-
rize few examples of such an evolution or more generally examples of nature inspired
fuzzy classifier design. For a comprehensive survey on the automated evolution of
fuzzy classification tools see e.g. [4]. Multi-objective evolutionary algorithms were
used for the evolution of linguistic fuzzy rule-based classification systems in the
work of Cordón et al. [5]. Another multi-objective evolutionary approach to the
evolution of fuzzy rule-based systems was proposed by Ishibuchi and Nojima [12].
They used a hybrid 2-stage approach that combined an initial heuristic stage to
select fuzzy rules and evolutionary stage to optimize and tune the system.

Wang et al. [30] used genetic algorithms to integrate fuzzy rule sets and mem-
bership functions learned from various information sources. In [7], Freischlad et al.
used an evolutionary algorithm to generate fuzzy rules for knowledge representa-
tion. Zhou and Khotanzad [31] used genetic algorithm to learn various parameters
of fuzzy classification system from a training data set. The usage of another nature
inspired method - the particle swarm optimization - to fuzzy classification system
design was studied recently in [26]. In this study, we use genetic programming
to find a fuzzy rule to forecast the output volumes of a PVPP. The operation of
photovolatic panels has a time-series like behavior. Current output depends not
only on momentary solar radiation but also on the state of the panel which can
be determined from previous solar radiation and previous output. Therefore, the
fuzzy rules were extended by time-series processing capabilities.

2.1 Time series analysis

Time series modeling and forecasting is a complex task with a number of appli-
cations in data analysis, planning, control, and optimization [3]. There are many
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exact (hard) and stochastic (soft) methods for time series modeling, analysis, and
prediction. The exact methods include state space models, growth curve mod-
els, ARIMA models, single equation models, vector AR and ARMA models, and
econometric models [3, 25].

More recently, various computational intelligence methods such as different
types of artificial neural networks, fuzzy logic, evolutionary computation, and many
hybrid approaches have been used for time series analysis [25].

2.2 Fuzzy rules for time series data analysis

The fuzzy rules use similar data structures, basic concepts, and operations as the
fuzzy Information retrieval (IR) [18] and they are applied to general data processing
(i.e. classification, prediction, and so forth).

The data used by the fuzzy rule is a real valued matrix. Each row of the
matrix corresponds to a single data record which is interpreted as a fuzzy set of
features in IR language we can interpret a row of the matrix as a document and
features as words weight [18]. Such a general real valued matrix D with m rows
(data records) and n columns (data features) can be mapped to an IR index that
describes a collection of documents.

The fuzzy predictor has the form of a weighted symbolic expression roughly
corresponding to an extended Boolean query in the fuzzy IR analogy. The predic-
tor consists of weighted feature names and weighted aggregation operators. The
evaluation of such an expression assigns a real value from the range [0, 1] to each
data record. Such a valuation can be interpreted as an ordering or a fuzzy set over
the data records.

2.3 Fuzzy rule structure

The fuzzy rule is a symbolic expression that can be parsed into a tree structure.
The tree structure consists of nodes and leafs (i.e. terminal nodes). In the fuzzy
rules for time series analysis, three types of terminal nodes are defined:

• feature node - which represents the name of a feature (a search term in the
IR analogy). It defines a requirement on a particular feature in the currently
processed data record.

• past feature node - which defines a requirement on certain feature in a previous
data record. The index of the previous data record (current – 1, current – 2
etc.) is a parameter of the node.

• past output node – which puts a requirement on a previous output of the
predictor. The index of the previous output (current – 1, current – 2 ) is a
parameter of the node.

The last two node types allow the fuzzy predictor to take into account the order
of the data samples, i.e. to see it as a complex time series rather than a simple
valuation of unordered records in the data base. Consider the following example
of the fuzzy predictor:
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feature1:0.5 and:0.4 (feature2[1]:0.3 or:0.1 ([1]:0.1 and:0.2 [2]:0.3))

In the inline syntax, the feature node is defined by feature name and its weight
(feature1:0.1 ), past feature node is defined by feature name, index of previous
record, and weight (feature2[1]:0.3 ), and past output node is defined by the index
of previous output and weight ([1]:0.5 ). The tree that corresponds to the example
given above is shown in Fig. 1.
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Fig. 1: Tree form of a fuzzy predictor

The operator nodes supported currently by the fuzzy predictor are and, or, and
not node. Both nodes and leafs are weighted to soften the criteria they represent.

