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Abstract: This tutorial is based on modification of the professor nomination lec-
ture presented two years ago in front of the Scientific Council of the Czech Technical
University in Prague [16].

It is devoted to the techniques for the models developing suitable for processes
forecasting in complex systems. Because of the high sensitivity of the processes to
the initial conditions and, consequently, due to our limited possibilities to forecast
the processes for the long-term horizon, the attention is focused on the techniques
leading to practical applications of the short term prediction models. The aim of
this tutorial paper is to bring attention to possible difficulties which designers of
the predicting models and their users meet and which have to be solved during the
prediction model developing, validation, testing, and applications. The presented
overview is not complete, it only reflects the author’s experience with developing
of the prediction models for practical tasks solving in banking, meteorology, air
pollution and energy sector.

The paper is completed by an example of the global solar radiation prediction
which forms an important input for the electrical energy production forecast from
renewable sources. The global solar radiation forecasting is based on numerical
weather prediction models. The time-lagged ensemble technique for uncertainty
quantification is demonstrated on a simple example.
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1. Introduction

Great effort has been devoted to the study of processes in complex systems on both
the theoretical and applied sides during the last two or three decades. Complex sys-
tems represent a relatively new and widely interdisciplinary field passing through
the physical, technical, environmental and socio-economic sciences. Growth rate
of this field is rather fast, mainly because of progress in nonlinear modeling, sta-
tistical physics and computer science fields. There is no precise definition of what
is meant by a complex system but most of the experts understand under the term
complex system such a system that consists of many mutually interacting com-
ponents (parts), and that shows emergent behavior, i.e., the collective behavior
evinces some traits that cannot be easily derived or explained based on behavior
of individual parts. Classic examples of complex systems can be found in eco-
nomics (modeling of financial markets development), environmental science (the
effects of environmental pollution), climatology (models of global warming), me-
teorology (weather forecasting), biology (models for spread of infectious diseases),
transportation (traffic flow models), sociology (population growth) and in many
other areas.

Study of complex systems behavior is difficult, and to understand the processes
involved in them is often very hard. This is, among other things, due to the
complexity of relationships and not infrequently even because of the obscurity of
cause and effect relation (see the study of behavior of macroeconomic variables such
as GDP, unemployment, inflation, etc.). Another reason is the interdisciplinarity
for the full understanding of the patterns, knowledge of facts from several scientific
fields (e.g., social science, computer science, mathematical statistics, physics, etc.)
is needed. In spite of the diversity of different scientific disciplines, it turns out that
complex systems show common universal features such as, e.g., nonlinear behavior,
learning ability, etc.

Modeling of processes in complex systems can be divided into two basic ap-
proaches. The first involves the design and study of basic mathematical (and
oftentimes simplified, but not simple) models via use of which it is possible to ab-
stract the most important qualitative features of the complex systems behavior.
Knowledge of the dynamical systems theory, networks, evolutionary computation,
numerical methods, etc. is utilized.

The second approach is to develop behavioral models from measured data with
use of methods of mathematical statistics, statistical learning, data mining, etc.
Both approaches can surely be combined.

Knowledge of behavioral models will thereby allow us performing computer
simulations, creating the scenarios of future development, forecasting the behavior
for the short or medium term horizon, and using forecasts or obtained scenarios
for management, planning and decision making.

In this paper, the attention is focused on the techniques important for devel-
opment of high-quality models suitable for complex systems behavior forecasting
especially on short term prediction horizon. Overview is not by a long shot com-
plete, partly due to the limited range of this paper and partly due to the both
still intensive development of new, and improvement of existing techniques and
procedures. Presented techniques are mainly selected by virtue of the author’s ex-
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perience in real development of prediction models and their practical application
in the fields of banking, meteorology and air quality, and energy industry.

2. Difficulty of the Prediction

In the past, the scientific thinking has been influenced by Newtonian paradigm in
which the world can be reduced to a few basic elementary principles, allowing easy
modeling and thus predicting the behavior through simple procedures. However,
the study of behavior in microscopic and macroscopic worlds and other phenom-
ena have shown us that the world is complex. Complexity of naturally occurring
systems is a natural part of the world that surrounds us [13]. We can predict
planetary motion for many thousands of years in advance, but we cannot reliably
predict the evolution of GDP for the next year, the weather for several days ahead,
development of share prices and and exchange rates for a few hours or minutes in
advance.