The fuzzy rule with past feature nodes and past output nodes can effectively
express requirements on past feature values and past output values and therefore
allow the predictor to analyse the stream of records as an ordered sequence similar
to a time series.

2.4 Fuzzy rule evolution

The fuzzy rules are evolved in supervised manner by a straightforward application
of genetic programming [20, 21]. Every fuzzy rule was represented by a tree-like
chromosome. Genetic operators were applied to the nodes of the chromosomes.
Crossover operator was implemented as a mutual exchange of randomly selected
sub-trees of parent chromosomes. Mutation aimed to modify the chromosomes by
pseudo-random arbitrary changes in order to broaden the coverage of the fitness
landscape and prevent premature convergence. Mutation was implemented using a
random combination of various modifications of chromosome structure including:

i) removal of a sub-tree at a randomly chosen node

ii) replacement of a randomly chosen node by a newly generated sub-tree

iii) replacement of node instruction by a compatible node instruction (i.e. a termi-
nal can be replaced by another terminal, a function can be replaced by another
function of the same arity)

The information retrieval measure F-Score [28, 20] was used as fitness function.
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3. Traditional machine learning methods

To be able to compare the PVPP output forecast obtained by evolutionary fuzzy
rules with other more traditional computational intelligence methods, two widely
used supervised regression algorithms were trained and evaluated on the PVPP
data set. Artificial neural networks were previously used for the prediction of
power grid variables [9, 8] and support vector regression is known to be able to
approximate linear and non-linear functions very well [14, 2, 10]. Moreover, they
represent two different yet highly successful approaches to supervised learning from
data.

In this section, we briefly outline the basic principles of simple feed-forward
artificial neural networks and support vector regression.

3.1 Multilayer perceptron

Artificial neural networks (ANNs) constitute a family of computing models based
on the emulation of electrochemical processes observed in neural systems of living
organisms [15, 6].

Various types of complex general-purpose artificial neural networks composed of
simple computing units - artificial neurons - have been proposed. Artificial neurons
emulate the behavior of biological neurons in terms of signal processing (aggrega-
tion, thresholding, modification, propagation etc.) and information storage (input
weights, activation function parameters). A single artificial neuron (perceptron)
represents a non-linear mapping f : RI → R and it can be used to solve linearly
separable problems. A schematic view of a perceptron is shown in Fig. 2a. In the
figure, xi represents input signal, wi input connection weights, f(

∑
xiwi, θ) acti-

vation function and o the output signal. The perceptron in Fig. 2a is a summation
unit (i.e. it performs a weighted sum of input signals) and it can be used to solve
linearly separable problems. The perceptron must be set-up (trained) before it can
be used to process data. The training involves setting the input connection weights
wi and activation function parameters.

An ANN is a layered network of artificial neurons with certain topology [6].
It implements a non-linear mapping fann : RI → RK from I-dimensional input
space to K-dimensional output space [6]. In contrast to single perceptron, ANN is
able to solve problems that are not linearly separable and in general to provide an
approximation of a function. ANNs have been used for countless applications in
data mining, pattern recognition, data classification, control and so fort. Multilayer
perceptron (MLP) is a basic type of multilayer feed-forward ANN [6] that consists
of multiple fully-connected layers of perceptrons. The MLP consists of the input
layer, one or more hidden layers, and the output layer (see Fig. 2b).

The ANN training methods include supervised, unsupervised, and reinforced
learning. The well-known backpropagation (BP) algorithm is an example of super-
vised learning method based on gradient descent optimization of network param-
eters [6]. The BP training algorithm consists of a number of iterations in which
the network (that was originally randomly initialized) first processes training pat-
terns and computes the error for each pattern and second performs the backward
propagation of error in which the weights are adjusted as a function of the error
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(a) A perceptron. (b) An example of a 3-4-2-1 MLP.