Inability to accurately (or rather with sufficient and practically useful accu-
racy) predict the behavior of complex systems is mainly due to the incomplete
information about the system, large number of parameters and our lack of ability
to establish them, large number of variables and the inability to measure them,
and last but not least the uncertainties contained in the executed measurements
(measurement error).

The essential problem of complex systems processes prediction is the use of a
priori information contained in partial (available) observation, and known (nat-
ural, technical, sociological, and other) laws. These laws can be expressed as a
functional relationship between the various considered variables, and the task is
to find values of the parameters so that the model predictions correspond to the
measured variables as much as possible.

If we start from a deterministic description of the phenomena, which is based
on the dynamical systems theory, studied processes are defined as vectors of time-
dependent variables (states)

:Et:(l’l(t),l’g(t),...7l‘n(t)), (1)
where the dynamics of time evolution of the states is described by the equation
xy = f'(x0, ) (2)

and where x; is state of the system in time ¢, xg is initial state of the system, f*
is a smooth function describing the evolution of the state vector in time and X is
vector of (control) parameters. Thereby the states of the system may depend both
on time and other variables (spatial dependence). Similarly, the vector of control
parameters may depend on the time and possibly on other variables. For simplicity,
however, we usually assume that the vector of parameters A does not depend on
time and that the dynamics of the process (2) may also be expressed by a system
of partial differential equations

83?,‘ (t)
ot

= fi(z1, A) (3)
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where the function f; is also time independent. If we know the f;, and if we can
somehow determine the value of the control parameters A, the question is why the
prediction of time evolution of such a deterministic system should pose a problem.

For answering this question, there is in literature, see for example [2], [7], a nice
example of very easy (so called logistic) model describing population growth given

by equation

@ men(1-5): g
where z; is the population size in a defined, limited space, « is a process parameter
and K is the saturation coefficient. In the logistic model, a priori information,
about the fact that the change of population size is proportional to the current
population size, and that there is a saturation limit caused by limited space, is
incorporated.

For discrete time, the following equation can be considered

x
Ti41 = O (]. - ?) . (5)

In contrast to the simplicity of logistic model, system behavior described by
equation (5) is not simple at all. Fig. 1 shows the course of time series generated
by the logistic model for the first 100 values with the initial condition zy = 0,2 and
with parameters K =1 and a = 3,8.

Fig. 1 The course of time series (the first 100 values) generated by the logistic
function with the initial condition o = 0.2.

It can be shown [2] that for a broad class of values of parameter « system
(5) evinces chaotic behavior (Lyapunov exponent of the system is positive). That
means, among other things, that the behavior of the system will be very sensitive
to the value of initial conditions x¢. This fact is demonstrated in Fig. 2 where the
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course of mean squared error of system (5) behavior prediction for different initial
conditions in dependence on the prediction horizon is given

N
MSE(m) = % S IF™ o) — F™ (o + i) (6)

where F™(zg) is evolution of the system (5) from the initial conditions zg, m
steps ahead and ¢; are randomly selected values of uniform distribution on the
interval (—0.0001; 40, 0001) respectively (—0.001; 40, 001). For the calculation, 10
000 realizations of the random error for each initial condition zg was used, whereas
the initial conditions took different values from 0.005 to 0.995, and the resulting
mean squared error was averaged.

Fig. 2 The course of mean squared error MSE in dependence on prediction
horizon m for logistic function xy11 = 3.8 x¢(1 —x¢) with randomly noised initial
conditions xg.

In Fig. 2 can be clearly seen the exponential growth of prediction error with
increasing predicting step (up to the saturation limit). The experiment demon-
strates the difficulty of behavior predictability of chaotic complex systems for a
longer prediction horizon, without knowing the initial state precisely enough, even
assuming that the dynamics of the system is perfectly known, including the values
of the parameters involved. Besides, the effect of inaccuracy in the parameters esti-
mation can also cause exponential growth of prediction error, as it is demonstrated
in Fig. 3.

The problem of the inability to measure the state of the system with sufficient
accuracy is in some cases complicated by the fact that by virtue of some technical
or principal reasons we cannot measure most of the state variables, and the mea-
surement is performed only on a very limited part of the state variables. From the
dynamical systems theory results that the system dynamics can be to a certain
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Fig. 3 The course of mean squared error MSE for logistic function x;41 = Azi(1—
x¢) with different values of parameter X randomly generatedy from interval (3.7; 3.9)
in dependence on prediction horizon m.

extent examined solely on the basis of the single state dynamics. If we assume a
deterministic system with dimension of n states, see the Eq. (1).