Fig. 2: Perceptron and multilayer perceptron (feed-forward network).

signal. The training is finished when the terminating criteria (i.e. the maximum
number of iterations was reached, training error was small enough) are met. Other
parameters of the BP algorithm include the learning rate which is the size of each
learning step and momentum that controls how the network avoids fluctuations
when processing different training patterns during stochastic learning. For more
details on the MLPs and the BP algorithm see e.g. [6, 15].

3.2 Support vector regression

Support vector regression (SVR) is an extension of support vector machines (SVM),
a family of popular supervised machine learning tools based on statistical learning
theory originally proposed by Vapnik [14, 2]. SVM were designed to find an optimal
directed hyperplane separating two non-overlapping classes of data with the help of
support vectors (i.e. the points in the data closest to the separating hyperplane) [2].
However, later extensions enabled the SVM to learn and classify multiple classes
of data, overlapping classes, and noisy data by the introduction of slack variables
ξi, ξ

∗
i that enable soft-margin classifiers [10, 2].

The SVM uses a linear separating hyperplane to construct a classifier with
maximum margin by the means of constrained non-linear optimization [14]. Data
that is not lineary separable can be processed by the SVM with the help of kernel
substitution, i.e. a translation of input data to a high-dimensional feature space
where it might be lineary separable [11, 2]. The SVM combine both, success in
practical applications and well-established theory.

The basic SVM for binary classification aims to learn a decision function [2]

f(x) = sign(w · x+ b) (1)

where · is dot product, x is the set of input data vectors (points) x1, x2, . . . , xm, f(x)
is the vector of corresponding labels y1, y2, . . . , ym, subject to yi = ±1, sign is the
signum (sign) function, and w is vector of weights. In a geometrical representation,
the hyperplanes w · x+ b = 1 and w · x+ b = −1 are called canonical hyperplanes
and the area between them margin band. Maximizing the margin (i.e. finding
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optimal hyperplane) involves maximization of the function

W (α) =
m∑
i=1

αi −
1

2

m∑
i,j=1

αiαjyiyjK(xi · xj) (2)

subject to

αi ≥ 0,
m∑
i=1

αiyi = 0 (3)

where K is a kernel used for mapping of input data to high-dimensional feature
space (kernel substitution) and αi, αj are Lagrange multipliers. Bias b is given by
[2]

b = −1

2

 max
{i|yi=−1}

 m∑
j=1

αjyjK(xi, yi)

+ min
{i|yi=1}

 m∑
j=1

αjyjK(xi, yi)

 (4)

In contrast with SVM, SVR aims to learn the mapping of data to real-valued
labels [2, 10, 27]. The ϵ-SVR algorithm aims to learn a function f(xi) that has at
most ϵ deviation from corresponding yi [27]

f(x) = w · x+ b (5)

and leads to maximization of linear or quadratic ϵ-insensitive loss function. The
linear ϵ-insensitive loss function is given by [2]

W (a, a∗) =
m∑
i=1

yi(αi − α∗
i )− ϵ

m∑
i=1

(αi + α∗
i )

− 1

2

m∑
i,j=1

(αi − α∗
i )(αj − α∗

j )K(xi, xj) (6)

subject to

m∑
i=1

αi =
m∑
i=1

α∗
i , αi, α

∗
i ∈ [0, C] (7)

The ϵ-SVR can be visualised as a tube around hypothesis function which outlines
training errors from valid training points.

4. Experiments

A series of computational experiments was conducted in order to evaluate the
ability of evolutionary fuzzy rules to forecast the production of a photovoltaic
power plant and to compare fuzzy rules to other well known regression methods.
In order to do so, the volumes of electrical energy produced by a PVPP located in
the North Moravia, Czech Republic and the values of solar radiation in the same
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location were recorded. The value of electric energy is obtained by time integration
of output power, the unit of electric energy is W.h. The unit for solar radiation is
W.m−2.The values were recorded in 10 minute intervals between November 2010
and April 2011. The data set contained 21515 records. After initial analysis, we
removed records from days with irregular PVPP operations i.e. when the facility
was disconnected from the grid but sensors were active. The remaining 20513
records were divided into two halves. The first part containing 10257 records was
used as a training data set for predictor evolution and the second part containing
10256 records was used as test data set.