Takens’ theorem [21] implies that the dynamics of such system (attractor) can
be reconstructed from vectors of time-shifted (shift T") states of single variable with
nested dimension dg

x1 = (x1(8), 21+ T),...,21(t + [dg — 1] T)), (7)

where dg > 2n+1. Of course if n is very high, the nested dimension is even larger.
Yet in many applications the dynamics of the whole system via nested vectors with
much lower dimension can be examined [7].

Predicting processes in systems with chaotic behavior is therefore difficult, but
not impossible. It is just necessary to respect some limitations, particularly the
high sensitivity to the initial conditions and the resulting inability to achieve low
prediction errors for a longer time horizon, as well as generally the need of non-
linear models, and complex procedures and techniques leading to the successful
prediction.

3. General Prediction Model

As it was outlined in the previous section, the essential problem of complex systems
behavior prediction is the inability to measure the states of the system with suffi-
cient accuracy. A common objective of the prediction methods development is to
predict the time evolution of the complex system states usually for the short term
horizon (see problems of forecasting the systems with chaotic behavior for a longer
time horizon as described in the previous section) under the real assumption that
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we do not have or cannot use the complete information about system dynamics,
the parameters must be estimated from the measured data, and furthermore ac-
cessible measurements are subject to measurement error. Moreover, we often face
the situation in which we are not at all able to measure, resp. observe, some states
of the system, and sometimes it is even a large majority of all states (see the next
section dealing with data assimilation). If we limit ourselves to discrete systems
and prediction horizon one step forward, the task of prediction can be simplified
to finding the prediction function (prediction model) F*

wlz = Ff(:ltt77 0) (8)
where x;_ is history of (measured) states
Ti— = (wtflawtfzu"'7w0) (9)

and 6 is vector of parameters. If we need to predict k steps ahead (kK > 1),
prediction model Ff can be used in following way:

ol =Fi(al,, ,xl, ...zl x,0). (10)

In real practice, we often limit ourselves to prediction models that do not use
the whole history of the measured states, but only a certain part of the actual
history, for example

x! :Ff(wt,7h79), (11)

where
Lt—ph = (wt—l, Lt—2,y.--, iEt—h)~ (12)

Development of specific form of prediction model Ff can be based on several prin-
ciples resulting from for example Box-Jenkins methodology, principles of artificial
neural networks, fuzzy approaches, Bayesian and SVM (support vector machines)
techniques and many others. This extensive and interesting topic, however, is not
the aim of this paper and therefore those who are interested can refer to the rich
academic literature, e.g., [1], [3], [11], [17], [20].

4. Data Assimilation Technique

No matter what the general prediction model (described in the previous section)
will look like, it is necessary to ensure the accessibility of input values, i.e., the
states &;_ needed for the calculation of prediction x!f. As aforementioned, in some
systems, due to some technical or principal reasons, we cannot measure most of the
state variables, and the measurement is performed only on a very limited part of
the state variables. If we need to reconstruct all the states of the system from the
available measurements (that naturally contains noise), we can use the technique
of data assimilation. It is based on a modification of the initial (a priori) estima-
tion of the states according to the error of the observing operator and available
measurements (see, e.g., [9]). Assuming that the initial estimation of the states in
the system is @, H is the observing operator transforming (or interpolating) the
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system states x¥ to set of observed states x?, then the newly renovated state of

the system a}°V via using measurements 7 is given by relation

o = @i + W [af — H(x)], (13)

Where the matrix W is weighing matrix, which is usually determined on the basis
of covariance estimates of statistical errors of observation and system states. For
the initial estimate of system states may be used the variant of prediction model
(8), therefore we consider

xp = xf. (14)

There are many methods of data assimilation based on equation (13), such
as methods on the basis of the optimal interpolation (OI) technique, the 3D-Var,
4D-var [4], [9].

As an example, it is mentioned one of the most frequently used methods, the
method utilizing the technique of Kalman filters. We assume that the system
states x; are random, and that the corresponding random process has the Markov
property, i.e., it is met the equality

p(xe|@e— p) = p(ae|Ti—1). (15)

Further assume that the reconstruction of states xj°y is an unbiased estimation,

i.e., it holds
i R [ (16)

where the mean value of the random error in E(n;_1) = 0, where F is the operator
of the mean. We assume further that the prediction model used for the prediction
of the initial state of the system and the observing operator H are linear, i.e.,

xP = M,z (17)
and
H(zp) = Hyxy, (18)
where M;, H, are the matrix of parameters. Label then
e =xp — Hyxy, (19)
vi=x — M,z 1. (20)

Covariance matrices will be labeled

cov(ni_1) = Py, (21)
cov(vy) = Qy, (22)
cov(et) = Ry. (23)

Assuming that €; and v, are uncorrelated and also have a zero mean value, following
recursive relations can be derived

o}V =l + K, (29 — Hyxb), (24)
P?ew == (I*Kth)P?, (25)
P} = M, P}y M| + Q, (26)
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where )
Kt:PthT (HtPthT—i—R)_ . (27)

These relations represent the classical equations of the Kalman filter, whereas the
matrix K; is called Kalman gain.

In light of the complex system processes prediction model development, it is
good to notice, that the prediction model (17) is linear, but parameter matrix can
time dependent (so called adaptive model).

If the all considered distributions are normal, the resulting distribution is

p(@;"|ay) (28)

also normal with meanvalue =}V and covariance matrix P;°¥. Under the afore-

mentioned assumptions, not only the “mean value” mean value of the new state,
but also the entire probability distribution (see Fig. 4) and the levels of reliability
(quantile forecast) derived from it, can be relatively easily predicted. Kalman fil-

X(
Q95 _
\\\
\
¢ )
,//
Q5 il
|
t t+A

Fig. 4 Point, probability forecasting and prediction 5% a 95% quantiles — illustrative
figure.

ter’s equations (17)—(27) also allow prediction of measured states & and are the
foundation of prediction modeling technique called state-space, see, e.g., [3], [17].

5. Optimal Prediction Model

Typically, in complex systems, for the same task there can be developed several
prediction models usable for the real forecast. As in many scientific areas, the
best possible solution (optimal model) usually cannot be found; therefore predic-
tion model development is an inventive process. Following quotation attributed to
G. Box and W. E. Deming [14] lends itself to the situation very well: “Essentially,
all models are wrong, but some are useful.”

If a suitable objective function, that evaluates the prediction quality of our
model, is given by discrepancy between predicted and actual values, the best model
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can be assessed according to the values of the objective function. The basic problem
is that the value of this function can be calculated only on the basis of known facts
(based on historical data). To believe that our model will be the best in the future
— and that matters — we have to make certain assumptions about our system and
the data that it generates.

If we study prediction model in the shape xf = Ff(mt_vh, 0), prediction function
development and estimation of its parameters are the fundamental tasks. Predic-
tion function structure may be determined a priori (based on a priori knowledge
of the system behavior) or from data, e.g., a suitable choice of class of sufficiently
universal functions, as is the case of for example usage of artificial neural networks.
Parameters 0 then can be determined based on minimization of suitably chosen
objective resp. loss-function. For concrete measured values of state variables x,
t=1,2,..., N, loss-function be considered

2
L(0) = || — F' (x4 1,0)|| (29)

Since we are looking for such a parameter 6 for which (29) is minimal, we can
write

6 = arg mgn L(9). (30)

This procedure is called empirical risk minimization — ERM. Because of the
prediction function Ff can be very complicated (nonlinear etc.), looking for a
suitable € minimizing L(@) can be nontrivial task. The essential problem of ERM
procedure is that parameter 8 estimation on the basis of available data x;, t =
1,2,..., N, probably will not be identical with estimation made on data measured
during next period, even assuming that the function F* does not change in time.
It can happen that the value of loss-function L(0) in the next period increases
that much that model becomes inutile. Thereby we concern not only over the
value L(0) on given data, which is cold training error (or in-sample error), but
also over the information how the loss-function will evolve on data that are going
to be obtained. This fact can be expressed that we care about “expected value”
of loss-function E[L(@)], where E is mean value operator. Function E[L(0)] is
called generalization error (or out-of sample error). The reason of training error
and generalization error difference is fact that training data x;, t =1,2,..., N are
not representative for behavior of the studied system (but are just some kind of a
behavior demonstration determined by the selected data obtained with technical,
physical or other limitations) and furthermore the available data (measurements)
are not perfect (are noised).

Problem of overfitting the model can be to a certain extend removed by us-
ing the model validation techniques (out-of sample testing) and regularization of
minimization process.

5.1 Model Validation

Within the model validation we estimate generalization error with using the second
if possible independent sample which does not enter into the minimization process
(30). Thus normally we divide the available data into training and validation
groups on which we assess the loss-function values. To split the data into training
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and validation can be done by different ways (randomly, sequential selection of
some part of the data, etc.).