MLP and SVR were also used to build a prediction model from the data set in
order to see how precise are the forecasts by evolutionary fuzzy rules in compari-
son with traditional machine learning methods. Both machine learning algorithms
were executed in two different configurations selected on the basis of previous ex-
periments and best practices. The parameters of the algorithms as well as Fuzzy
rules (FR) parameters are summarized in Tab. I.

Algorithm Parameters

FR Fuzzy rules evolved with population size 100, crossover
probability PC 0.8, mutation probability PM 0.2, mu-
tation implementation as shown in Tab. II, generations
limit 1000, past feature limit 20 (max 20 previous values
of each feature will be considered), past output limit 20
(max 20 previous predicted values will be considered),
fitness function F-Score with β = 1

MLP1 Three-layered 2-2-1 multilayer perceptron, backpropaga-
tion, 5000 training epochs, learning rate 0.3, momentum
0.2

MLP2 Same as MLP1, learning rate 0.03, momentum 0.02

SVR RBF ϵ-SVR with radial basis function kernel e−γ|u−v|2 , ϵ =
0.01, cost C = 1.0, and γ = 1

SVR POLY ϵ-SVR with polynomial kernel (γu′v+c0)
d, ϵ = 0.01, cost

C = 1.0, γ = 1, degree d = 3, and coefficient c0 = 0

Tab. I: Algorithms and settings.

Event Probability

Generate term 0.5
Generate op. AND 0.24
Generate op. OR 0.24
Generate op. NOT 0.02

(a) Probabilities of generating random
fuzzy rule nodes.

Event Probability

Mutate node weight 0.5
Insert or delete NOT node 0.1
Replace with another node
or delete NOT node

0.32

Replace with random
branch

0.08

(b) Probabilities of mutation operations.

Tab. II: Random rule generation an mutation probabilities.
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4.1 Experimental evaluation

Power production forecast models were created by all aforementioned algorithms
for full data set and training data set in independent runs. The average prediction
error for the full data set, for the training data set, and for the test data set is
shown in Tab. III. The prediction error is in all cases lower than or just slightly
higher than 2% of the peak output of the PVPP, which is a good result, considering
that only a single input variable (current solar radiation intensity), its past values
and past estimates of the output variable were available. The error for the full
data set illustrates the ability to create predictors when the information about
the entire period is available. We note that the environment characteristics that
affect the operations of the PVPP (e.g. sun elevation, wind speed, direction, and
temperature) change during the year. The training error shows how the predictors
managed to approximate the same data that was used for training and the test
error shows how well could the predictor evolved using the training set forecast
the electric power output of the PVPP in the period covered by the test data set
(i.e. how well can it generalize). All investigated algorithms reached very similar

Data set Average prediction error (W)

FR MLP1 MLP2 SVR
RBF

SVR
POLY

Full 13589.4 13552.4 13712.2 14301.8 14330.1
Training 10001.4 10000 12254.2 10500.5 10552.4
Test 18313.2 22033.2 22811.4 20279.9 20181.6

Tab. III: Average PVPP output prediction error.

results. Moreover, when evaluating the prediction, we noted that both, the training
data and the test data still contained anomalies. Typical errors in the training data
set are shown in Fig. 3. The figures show a 24-hour window in the data set that
roughly corresponds to one business day. The errors were caused by power meter
malfunctions and problems with data acquisition. The examples of anomalies in
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Fig. 3: Examples of anomalies in the training data set.
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the test data set are shown in Fig. 4. We can see that the real output of the PVPP
is sometimes zero when it should be non-zero (similar as the errors in the training
data set). The PVPP output is in some cases greater than 1MW which is more
than the possible peak output of this PVPP. We note that the anomalies affected
both, the training process and the prediction error evaluation. Interestingly, all
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Fig. 4: Examples of anomalies in the test data set.

methods have managed to forecast PVPP output very well for some days and less
precisely for some other days. Examples of good predictions are shown in Fig. 5
and Fig. 6 and examples of less accurate predictions are shown in Fig. 7 and 8.