If we use numerical iterative procedures in ERM procedure (minimization of
the loss function), a course of empirical error and estimation of generalization error
can be seen during the iterative process. While empirical error usually decreases
(depending on the chosen numerical procedure), the estimation of loss function
generalization error calculated on a validation sample after a certain time reverses
the trend (from decreasing to increasing), as the Fig. 5 illustrates. At this point
it is appropriate to stop the iterative process and use as a parameter estimation
that 6, that minimizes the course of generalization error estimate (early stopping
criterion).

L - Validating

L - Training

1
¢]

Fig. 5 Parameter @ estimation with using loss-function course on training and
validating data (early-stopping criterion).

5.2 Regularization

The problem of minimizing L(0) can be, and usually indeed it is, ill-conditioned,
i.e., with minor changes in the input data we can receive large changes in the
estimations of parameter 8. That is why the minimization is

L(0) + 1 d(6), (31)

where the function d(0) is regularization or penalty function.

Via the appropriate choice of regularization (penalty) function, we can re-
duce the complexity of the model and thereby reduce the models generalization
error. This principle is in line with intuitive understanding that complex (over-
parametrized) models may more nearly reflect the characteristics of learning sample
data (including noise in them), and not the general properties of the process that
needs to be predicted. At the same time, this principle is in line with philosophi-
cal concept known as Occam’s razor principle, which says that “entities must not
be multiplied beyond necessity”, therefore that from the models with acceptable
predictive performance on training data we select the easiest one.
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Example of penalty function is function

CN)

K
N

(32)
where K is number of model parameters and N is range of data. For C(N) = 2
we get the often used Akaike information criterion AIC, [17].

5.3 Testing the Model

If the model is built with using the training and validation data, it is recommended
to independently test it on the test data set, which does not contain the data from
the training nor the validation set. Objective (loss) function for testing the model
can take many forms reflecting user requirements for quality of prediction models,
the fulfillment of which may not be trivial. It is also good to realize that in many
practical applications the objective function for testing the models may not be
the same objective function for model development in the phase of training and
validation.

For simplicity, we assume here that our goal is the prediction of only one com-
ponent (state variable) of a complex system and that we test the prediction model
on the test set 4, t =1,2,..., N.

Mean squared error MSE is then given by formula

N
1
Luse = 3 > (- xi)z ; (33)
t=1

where zf is forecast of variable x;. To compare the quality of models by MSE has
many advantages because of that minimization Lygsg (so-called method of least
squares) is widely used to prediction model development. Generalization of the
objective function (33) is the Minkowski objective function, which is given by

1
LM:NZMt—xﬂR. (34)

It is obvious the for R = 2 the function (34) is identical with function (33). For
R =1 we get the mean absolute error MAE.

In order to compare the predictive performance of models for forecasting the
variables with different mean value (e.g. for forecasting macroeconomic variables

for differently sized regions), very popularly used mean absolute percentage error
MAPE is defined as:

100 -
N
t=1

.’Jﬂ't*[ﬂg

Lyvapre = (35)

Tt

In the Lyapg denominator an absolute value of the predicted variable occurs that
at very low values close to zero leads to very high values of this criterion, therefore,
it is necessary to evaluate the percentage error with great care.
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Evaluation of the model quality according to large deviations is another example
of objective function expressed by formula

1
Lyvax = i |z — x}

; (36)

|ze—zf|>e

where ¢ is preselected acceptable value of error and M is the number of prediction
errors larger (in absolute value) than e.

In the literature about predictions [11] furthermore the criterion appears that
compares model performance with so called persistent model

N —— (37)

From the equation (37) implies that persistent models predict the closes future
by last known state of the system. The objective function (so called Theil’s U-
statistics) is then defined as

SN (%)2
Ly = NP (38)
t4+1— Lt
Zt:l ( Tt )

For models with better performance than the persistent models is then worth
Ly < 1. In a similar way, we can compare the performance of the prediction model
with a model type like random walk, etc.

As a final example of evaluating the quality of a model, use the cross diagrams
which are shown in the graphs in Fig. 6
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Fig. 6 Cross diagram of predicted vs. actual value for logistic function xyy1 = 3.8
x+(1 — x¢) with randomly noised initial condition xo for prediction step m = 10 (a)
and m =15 (b).
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6. Multi-model Prediction

Complexity of processes prediction in complex systems is caused by that multiple
models (based on the same or different principles) can be developed. The models
can be tested on learning and validation data and then choose the best one from
the portfolio. However, model development is difficult process, so the question why
not to use the properties of other (already existing) models arises. The principle
of multi-model prediction is based on that; when the predictions from different
models are combined, whereas it often happens that the final prediction has better
performance (lower prediction error) than the prediction performance of each model
individually.

Assuming that multi-model prediction is made up of the K prediction arithmetic
average of K prediction models

1 K
ot = It > (39)

then mean squared error of combined forecast is equal to

2 2

K K
1 1
B —a) =B g2l —w ] =B g X ] s (@0
=1 J=1

where ¢, ; is prediction error of j-th prediction model. Assuming that errors of
the individual models are uncorrelated with zero mean value and with identical
variance o2, then holds

K
2 1 1
E(ximx - iUt) = K2 ZE(E%g) = EU27 (41)
j=1

where FE is mean value operator. The variance of the resulting error process is this
way reduced (under certain preconditions) by factor K. Generally, the errors of in-
dividual models are correlated, however, in many cases the multi-model prediction
reduces the prediction errors.

Of course the formula (39) for combining can be generalized so that the final
prediction is a weighted combination of individual predictions,

K
eMIX — Z wjxﬁ’j, (42)
j=1

where the weights are set so they minimize the value of the loss-function.

The aforementioned principle can be applied to an active development of indi-
vidual models suitable for combined forecast, for example, that to a given portfolio
of models another one is added while demanding that its prediction error is “decor-
related” with the error of current portfolio [15]. Schematically, this procedure is
shown in Fig. 7. It is also possible to estimate the weights and individual model
parameters simultaneously (see so called mixture of experts models [1]).
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Final
Final Prediction
Prediction
|
F! F}
Ho|| H Fl
f f e
data data

(a) (b)

Fig. 7 Scheme of classic combined forecast made by two prediction models (a) and
adding new model to current portfolio (b).

To the category of multi-model prediction we may include a technique called
MOS (model output statistics), which is based on statistical processing (postpro-
cessing) the outputs from the physical (biological, chemical and others) models.
The predictions of these models (often very sophisticated) may be deviated, predic-
tion errors are correlated etc. The aim of MOS technique is to develop a statistical
model improving the statistical characteristics of the original models. Schemati-
cally, the use of MOS technology is shown in Fig. 8.

Final
Prediction
FMOS
F!
data

Fig. 8 Statistical improvement of prediction performance of prediction models F*
via MOS (model output statistics) technique.

7. Ensemble Forecasting

As discussed in Section 2, the trait of complex systems is the high sensitivity of
further development to the initial conditions. The essence of ensemble forecasting
is acquiring more individual predictions (predicted trajectories) by suitable pertur-
bations of the initial state of the system. This procedure is schematically shown in
Fig. 9.
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t

Fig. 9 Acquiring the ensemble forecasts by perturbation of the initial state of the
complex system.

From these forecasts can be obtained the final forecast (for example as a weighted
combination of individual forecasts as in the case of multi-model predictions de-
scribed in the previous section) as well as the information on the uncertainty of
given forecasts. Acquired ensemble forecasts should be, ideally, a random selection
from the probability distribution, which corresponds to the evolution of given sys-
tem. The best solution would be to describe the time evolution of the investigated
system using the equations describing the evolution of the probability density p(x;)
as it is explored in the theory of stochastic processes and as it is indicated in Sec-
tion 4., and to provide the forecast in the form of predicted probability density.
However, in real situations it is often difficult to meet all necessary prerequisites
and reliably estimate the theoretical probability density. Ensemble forecasting thus
represent a useful step from “point forecasting” to fully probabilistic predictions.
Besides, from practical point of view (according to the author’s experience) it is
not easy to communicate outputs of probabilistic forecasting models to a normal
user in accessible way.

Another method is construction of so-called structure time-lagged ensemble,
where the individual prediction ensemble for the time ¢ + k is created from pre-
dictions for the same time but obtained in the times ¢, t+1at+2,...,t+k—1
(see Fig. 10). The advantage of time-lagged ensembles is that we do not need to
do any additional predictive calculations (which for some complicated models may
represent significant time savings), because we usually predict to a sufficiently long
time horizon and at each step the forecasts is updated. More detailed information
about ensemble forecasting can be found e.g. in [9)].