The results suggest that the fuzzy rules are on a par with or better than (in
generalization) multilayer perceptrons and support vector regression as used in this
study. This opinion should be supported by comparison of standard deviation for
the full data set, for the training data set and for the test data set presented in
Tab. IV. An advantage of fuzzy rules is the symbolic nature of the model that can
be used as a feedback for domain experts. The best fuzzy rule for PVPP output

Data set Standard deviation of prediction error (W)

FR MLP1 MLP2 SVR
RBF

SVR
POLY

Full 42630.36 42207.01 41747.01 42180.44 42114.95
Training 32403.14 31682.39 30978.77 31980.79 31840.87
Test 49429.14 51789.10 51095.95 49551.03 49629.67

Tab. IV: Standard deviation of average PVPP output prediction error.

forecasting found by GP is shown in Fig. 9. We can see that the algorithm took
the advantage of both, the past feature node (radiation[5]) a the past output node
(output[2], output[1]).
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Fig. 5: Example of a day with good prediction.

5. Conclusions

The fuzzy rules were used as predictors to estimate the output of a photovoltaic
power plant. An experiment with a real-world PVPP was conducted and a fuzzy
rule based on the data describing more than three months of the operations of a
PVPP was evolved. The data contained only the information about the intensity
of solar radiation in the location of the facility. Accurate predictions of the power
output of PVPPs can be seen as a building block of intelligent power grids. It shows
that soft computing and nature inspired algorithms can contribute to the creation
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Fig. 6: Another day with good prediction.

of smart electrical networks. Moreover, the development of custom predictors tai-
lored to the needs of specific PVPPs are appealing because every PVPP is unique
(because e.g. solar panel technology, configuration, age, location, geographical set-
ting, and so on) is very appealing. The accuracy of the predictions obtained by the
fuzzy rule was compared to predictions obtained by artificial neural networks and
support vector regression and the results were found competitive. The fact that
all algorithms achieved better predictions for the same days and worse predictions
for the same days suggest that all of them have discovered similar inner structure
in the data set.
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Fig. 7: Example of a day with bad prediction.

Another important factor, which outside the core of soft-computing methods
influences the accuracy of the calculation, is also the type itself of the used sili-
con technology of the given solar power plant. For testing of the soft-computing
methods a solar power plant with monocrystallic technologies was used. It is a
technology which is able to process mainly the direct component of solar radia-
tion, which means that in case of changeable cloudiness a considerable variation of
the sum total of output of active power occurs, which can be as much as tens of
percents compared with the installed output of active power. In case of usage of
polycrystalline technology the variability of load flow is much lower, as this system
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Fig. 8: Another day with bad prediction.

is able to process also the diffusive component of solar radiation. With changeable
cloudiness there is a change of output of active power only in orders of several
percents. If we then compared both the systems according to the criterion of the
possibility of prediction of their output of energy, it is obvious that in case of ap-
plication of soft-computing methods even higher accuracy of the prediction will be
shown for the system solar power plant with lower dynamics of output of active
power, i.e. for the system with polycrystalline technology.

The experiment presented in this paper can be extended in many ways. The
data set should be cleared of all records that do not describe its regular operations.
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Fig. 9: Best fuzzy predictor for PVPP output estimation.

The data set can be more comprehensive. More inputs (e.g. wind speed, cloud
coverage, humidity etc.) should be considered for the estimation and prediction
of then PVPP output. Finally, data describing longer period of operations of the
PVPP should be considered for better prediction. We will also compare presented
approach to other classification and prediction techniques.
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[23] Pavel Krömer, Václav Snášel, Jan Platoš, Ajith Abraham: Evolving fuzzy classifier for data

mining - an information retrieval approach. In Álvaro Herrero, Emilio Corchado, Carlos
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