8. Judgment (Expert) Forecasting

The human brain despite advances in neuroscience and artificial intelligence is still
the most perfect tool that can be used either on its own or in combination with
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Fig. 10 Acquiring ensemble forecasts via time-lagged predictions.

supporting tools for its decision. As already has been indicated in the introduction,
complex system behavior prediction is not an easy task. Even with usage of sophis-
ticated nonlinear prediction methods there is a need to correct the predictions in an
appropriate manner and correction made by human expert (experts) is one of the
most efficient options. Of course, there are situations where judgmental prediction
is not possible (for control of complex devices in real time, for prediction of many
hundreds or thousands of variables behavior at one minute intervals, etc.).

The complex systems behavior prediction made by human experts is charac-
terized by the fact that in the vast majority of cases there is not unambiguous
conclusion (see for example the issue of global warming). It is due to the complex-
ity of relations and even because of the obscurity of cause and effect relation (see
the study of behavior of macroeconomic variables such as GDP, unemployment,
inflation, etc.). Differences in forecasts are given by the different experiences of
individual experts (each uses a different set of learning). Moreover, existing rela-
tions, if they have existed in the past, are changing in time (the world is changing),
often very dramatically.

Interesting is also the tendency of thinking to linear extrapolation, while non-
linear relations between multiple variables are very difficult to understand (people
like simple explanations such as simple implication). One of the most fundamental
influences on judgmental predictions about the complex systems behavior is the
problem of expectation of given evolution that expresses itself in subconscious fil-
tering of the obtained data so that they meet those expectations. Even the results
of a very sophisticated prediction models can be suppressed or interpreted in dif-
ferent ways so that predictions do not diverged from the expected framework. This
could be for example one of the possible reasons of wrong forecasting the economic
crisis in the last four years, see [6].

Descriptive illustration of expectation influence on the interpretation of image
information is shown in Fig. 11.
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Fig. 11 Double interpretation of the same visual information — young girl vs. old
woman (source internet).

Another phenomenon that affects expert prediction is too high self-confidence
of some experts or to small self-confidence and their easy suggestibility by voices
of other experts.

Yet the expert predictions are very useful especially in combination with math-
ematical models, and that is because the expert is able to intuitively use for pre-
diction such information whose usefulness may not be apparent at first sight and
which are not included in the mathematical model (or it was not possible to include
them due to economic or technical reasons). Furthermore, in certain areas the ex-
pert prediction indispensable (medicine) or is required (e.g. in expert opinions) by
the users (e.g. public administration).

9. Experiment with Forecasting the Solar Power

Problem of weather forecasts problem is closely tied with the modeling of complex
natural processes. These problems are of great importance for almost all trans-
portation activities, maybe with excerption of subways (metros).

The chaotic nature of the system describing the atmospheric phenomena has
been described in the classical work of E. Lorenz [10], which led to the birth of a
new scientific discipline and the intense study of the deterministic chaos properties.
Due to the sensitivity of weather to initial conditions the predictability of weather is
limited. At present, it is considered that the theoretical limit of the forecast horizon
for the weather forecasts is about 3—4 weeks [9]. With increasing computing power,
refinement of initial conditions, increasing number and quality of observation, the
use of modern statistical methods, methods for data assimilation and ensemble
forecasting techniques, today a practical time of weather predictability (i.e. when
the operational forecast is better than climatological) is about 15 days. However,
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this does not apply to meteorological variables with regional character (like the
solar power is), where the practical predictability horizon is much lower.

Solar power forecasting whether for the short term (1-72 hours) or long-term
(using the climatological values) horizons in fine regional resolution is an impor-
tant task in the context of a sharp increase of photo-voltaic installations all over
the Europe and the Czech Republic. While the long-term forecasts are used for
estimating the economic return on investment into the photo-voltaic farms, the
short-term forecasts are matter of interest in companies engaged in the produc-
tion and distribution of electrical energy, the energy trader, small operators of the
photo-voltaic system and other.

Task of forecasting the solar power is not easy. Besides the local nature, it
can be a problem even that there is a need to predict the values of this variable
with a relatively fine time step (typically 1 hour but even less) and in fine regional
resolution (below cca 10 km). Such a prediction is not possible without the use
of numerical weather prediction (NWP) models. These are based on numerical
solution of partial differential equations describing the physical processes in the
atmosphere (flow dynamics, atmospheric water vapor flux, energy flows, etc.). Be-
cause of the very complicated behavior of the atmosphere, there is no universal best
model of weather. Therefore there are different types of NWP models that differ in
the spatial and time scale, level of details in physical phenomena description, ide-
alized models of flow in landscape, and various approaches for modeling the cloud
microphysics, etc. While describing the processes in the atmosphere in NWP mod-
els, the time evolution of the state vector comprising of spatially discretized values
of physical quantities such are the pressure, temperature, wind speed and direc-
tion, humidity, concentrations of other substances in the air, etc., is described.The
model describes the states evolution always in reference to specific area (domain),
which is divided into tens of vertical layers and horizontally is covered mostly by
square networks. The vertical division is in NWP models usually solved by changes
the hydrostatic pressure (in the so called o-layers). The time step for modeling
the physical phenomena varies depending on the horizontal resolution about 10-90
seconds, user outputs are typically provided with a time step of 1 hour.

To predict the solar power, we used numerical prediction models implemented
in the system MEDARD [5], [12], that is operationally run in the Institute of Com-
puter Science, Academy of Sciences of the Czech Republic, from 2004. The core of
the system is the NWP model WRF (Weather Research and Forecasting), which
replaced the older version of the model MM5 (Mesoscale Model, version 5). To
their development a number of organizations such as the National Center for At-
mospheric Research (NCAR), National Oceanic and Atmospheric Administration
(NOAA), National Centers for Environmental Prediction (NCEP) and others, have
contributed. WRF and MM5 models are primarily focused on the evolution of re-
gional weather in 2-20 km resolution, but experimentally are investigated their
properties at a resolution of 1 km and a smaller [8]. The boundary conditions
are derived from global atmospheric model GFS, which currently has a vertical
resolution of about 50 km. They are exhibited in 6 hour intervals when actual
measurement of states predicted in the previous step via using data assimilation
techniques is used. Here we use information from ground-based weather stations,
radar measurements, weather balloons and measurements on aircrafts and ships.
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For simulations in fine resolution, nesting of several domains is calculated. There
are three nested domains used in the system MEDARD, in resolution 27 km, 9 km
and 3 km.

Outputs from the models MM5 and WREF were used as inputs to the prediction
model for forecasting the electricity production from photo-voltaic farms in the
Czech Republic operated by CEPS, a.s. Forecast was carried out on the forecasting
horizon “D-+1”, thus predicts the production of electricity for the next day in the
morning (between approximately 7-8 hours) of the current day.

Smoothed course of prediction error normalized to the installed power is shown
in Fig. 12. Of course, we see that, paradoxically, the older version of NWP model
MMb5 shows better results than the newer version of the NWP model WRF. It
is due to the fact that NWP models are not a priori developed for the specific
(in our case energy) needs, but are developed to predict the weather as a whole.
It also confirmed that multi-model prediction (in our case, the final prediction is
calculated as the arithmetic mean of the outputs of both models and is shown in
Fig. 12 marked as MIX) may improve the prediction.

- WRF
-~ MMs
© 4 — MIX

T T T T T T
July August September October November December

day

Fig. 12 Course of prediction error of electricity production from photo-voltaic

sources in the Czech Republic during the second half of year 2011 (error expressed

in percent with respect to installed power) for predictive horizon D+1 (morning

forecast for the next day) with use of numerical weather prediction models WRF
and MM5 and their combination (MIX).

In Figs. 13 and 14 an illustration of time-lagged ensemble forecast gradually
developed from 14 predictions of NWP model MMS5 in six hours step for two selected
days can be seen. The predictions are compared with measurements of solar power
on the weather station of AIM (automatic immission monitoring) network operated
by the Czech Hydrometeorological Institute. Increased variability of predictions is
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Fig. 13 Time-lagged ensemble forecast of solar power in astronomic observatory
of the Astronomic Institute of the Academy of Sciences of the Czech Republic in
Ondrejov for day May 15, 2009.
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Fig. 14 Time-lagged ensemble forecast of solar power in astronomic observatory

of the Astronomic Institute of the Academy of Sciences of the Czech Republic in

Ondrejov with increased cloudiness in the afternoon period, predicted by numerical
weather prediction model MM5 for day June 10, 2008.
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reflected while increased cloudiness in the afternoon in Fig. 14. So the time-lagged
ensemble predictions can be a substitute for compute-intensive classical ensemble
predictions.

10. Final Remark

Interest in the use of forecasting methods in many areas of human activity is still
very large. Forecasting techniques are constantly improving in accordance with the
theoretical and practical knowledge and the development of computer technology,
which enables the implementation of previously difficulty feasible experiments and
lengthening the forecast horizon with practical usability. Forecasts provided by
sophisticated mathematical models have become part of everyday life. The big
challenge for prediction models developers is the more precise quantification of
uncertainties in forecasts, and in particular its more understandable interpretation
for the common user.
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